Report on **Updated Contamination Assessment** 

Jumping Creek Estate Development Ellerton Drive, Queanbeyan

> Prepared for **Peet Limited**

Project 88224.06

September 2020







## **Document History**

#### Document details

| Project No.         | 88224.06                                   | Document No. | R.001.Rev3 |
|---------------------|--------------------------------------------|--------------|------------|
| Document title      | Report on Updated Contamination Assessment |              | ssment     |
|                     | Jumping Creek Estate Development           |              |            |
| Site address        | Ellerton Drive, Queanbeyan                 |              |            |
| Report prepared for | Peet Limited                               |              |            |
| File name           | 88224.06.R.001.Rev0.docx                   |              |            |

#### Document status and review

| Status     | Prepared by  | Reviewed by   | Date issued       |
|------------|--------------|---------------|-------------------|
| Revision 0 | Peter Storey | Dean Woods    | 31 August 2018    |
| Revision 1 | Peter Storey | Michael Jones | 22 March 2019     |
| Revision 2 | Peter Storey | Dean Woods    | 21 August 2020    |
| Revision 3 | Peter Storey | Dean Woods    | 10 September 2020 |

#### Distribution of copies

| Status     | Electronic | Paper | Issued to                                 |
|------------|------------|-------|-------------------------------------------|
| Revision 0 | 1          | 0     | Mitchell Alexander, Peet Limited          |
| Revision 1 | 1          | 0     | Giselle Ravarian, Spacelab Studio Pty Ltd |
| Revision 2 | 1          | 0     | Mitchell Alexander, Peet Limited          |
| Revision 3 | 1          | 0     | Mitchell Alexander, Peet Limited          |

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

| <del>Sig</del> nature |             | Date              |
|-----------------------|-------------|-------------------|
| Author                | Pete Storey | 10 September 2020 |
| Reviewer Jan Ward     | Dean Woods  | 10 September 2020 |
|                       |             |                   |





## **Table of Contents**

|     |       |                                                                             | Page    |
|-----|-------|-----------------------------------------------------------------------------|---------|
| 1.  | Intro | ductionduction                                                              | 1       |
| 2.  | Scop  | pe of Works                                                                 | 2       |
| 3.  | Site  | Identification and Description                                              | 2       |
|     | 3.1   | Site Identification                                                         |         |
|     | 3.2   | Site Layout and Description                                                 | 3       |
| 4.  | Prop  | osed Development                                                            | 3       |
| 5.  | Soil  | Landscape, Regional Geology and Hydrogeology                                | 4       |
|     | 5.1   | Geology and Hydrogeology                                                    | 4       |
|     | 5.2   | Soil Landscape                                                              | 4       |
|     | 5.3   | Groundwater Bore Search                                                     | 5       |
| 6.  | Prev  | rious Environmental Works                                                   | 6       |
|     | 6.1   | Aboriginal Archaeological Assessment, New South Wales Archaeology Pty Ltd ( | (2009)6 |
|     | 6.2   | Remediation Action Plan, Sheep Dip Area (2009)                              | 6       |
|     | 6.3   | Stage 3 Contamination Assessment, Coffey (2010a)                            | 7       |
|     | 6.4   | Remediation Action Plan, Jumping Creek (2010b)                              | 11      |
|     | 6.5   | Site Audit Report, Environmental Strategies (2010a)                         | 11      |
|     | 6.6   | Site Audit Statement, Environmental Strategies (2010b)                      | 12      |
|     | 6.7   | Site Environmental Management Plan – Mine Site Area 4, Coffey (2015)        | 13      |
|     | 6.8   | Cultural Heritage Assessment, Navin Officer (2019)                          | 13      |
| 7.  | Site  | History Review                                                              | 14      |
|     | 7.1   | Regulatory Notice Search under the CLM and POEO Acts                        | 14      |
|     | 7.2   | Historical Aerial Photography                                               | 14      |
|     | 7.3   | Mining Records                                                              | 17      |
| 8.  | Site  | Inspection                                                                  | 18      |
| 9.  | Cou   | ncil Review of Development Application Documents                            | 21      |
| 10. | Pote  | ntial for Contamination and Areas of Environmental Concern                  | 21      |
| 11. | Con   | ceptual Site Model                                                          | 25      |
|     | 11.1  | Coffey Conceptual Site Model                                                | 25      |
|     |       | 11.1.1 Contamination Sources                                                |         |
|     |       | 11.1.2 Potential Receptors                                                  |         |
|     |       | 11.1.4 Summary of Potential Complete Pathways                               |         |



|     | 11.2   | CSM Addendum                                                 | 27 |
|-----|--------|--------------------------------------------------------------|----|
|     |        | 11.2.1 Additional Contamination Sources                      | 27 |
|     |        | 11.2.2 Potential Receptors                                   | 27 |
|     |        | 11.2.3 Potential Pathways                                    |    |
|     |        | 11.2.4 Summary of Potential Complete Pathways                | 27 |
| 12. | Field  | Work, Analysis and Quality Assurance/Quality Control         | 28 |
|     | 12.1   | Sample Rationale                                             | 28 |
|     | 12.2   | Methods and Sampling Locations                               | 29 |
|     | 12.3   | Soil Sampling Procedure                                      | 29 |
|     | 12.4   | Analytical Rationale                                         | 30 |
|     | 12.5   | Quality Assurance and Quality Control                        | 30 |
| 13. | Site A | Assessment Criteria                                          | 30 |
|     | 13.1   | Health Investigation and Screening Levels                    | 31 |
|     | 13.2   | Ecological Investigation Levels                              | 32 |
|     | 13.3   | Ecological Screening Levels – Petroleum Hydrocarbons         | 34 |
|     | 13.4   | Management Limits – Petroleum Hydrocarbons                   | 34 |
|     | 13.5   | Asbestos in Soil                                             | 34 |
| 14. | Resu   | ılts of the Investigation                                    | 35 |
|     |        | Additional Site Inspection Observations                      |    |
|     | 14.2   | ·                                                            |    |
|     |        | 14.2.1 Additional Mine Site                                  | 36 |
|     |        | 14.2.2 Limestone Quarry – JCH5                               | 36 |
|     |        | 14.2.3 Mining Activity Site – JCH13                          | 36 |
|     | 14.3   | Analytical Results                                           | 36 |
|     | 14.4   | ,                                                            |    |
|     |        | 14.4.1 Coffey (2010a)                                        |    |
|     |        | 14.4.2 Additional Sampling, DP                               | 39 |
| 15. | Discu  | ussion of Results                                            | 39 |
|     | 15.1   | Updated assessment of Coffey (2010a) Results                 |    |
|     |        | 15.1.1 AEC 2: Mine Site 3                                    |    |
|     |        | 15.1.2 AEC 3: Mine Site 4                                    |    |
|     |        | 15.1.3 AEC 6: Possible Mineral Processing/Stock holding area |    |
|     |        | 15.1.4 Systematic sampling                                   |    |
|     | 15.2   | Discussion of additional investigation results               | 41 |
| 16. | Revis  | sed Addendum Conceptual Site Model                           | 42 |
| 17. | Conc   | clusions and Recommendations                                 | 43 |
|     | 17.1   | Conclusions                                                  | 43 |
|     | 17 2   | Recommendations                                              | 45 |



| 18. | References  | .45 |
|-----|-------------|-----|
| 19. | Limitations | .46 |

## **Appendices**

Appendix A: About This Report

Appendix B: Drawings

Appendix C: Site History Searches

Appendix D: Historical Aerial Photographs

Appendix E: Site Photographs

Appendix F: Queanbeyan Palerang Regional Council Correspondence

Appendix G: Laboratory Certificates of Analysis and Chain of Custody Documentation

Appendix H: Data Quality Assessment

Appendix I: Ecological Investigation Limits Calculation Spreadsheet

Appendix J: Results Tables



## Report on Updated Contamination Assessment Jumping Creek Estate Development Ellerton Drive, Queanbeyan

#### 1. Introduction

This report presents the results of an updated contamination assessment undertaken for the current development area of the Proposed Jumping Creek Estate at Ellerton Drive, Queanbeyan. The investigation was commissioned by Mitchell Alexander of Peet Limited and was undertaken in accordance with Douglas Partners Pty Ltd (DP's) proposal CAN200076 dated 6 March 2020.

DP understands that the site is intended for a subdivision to enable development of residential properties. DP is aware that several phases of environmental investigation works have been completed by other Consultants and that the site was subject to a non-statutory audit, it is understood that the most recent intrusive environmental investigation works, including a site audit report prepared by the Site Auditor, date from 2010.

In 2019, SPACELAB Studio Pty Ltd (Spacelab) on behalf of PEET submitted a development application (DA) to Queanbeyan Palerang Regional Council (QPRC), which included an Update Contamination Assessment by DP (DP report ref 88224.03.R.001.Rev1, dated 22 March 2019). Following review of the DA submission documents, QPRC requested additional information in order to make a determination for the DA. The request included a request for further information regarding the contamination assessment of the site. This revised and updated report aims to fulfil QPRC's requirements to allow a determination to be made regarding the DA.

The objectives of the updated site contamination assessment include:

- Review previous environmental reports for the site provided to DP and provide comment on the adequacy and status of works undertaken to date;
- Research the historical use of the site and report on any matters that could prevent the site from being developed with reference to soil and groundwater contamination;
- Inspect the site to assess the current site condition with reference to site contamination;
- Undertake intrusive investigation of additional identified areas of environmental concern (AECs) at the site not previously assessed; and
- Advise on the potential of contamination and the need, if any, for additional investigation or ongoing site management.

This report must be read in conjunction with the notes *About this Report* which are included in Appendix A and other explanatory notes, and the report should be kept in its entirety without separation of individual pages or sections.



## 2. Scope of Works

The following scope of works was undertaken to meet the project objectives:

- Review of existing reports made available to DP;
- A search through the Contaminated Land Register for notices issued under the CLM Act;
- A review of available historical aerial photography;
- A search of the NSW Office of Water's registered groundwater database;
- A site inspection visit was undertaken to confirm the current state of the site. During the site inspection, areas of environmental concern previously identified were inspected and additional areas of environmental concern were recorded;
- Limited subsurface investigation of any additional AECs with sampling and laboratory testing for the contaminants of concern as outlined Section 12; and
- Preparation of this site contamination assessment report, detailing the review of existing report, results of the site inspection visit, results of laboratory analysis and assessing the need for further field-based environmental investigations or remediation works.

## 3. Site Identification and Description

#### 3.1 Site Identification

Site information is summarised in Table 1 below.

**Table 1: Site Identification Details** 

| Item                     |                            | Details                                                                                                                                                                                  |  |
|--------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Site Owner               |                            | PEET Limited                                                                                                                                                                             |  |
| Site Address             |                            | 30 Lonergan Drive, Greenleigh, NSW 2620                                                                                                                                                  |  |
| Current land us          | Current land use Open land |                                                                                                                                                                                          |  |
| Registered Lot           | and Plan                   | Lot1, DP1249543                                                                                                                                                                          |  |
| Current Zoning           |                            | E2: Environmental Conservation E4: Environmental Living RE1: Public Recreation  (extract of Queanbeyan-Palerang Regional Council Local Environment Plan 2012 is presented in Appendix C. |  |
| Council                  |                            | Queanbeyan-Palerang Regional Council                                                                                                                                                     |  |
| Approximate Si           | te Area                    | 95 ha                                                                                                                                                                                    |  |
| Proposed future land-use |                            | Residential                                                                                                                                                                              |  |
| Surrounding<br>Land Use  | North:                     | Ellerton Drive Extension construction site with low density residential properties beyond                                                                                                |  |



| Item  |        | Details                                                                       |
|-------|--------|-------------------------------------------------------------------------------|
|       | South: | Undeveloped woodland                                                          |
| East: |        | Undeveloped woodland                                                          |
|       | West:  | Queanbeyan River with low density residential and undeveloped woodland beyond |

## 3.2 Site Layout and Description

The overall site comprises an irregularly shaped, but roughly square parcel of land covering approximately 95 ha. The site measures approximately 1.1 km and 1.2 km in maximum east-west and north-south dimensions. The site is bounded to the west by the Queanbeyan River, to the north by the Ellerton Drive Extension construction works and to the east and south by undeveloped woodland.

The site lies within an enclosed valley within the Queanbeyan River corridor and is moderately to highly undulating and includes ridgelines and steep sided valleys. Valley Creek flows through the site from south-east to the north-west before meandering through a narrow gorge to join the Queanbeyan River. A high ridge line is present in the east of the site and other ridges are present in the north-west, southeast and south-west.

The elevation of the site ranges from approximately 580 m Australian Height Datum (AHD) in the west of the site to 690 m AHD in the north-east corner of the site.

The site is partially cleared of trees and moderately to heavily grassed with a variable tree and weed density. Weeds, including blackberry and bramble are generally located within valley or gully areas and were dense. Extensive rock outcropping and/or cobbles/boulders sub cropping were noted across most of the site. Uncontrolled filling was limited to existing access tracks and previous site disturbance (including motor bike mounds that appeared to be mounds created from site soils). Several areas were noted to contain scrap metal and dumped car bodies.

The site location and currently layout is presented in Drawing 1, Appendix B.

#### 4. Proposed Development

The proposed development at the site will involve subdividing the site to allow for low density residential development. The development will include the installation of roads and services, public open space areas and the creation of a stormwater retention pond in the lower slopes of the Valley Creek valley.

The proposed indicated site layout for the current development area is presented in Drawing 2, Appendix B.

This report provides an updated contamination assessment for the current development area of the proposed Jumping Creek Estate at the site.



## 5. Soil Landscape, Regional Geology and Hydrogeology

#### 5.1 Geology and Hydrogeology

Reference to the Canberra Geology Sheet indicates that the site is underlain by several rock units.

The north-eastern corner of the site is mapped as being underlain by the Pitman Formation of Ordovician age. The Pitman Formation typically comprises interbedded sandstone, siltstone shale and minor black shale.

The eastern part of the site is mapped as being underlain by a subgroup of the Colinton Volcanics and two subgroups of the Cappanana Formation both of late Silurian age. These rock subgroups typically comprise:

- dark green dacitic ignimbrite and minor volcaniclastic sediments;
- shale, siltstone and minor quartzite and tuff; and
- limestone.

The western part of the site is mapped as being underlain by 3 subgroups of the Colinton Volcanics of late Silurian age. These rock subgroups typically comprise:

- dark green dacitic ignimbrite and minor volcaniclastic sediments;
- · tuffaceous shale; and
- limestone and dolomitic limestone.

Reference to the Hydrogeology of the Australian Capital Territory and Environs Map indicates that the site is located on fractured aquifers of late Silurian age. Based on the hydrogeology map, the yield of aquifers increases from the east to the west from less than 0.5 l/s to 0.5 - 1.0 l/s. Total dissolved solids (TDS) are mapped as increasing from the west to the east from between 500-1000 mg/l close to the Queanbeyan River to greater than 1000 mg/l further to the east.

Surface water was not observed during the site inspection with the exception of ponded water from recent rain fall. The site is traversed by numerous intermittently flowing watercourses and gully lines which run in variable directions, but ultimately, water flows are to the north and north-west towards Jumping Creek and the Queanbeyan River.

#### 5.2 Soil Landscape

Reference to the Canberra Soil Landscape Sheet indicates the site is mapped as being underlain by the Burra soil group.

The Burra soil group is characterised by undulating to rolling low hills and alluvial fans on Silurian Volcanics of Canberra Lowlands, which are generally characterised by waning and gently to moderately inclined hill slopes, foot slopes and fans. Soils are shallow, well drained earthy sands on crests and upper slopes, and are moderately deep, moderately well drained red podzolic soils on mid slopes and most lower slopes. Moderately deep, moderately well drained yellow podzolic soils are present along minor drainage lines and on some lower slopes. The Landscape Sheet lists this soil group as



characterised by its strong acidity and low water holding capacity, its low permeability, sheet erosion risk, run-on and localised shallow soil.

#### 5.3 Groundwater Bore Search

A search of the groundwater bore database was conducted through the NSW Department of Primary Industries. Based on the database, there are 11 groundwater bores registered within a 1 kilometre radial search area of the boundary of the site (Table 2). Further information was available through the database for the bore as shown in Appendix C.

**Table 2: Groundwater Bores Attribute Data** 

| Groundwater<br>Bore<br>Number | Date       | Approximate Distance to site (m) | Private/Public | Groundwater<br>Usage    | Depth<br>to<br>base<br>(m) | Depth to<br>standing<br>water<br>level (m) | Yield<br>(L/s) |
|-------------------------------|------------|----------------------------------|----------------|-------------------------|----------------------------|--------------------------------------------|----------------|
| GW402778                      | 02/10/2003 | 890 NE                           | Private        | Domestic                | 36                         | 19                                         | 3.37           |
| GW402771                      | 03/10/2003 | 890 NE                           | Private        | Domestic                | 66                         | 22                                         | 1.06           |
| GW402842                      | 30/11/2004 | 890 NE                           | Private        | Domestic                | 60                         | 24                                         | 2.25           |
| GW416490                      | 04/01/2012 | 890 NE                           | Private        | Domestic,<br>Irrigation | 66                         | -                                          | 1.0            |
| GW4400875                     | 30/07/1997 | 890 NE                           | Private        | Domestic                | 36.6                       | 16.0                                       | 0.25           |
| GW403165                      | 13/07/2005 | 890 NE                           | Private        | Stock,<br>Domestic      | 78.00                      | 29.0                                       | 3.25           |
| GW401615                      | 06/12/2000 | 600 E                            | Private        | Domestic                | 73                         | 41.0                                       | 0.2            |
| GW416092                      | 31/10/2007 | 600 E                            | Private        | Stock,<br>Domestic      | 102                        | 32.0                                       | 0.63           |
| GW416069                      | 19/07/2004 | 440 N                            | Private        | Domestic                | 113                        | 74.0                                       | -              |
| GW402365                      | 21/05/2003 | 220 NE                           | Private        | Stock,<br>Domestic      | 79                         | 18.0                                       | 0.25           |
| GW404162                      | 23/05/2005 | 220 NE                           | Private        | Domestic                | 100                        | 22.00                                      | 4.5            |

Groundwater flow direction is inferred to be towards the west and would likely be connected to the Queanbeyan River.



#### 6. Previous Environmental Works

# 6.1 Aboriginal Archaeological Assessment, New South Wales Archaeology Pty Ltd (2009)

New South Wales Archaeology Pty Ltd (NSWA) was commissioned by Canberra Investment Corporation Pty Ltd (CIC) to prepare an Aboriginal Archaeological Assessment (AAA) for the Jumping Creek site to support a rezoning application to Queanbeyan City Council (now QPRC). The AAA reviewed previous archaeological studies undertaken for the site as well as undertaking a field study of the site. The field study comprised a site inspection and recording of artefacts, but did not include intrusive investigation.

The AAA provided a summary of the history of both aboriginal and European occupation of the site and site and recorded both indigenous and non-indigenous archaeological features present.

The non-indigenous features present were mainly related to mining activity at the site and are summarised in Table 3 below and the locations of the features are presented on Drawing 3, Appendix B.

Table 3: Summary of non-indigenous archaeological features

| Feature ID | Description                         | GPS Coordinates       |
|------------|-------------------------------------|-----------------------|
| JCH1       | Shearing shed and sheep dip complex | E704742, N6083351     |
| JCH2       | Mine shaft                          | E705178, N6083390     |
| JCH3       | Limestone quarry                    | E705289, N6082752     |
| JCH4       | Brick Limekiln                      | E705221, N6082866     |
| JCH5       | Limestone quarries                  | E704733, N6083200 and |
| 30113      |                                     | E704696, N6083262     |
| JCH6       | Lime Kiln                           | E704736, N6083248     |
| JCH7       | Mine workings                       | E705028, N6082899     |
| JCH8       | Ore processing area                 | E704921, N6083072     |
| JCH9       | Miners' camp                        | E704918, N6083130     |
| JCH10      | Mine shafts                         | E704509, N6082662     |
| JCH11      | Domestic site                       | E704480, N6082728     |
| JCH12      | Building material dump              | E704633, N6083356     |
| JCH13      | Mine diggings                       | E704415, N6082503     |

#### 6.2 Remediation Action Plan, Sheep Dip Area (2009)

Coffey Environments Pty Ltd (Coffey) was commissioned by CIC to prepare a remediation action plan (RAP) for a former sheep dip area located in the north-western part of the site. It is noted that this area corresponds to JCH1 described in the AAA. The location of the former sheep dip is shown in Drawing 1, Appendix B. The objectives of the RAP included setting remediation goals, selecting the preferred remedial option, outlining procedures for the implementation of the remedial option and providing site validation requirements.



In preparing the RAP, Coffey reviewed previous reports undertaken by IT Environmental (Australia) Pty Ltd (IT, 1999) and Egis Consulting (2001). In a review of the IT Environmental report, Coffey identified that samples obtained in the vicinity of the sheep dip reported concentrations of arsenic greater than the adopted screening criteria in four samples. In addition, two samples in the vicinity of the sheep dip reported concentrations of organochlorine pesticides (OCPs) above the laboratory practical quantification limit (PQL) but below the adopted screening criteria. It is noted that the screening criteria applicable at the time of preparing the RAP were based on criteria in National Environment Protection (Assessment of Site Contamination) Measure 1999 (ASC NEPM), which was subsequently amended in 2013.

The RAP identified that arsenic, lead and OCPs were the main contaminants of concern and specified remediation criteria that should be applied. The remediation criteria were based on the ASC NEPM, 1999.

The RAP also identified demolition of the remaining sheep dip structures, excavation of soil and off-site disposal of contaminated material at a licensed landfill facility to be the preferred remedial option. The selection of excavation and disposal was based on the relatively small amount of soil expected to be disposed off-site, that material generated from demolition and excavation may not be suitable for on-site reuse and that the remediation strategy would have a low risk of failure, nor require ongoing maintenance or management.

The RAP detailed remediation scope of works including the depth and extent of excavation, waste management requirements and the validation required to determine the success of remediation. The validation works included collection of samples from the walls and base of excavations as well as sampling of surface soils across the sheep dip area in order to determine if additional soil requires off-site disposal. In addition, quality requirements were also detailed for material to be imported to site to backfill any excavations.

DP broadly agrees with the remediation option selected and the scope of validation samples. However, it is noted that the RAP was prepared in 2009 and the regulatory framework and guidance has subsequently been updated. DP therefore recommends that prior to commencing remediation works, the RAP should be updated to reflect the changes in legislation and guidance and an objective of a revised RAP would be to ensure that following remediation the site would be suitable for the proposed uses.

#### 6.3 Stage 3 Contamination Assessment, Coffey (2010a)

Coffey was commissioned by CIC to conduct a Stage 3 Contamination Assessment of the proposed Jumping Creek Residential Estate. The objective of the assessment was to undertake supplementary contamination assessment of areas not investigated during previous assessments to inform remediation and management required to enable planning for the proposed residential estate. The Stage 3 Contamination Assessment is presented in Appendix C.

During the assessment, Coffey reviewed previous reports undertaken by IT Environmental (Australia) Pty Ltd (1999), Egis Consulting (2001) and Parsons Brinckerhoff (2007). The site history review indicated that the site had been used for a variety of potentially contaminating activities including the mining of metal ores, limestone quarrying and associated brick limekiln, possible on-site processing of mineral ores and pastoral activities including one sheep dip complex.



Coffey reported that use of the site dated back to the 1840s and that mining activities (mining for lead, copper and zinc) were believed to have occurred between the 1850s and early 1900s. In order to manage the size of the site from a contamination perspective, Coffey divided the site into five 'Domains of Interest' (DOI1 to DOI5), which were discrete areas defined by ridges and gullies of Jumping Creek. Coffey considered that contamination sources located within a particular DOI and separated by the site topography and geography were mutually exclusive from other areas of the site. Coffey considered that any contamination located in one DOI could not traverse to the other site DOIs and would only move down-gradient into Jumping Creek or its tributaries. The locations of the DOIs are presented in Figure 2 of Coffey (2010a), included in Appendix C.

The scope of work for the assessment included the development of a sampling analysis and quality plan (SAQP) to target the identified the areas of environmental concern, focusing particularly on the mining activities. In addition, sample locations were selected in areas of the site where residential blocks were proposed to be located and sediment samples, surface water samples and groundwater samples were proposed. It is noted that the SAQP was reviewed and approved by a site auditor as part of the assessment.

Following review of previous reports and site inspections, Coffey identified that three remnant mining sites were present at the site. These were named Mine Site 1, Mine Site 3 and Mine Site 4, and the locations of these areas are presented in Drawing 3, Appendix B. These areas correspond to items JCH2, JCH7 and JCH10, respectively, described in the AAA (NSWA, 2009).

It should be noted that Mine Site 3 is located in an area that is not currently proposed for development, however, at the time of the Coffey investigation, it was within an area proposed for residential development. In addition, a possible mineral processing area was located to the north-west of Mine Site 4 (corresponding to item JCH8 described in the AAA). Mine sites 1 and 3 were described to comprise single mine shafts and associated stockpiles. Mine Site 4 was described as comprising an area of open cut pits, several shallow trench excavations and an open adit. The mineral processing area was described as containing the remnants of several structures, including several water troughs, open drains and drainage sump areas. Reference was made to two additional mine sites previously encountered by IT Environmental, however, at the time of investigation, Coffey was unable to locate these mine sites.

Sampling targeted the above areas associated with mining activities and the kiln area. In addition, systematic sampling was undertaken in areas of the site that were, at the time of the assessment, proposed to be located in residential and open space areas. Sediment samples were also obtained from various locations within creeks present across the site. Soil sampling was not undertaken in the area of the sheep dip as part of the assessment by Coffey as it is understood that sampling of that area was undertaken by IT Environmental.

The assessment also included the installation and sampling of eight groundwater monitoring wells, the wells were installed in the vicinity of the sheep dip, the possible mineral processing area and Mine Sites 3 and 4. Three surface water samples were also collected from creeks where surface water was present.

The locations of samples obtained by Coffey are presented in Figures 3 to 7 in Coffey, 2010a, presented in Appendix C.



Laboratory results from soil samples submitted for analysis were compared against Health-based soil investigation levels (HILs) and ecological investigation levels (EILs) published in the National Environment Protection (Assessment of Site Contamination) Measure 1999<sup>1</sup>. HILs for residential land use with garden/accessible soil and EILs for urban land use setting were used to screen the results. Results from groundwater samples were compared against values published in the National Water Quality Management Strategy.

The results of the laboratory analysis indicated that concentrations of metals in soil samples were detected above the laboratory practical quantification limit (PQL).

Areas of elevated metal concentrations within soil and rocks were identified within Mine Sites 3 and 4.

At Mine Site 3, the range of reported concentrations for selected metals was:

- Arsenic 22 mg/kg to 2,900 mg/kg;
- Cadmium <PQL to 47 mg/kg;</li>
- Copper 1.6 mg/kg to 260 mg/kg;
- Lead 3 mg/kg to 5,200 mg/kg; and
- Zinc 100 mg/kg to 4,500 mg/kg.

At Mine Site 4, the range of reported concentrations for selected metals was:

- Arsenic 4 mg/kg to 200 mg/kg;
- Cadmium <PQL to 350 mg/kg;</li>
- Copper 4.1 mg/kg to 530 mg/kg;
- Lead 15 mg/kg to 54,000 mg/kg; and
- Zinc 48 mg/kg to 130,000 mg/kg.

In samples collected from areas of the site where the previously proposed development comprised residential or open space use, the range of reported concentrations for selected metals was:

- Arsenic <PQL to 130 mg/kg;</li>
- Cadmium <PQL to 0.7 mg/kg;</li>
- Copper 1 mg/kg to 40 mg/kg;
- Lead 3 mg/kg to 85 mg/kg; and
- Zinc 17 mg/kg to 1,100 mg/kg.

It is noted that within the previously proposed residential areas, sample RE34 reported a concentration of arsenic greater than the applicable screening criteria (HIL-A). Additional samples (RE34a to RE34d) were collected by Coffey to delineate the extent of the arsenic hotspot. The results of the additional samples did not report arsenic concentrations greater than the applicable screening criteria(HIL-A or EIL). Coffey concluded that 'significant migration of contaminants via sediment transport in the watercourse has not occurred'.

<sup>&</sup>lt;sup>1</sup> The ASC NEPM was amended in May 2013 and revised HIL and EIL were published.



Whilst it was considered that the elevated concentrations were associated with natural mineralisation within local geological formations, Coffey considered that Mine Sites 3 and 4 were not suitable for standard residential or recreational use without remediation or management.

Subsequently, it was recommended that a capping layer with an appropriate management plan be implemented as a remediation strategy, however, even with the implementation of such a strategy, Coffey did not consider that Mine Sites 3 and 4 would be suitable for residential use. Areas of the site outside of Mine Sites 3 and 4 were considered to be suitable for either residential use or for parks and recreational open space.

Reported concentrations of arsenic and zinc in two sediment samples collected from creek channels on the site marginally exceeded the ecological screening criteria applicable at the time of the assessment. Further discussion of these results is present in Section 14.4.1.

Concentrations of metals in groundwater were reported to be elevated and for some monitoring wells were above the adopted criteria. The range of reported concentrations for selected metals was:

- Arsenic <PQL to 0.038 mg/L;</li>
- Cadmium <PQL to 0.0001 mg/L;</li>
- Copper <PQL to 0.005 mg/L;</li>
- Lead <PQL to 0.2 mg/L; and</li>
- Zinc 0.003 mg/L to 0.016 mg/L.

Coffey concluded that groundwater across the site had elevated metal concentrations, with reported concentrations of several metals exceeding the applicable screening criteria for all samples except for monitoring well MW7. However, following evaluation of the Conceptual Site Model, Coffey considered that the risk of exposure of site users to elevated metal concentrations was low considering the depth to groundwater under the site.

In addition, reported concentrations of zinc in all three surface water samples and reported concentrations of copper in two surface water samples exceeded the applicable screening criteria. Coffey considered that the metal concentrations in surface water were representative of regional mineralisation rather than as a result of anthropogenic processes. Coffey also considered that the metal concentrations in surface water do not represent a risk to human health for the proposed site development.

It was recommended that a remediation action plan (RAP) and site environmental management plan be prepared for Mine Sites 3 and 4 to address the contamination identified at these areas of the site. Further, it was recommended that assessment and remediation of the Sheep Dip Area is to be completed as part of the validation works to be conducted as per the Remediation Action Plan (Coffey), 2009.



#### 6.4 Remediation Action Plan, Jumping Creek (2010b)

Coffey was commissioned to prepare a separate RAP for areas of the site in which mining activities, or suspected mining activities have been undertaken. Coffey identified the extent of the contamination that required remediation based on the investigation discussed in the previous section. The extent of contamination where reported concentrations of contaminants of potential concern (CoPC) were above the applicable screening criteria were at Mine Site 3, Mine Site 4 and the mineral processing area.

At Mine Site 3, arsenic, cadmium, lead, copper and zinc were detected at concentrations exceeding the applicable screening criteria (HIL-A and EIL) and a conservative estimate of the affected area was estimated to be 3,500 m². At Mine Site 4, cadmium, lead and zinc were reported at concentrations exceeding the applicable screening criteria (HIL-A and EIL). A conservative estimate of the size of the affected area was reported by Coffey to be 19,700 m².

Within the mineral processing area, reported concentrations of metals marginally exceeding screening criteria were observed at a small number of locations, however, these areas were not selected for remediation as analysis of the 95 % Upper Confidence Limit of the mean, indicated that concentrations of reported CoPC were below the criteria. However, two sump structures were located within the mineral processing area where reported concentrations of arsenic, cadmium and zinc exceeded the screening criteria and remediation of these soils was recommended along with demolition of the sumps.

Remediation options were assessed for the above areas, and Coffey considered that for Mine Site 3 and Mine Site 4, following removal of observed waste materials, consolidation of observed spoil heaps and affected soil within the remediation area and capping with a suitable barrier was identified as the preferred remediation option.

For the mineral processing area, it was recommended that demolition of the identified sump structures and excavation of the surrounding soil was the preferred remediation option. It was recommended that once excavated, soils could either be consolidated with soil in the Mine Site 4 Area or disposed off-site to a suitable waste disposal facility.

For Mine Site 3 and Mine Site 4 it was noted that a site environmental management plan (SEMP) would be required for ongoing management of these areas once remediation works were completed. For the mineral processing area, validation sampling was recommended. The validation works for the mineral processing area included collection of samples from the walls and base of excavations. In addition, quality requirements were also detailed for material to be imported to the site to backfill any excavations.

DP broadly agrees with the remediation option selected and the scope of validation samples. However, it is noted that the RAP was prepared in 2009 and the regulatory framework and guidance has subsequently been updated. DP therefore recommends that prior to commencing remediation works as described in the RAP, it should be updated to reflect the changes in legislation and guidance and an objective of a revised RAP would be to ensure that following remediation the site would be suitable for the proposed uses.

## 6.5 Site Audit Report, Environmental Strategies (2010a)

Environmental Strategies Pty Ltd (ES) were commissioned by Canberra Investment Corporation Pty Ltd to conduct a non-statutory site audit for the site. The Site Auditor (SA) was Mr Rod Harwood, ES



reviewed several environmental reports for the site prepared by IT Environmental, Egis Consulting, Parsons Brinckerhoff and Coffey.

The objective of the audit was to determine whether the site conditions were protective of human health and the environment, and whether the site could be made suitable for the intended land use. ES reviewed previous consultants' reports with a view to commenting on the adequacy of the investigation and assessment, whether any data gaps remained and to enable the auditor to make comment on the suitability of the site for the intended use.

At the time of preparation of the SAR, the SA considered that the data collected by IT Environmental, PB and Coffey for the site had sufficient integrity to enable the SA to determine the contamination status of the site. With regards to assessment of the analytical results, the SA noted the following:

- "Former Mine sites 3 and 4 are unsuitable, even after remediation for use as residential sites, and are to be capped and used for open space purposes, to be managed under a Site Environmental Management Plan (SEMP);
- The former sheep dip area is to be remediated and made suitable for residential use;
- Creek bed sediments show no evidence of contamination from former site activities;
- Surface waters at the site show no evidence of contamination resulting from former site activities;
- Groundwater beneath the site is contaminated from natural mineralisation in parts of the site, and in not considered by Coffey to be suitable for any on-site uses.
- Contamination requiring remediation appears to be limited to the sheep dip site and Mine sites 3 and 4.
- The Auditor also requires that Arsenic contamination at RE34 be addressed"

The SA also noted that the areas of mining activity and the sheep dip site had been adequately assessed and the remainder of the site investigated to an extent to allow an effective remediation strategy to be prepared.

With regards to the remediation and validation activities, the SA considered that the sheep dip RAP was suitable for remediating the sheep dip area for residential use and that the RAP for the mining activity areas was suitable for remediation of those areas for open space use. Following remediation, the SA noted that the mining activity areas (Mine Site 3 and Mine Site 4) will need to be managed under a SEMP.

The SA also requested that the area of elevated arsenic found at RE34 should be remediated to allow the area to be suitable for residential use. However, DP notes that since the area in which the sample from RE34 was collected is no longer proposed for residential development, the SA may need to revisit this request. This is discussed further in Section 15.1.4.

## 6.6 Site Audit Statement, Environmental Strategies (2010b)

Mr Rod Harwood of ES prepared a Site Audit Statement (SAS) to accompany the SAR for the site, dated 25 August 2010. Under Part II, Section B of the site audit statement, it was stated that the site can be made suitable for the following uses:



- Residential with accessible soil, including garden (minimal home-grown produce contributing less than 10% fruit and vegetable intake), excluding poultry;
- Day care centre, preschool, primary school;
- Secondary school; and
- Park, recreational open space, playing field.

The SAS required that the site must be remediated in accordance with the RAP prepared by Coffey. The following RAPs were referenced:

- Remediation Action Plan Sheep Dip Area, Jumping Creek, Queanbeyan, NSW, Coffey Environments Australia Pty Ltd, dated 15 December 2009; and
- Remediation Action Plan Jumping Creek, Queanbeyan, NSW, Coffey Environments Australia Pty Ltd, dated 4 June 2010.

The SAS was issued subject to compliance with the following conditions:

 Preparation of an Environment Management Plan for management of the Mine Site 3 and Mine Site 4 Areas following site remediation.

## 6.7 Site Environmental Management Plan – Mine Site Area 4, Coffey (2015)

Coffey was engaged by CIC to prepare a site environment management plan (SEMP) for the area of the site known as Mine Site Area 4. The objective of the SEMP was to facilitate effective management of the capping structure installed on the Mine Site 4 area and was written to support the draft planning proposal for the development and to enable the local Council to appreciate the remediation and post remediation management requirements for the Mine Site Area 4.

#### 6.8 Cultural Heritage Assessment, Navin Officer (2019)

Navin Officer were commissioned by SpaceLab Studio Pty Ltd on behalf of PEET Jumping Creek Limited (PEET) to prepare an Archaeological and Cultural Heritage Assessment (ACHA) for the site to support the development application for the proposed residential development.

The ACHA reviewed previous archaeological studies and heritage listings for the site as well as undertaking a field study of the site. The field study comprised a site inspection and excavation of 162 test pits across the site. A review of heritage listings indicated that the brick limekiln and associated quarry identified as JCH3 and JCH4 by NSWA were heritage listed by NSW Office of Environment and Heritage.

With regards to the non-indigenous archaeology associated with mining and quarrying activities at the site, Navin Officer located the items JCH1 to JCH13 described by NSWA.



## 7. Site History Review

#### 7.1 Regulatory Notice Search under the CLM and POEO Acts

A search on 18 August 2020 for Statutory Notices issued under the *Contaminated Land Management Act 1997* and *Protection of the Environment Operation Act 1997* (POEO) available on the NSW Environment Protection Agency (EPA) website indicated that there have been no notices issued on the subject site.

The closest entry to the site on the List of NSW Contaminated Sites Notified to EPA was a Caltex Service Station located at 88 Macquoid Street, East Queanbeyan. The service station is located approximately 3.1 km north-west of the site. The contamination activity type was listed as "service station" and it indicated that regulation under the CLM Act was not required.

#### 7.2 Historical Aerial Photography

Eight historical aerial photographs available from ACT Land and Property Information and two satellite images obtained from Google Earth were reviewed (refer to Aerial Photograph Plates D1 to D10 attached in Appendix D.



Table 4: Summary of Historical Aerial Photography Review

| Aerial<br>Photograph              | On-site Conditions                                                                                                                                                                                                                                                                           | Surrounding Area                                                                                                                                             |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | The site was mostly undeveloped with the land likely being used for grazing. Occasional tracks crossed the site. The site was mostly grassed with sporadic stands of trees                                                                                                                   |                                                                                                                                                              |
|                                   | The site was bounded to the west by the Queanbeyan River. Jumping Creek entered the site in the south-east corner of the site and meandered through the central portion of the site before joining the Queanbeyan River.                                                                     |                                                                                                                                                              |
|                                   | Several smaller tributaries and gully lines joined Jumping creek at various points.                                                                                                                                                                                                          |                                                                                                                                                              |
| 1961<br>Photograph<br>Run 18-0156 | At least three buildings were visible in the north western part of the site, one of which appeared to be a homestead. The location of the buildings appeared to be consistent with item JCH1 and is assumed that one of the buildings was a woolshed adjacent to the sheep-dip (NSWA, 2009). | The site was surrounding by undeveloped dry sclerophyll forest to the north, east and south. The Queanbeyan River was present immediately to the west of the |
|                                   | The remnants of what appeared to be quarrying activity were present in the south-eastern corner of the site. The location appeared to be consistent with items JCH3 and 4 (NSWA, 2009)                                                                                                       | site, beyond which was open grazing land.                                                                                                                    |
|                                   | Areas of bare ground were scattered across the site, including in the central portion of the site in the area where Coffey indicated Mine Site 4 to be located (Item JCH7, NSWA, 2009).                                                                                                      |                                                                                                                                                              |
|                                   | Small, dark circular features were visible in the locations of JCH2 and JCH10 (NSWA, 2009) were just visible.                                                                                                                                                                                |                                                                                                                                                              |
|                                   | The mining activity referred to by NSWA (2009) as JCH13 in the south-western corner of the site, was not visible.                                                                                                                                                                            |                                                                                                                                                              |
| 1968<br>Photograph<br>Run 11/9575 | Largely unchanged from the previous photograph.                                                                                                                                                                                                                                              | Largely unchanged from the previous photograph.                                                                                                              |



| Areas of ground disturbance were visible to the south of the sheep dip (JCH1) and the area of                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ground disturbance at Mine Site 4 appeared larger.                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| At least two small buildings were now visible to the north-west of Mine Site 4 (in the vicinity of the mineral/ore processing area, Item JCH8, NSWA, 2009).                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| A track was visible leading from Mine Site 4 to Mine Site 3 and on to the mining activity area identified as JCH13 (NSWA, 2009). JCH13 was also visible and appeared to be a similar size and shape as detailed in NSWA (2009).                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Largely unchanged from the previous photograph.                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| The large area of disturbed ground (Mine site 4) was visible in the central portion of the site to the south of Jumping Creek. At least three small buildings were now visible to the northwest of Mine Site 4 (in the vicinity of the mineral/ore processing area, Item JCH8, NSWA, 2009). | Largely unchanged from the previous photograph.  A fire trail was present running along a ridge line to the east of the site, the fire trail entered the site in the north-east                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| One of the buildings in the north-eastern part of the site (Item JCH1) was no longer visible.                                                                                                                                                                                               | corner.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Disturbed ground in the area of the lime quarries detailed as Item JCH 5 (NSAW 2009) were visible.                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Largely unchanged from the previous photograph.                                                                                                                                                                                                                                             | Largely unchanged from the previous photograph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Several tracks were visible crossing the site.                                                                                                                                                                                                                                              | рпоюдгарт.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Largely unchanged from the previous photograph.  Additional tracks were now present across the                                                                                                                                                                                              | Largely unchanged from the previous photograph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| THE PRIORS LEP TATOS YOUR CO EQUIL POR P                                                                                                                                                                                                                                                    | the mineral/ore processing area, Item JCH8, NSWA, 2009).  A track was visible leading from Mine Site 4 to Mine Site 3 and on to the mining activity area dentified as JCH13 (NSWA, 2009). JCH13 was also visible and appeared to be a similar size and shape as detailed in NSWA (2009).  Largely unchanged from the previous photograph.  The large area of disturbed ground (Mine site 4) was visible in the central portion of the site of the south of Jumping Creek. At least three small buildings were now visible to the northwest of Mine Site 4 (in the vicinity of the nineral/ore processing area, Item JCH8, NSWA, 2009).  One of the buildings in the north-eastern part of the site (Item JCH1) was no longer visible.  Disturbed ground in the area of the lime quarries detailed as Item JCH 5 (NSAW 2009) were visible.  Largely unchanged from the previous photograph.  Several tracks were visible crossing the site. |  |



| Aerial<br>Photograph                 | On-site Conditions                                                                                                       | Surrounding Area                                                                                                                                  |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      | The buildings in the north-eastern part of the site (JCH 1) and to the north east of Mine Site 4 were no longer present. |                                                                                                                                                   |  |
| 1987<br>Photograph<br>Run 20-2215    | Many more tracks were present across the site. A larger proportion of the site was covered with bush and shrubs.         | Rural residential properties had been developed to the north of the site. Some residential properties had been developed to the west of the site. |  |
| 1995<br>Photograph<br>Run 20-210/211 | Largely unchanged from the previous photograph.                                                                          | Additional residential properties had been developed to the west of the site.                                                                     |  |
| 1998<br>Photograph<br>Run 10-16      | Largely unchanged from the previous photograph but a greater area of the site was covered with bushes and shrubs.        | Largely unchanged from the previous photograph.                                                                                                   |  |
| 2004                                 | Largely unchanged from the previous photograph.                                                                          | Additional residential properties had been developed to the west of the site.                                                                     |  |
| 2018                                 | Largely unchanged from the previous photograph.                                                                          | The Ellerton Drive Extension works had commenced and formed the north-western boundary of the site.                                               |  |

## 7.3 Mining Records

Given the identification of historical mining activities at the site, a search of the NSW Planning, Industry & Environment Digital Imaging of Geological System (DIGS) database was undertaken.

The results of the search indicated that the site was located within the area covered by Exploration Licence 483. The licence was granted to Nova Nickel NL on 14 May 1971, however, the interest was sold to Tannenbar Exploration Limited who optioned an interest to Western Mining Corporation Limited. As part of the licence, progress reports provided a summary of exploration works undertaken. Progress report No. 3 covering a twelve month period to 14 May 1972, present results of stream sediment sampling undertaken. The report indicated approximately seven samples were obtained from creeks crossing the site. Results of the sampling were included in the report, and included values for copper, lead and zinc, however the value units were not included in the report.

In addition, the map showing the location of samples was based on the Canberra and Bungendore topographic maps, published in 1961. The map shows a 'disused' mine working to be located in the approximate area of Mine Site 4.

The mining report and extract from the topographical map is presented in Appendix C.



## 8. Site Inspection

The site was inspected by a suitably qualified DP environmental scientist on 14 August 2018 and again in July 2020 to observe the status of the site, observe the status of the previously identified areas of environmental concern and identify any visible indications of contamination on site and off site. The following observations were made:

#### General Site Observations

- The site was accessed on the northern boundary via a gateway accessed through the newly completed Ellerton Drive extension. Access was via an unsealed "four wheel drive" track;
- The site generally comprised undulating to steeply undulating undeveloped land which was moderately to heavily grassed;
- Surface cobbles, boulders and rock outcrops were observed across the entire site;
- Areas of the site were extensively covered with thick stands of weeds (mainly bramble and blackberry).;
- Semi-mature to mature trees were scattered across the site. The trees were a mixture of exotic and native species;
- An extensive network of tracks crossed the site. The tracks appeared to be used for unauthorised "four wheel driving" and motorbike riding; and
- Anthropogenic wastes were scattered across most areas of the site. Wastes ranged from small
  piles of building and demolition wastes, burned car bodies, small stockpiles of soil and general
  household wastes. A small stockpile located on the ridge-line in the north-west of the site was
  observed to contain pieces of potential asbestos containing material.

#### Sheep Dip Area, (Item JCH1, NSWA 2009)

The sheep dip area identified in previous reports was identified in the north western part of the site, adjacent to the main access track. The following observations were made:

- The remnant sheep dip structure comprised the concrete sheep dip trough with small concrete pads
  present at each end of the trough;
- The trough was approximately 10 m long and 0.5 m wide. The area was heavily overgrown with the trough obscured by trees and shrubs;
- Building and demolition rubble comprised corrugated metal sheet, brick and concrete boulders was scattered on the ground surface;
- Low wooden posts were observed driven into the ground;
- Several pieces of fibrous cement sheeting i.e. potentially asbestos containing materials were observed on the ground surface to the north of the sheep dip;
- The sheep dip was located on a broad ridge line dropping to the north and south. Extensive weeds (brambles and blackberry) were present on the north slope of the ridge; and
- A monitoring well was observed to the south-west of the sheep-dip. The location was consistent
  with that noted in the Coffey Stage 3 contamination assessment. The top of the PVC well casing
  was broken and no well cap was present.



#### Mine Site 1, (Item JCH2, NSWA 2009)

Mine Site 1 identified in previous reports was observed in the north-eastern part of the site adjacent to an access track. The following observations were made:

- The mine site comprised an open shaft with stockpiled spoil present on the eastern, southern and western sides of the shaft;
- A wire gate and hi-vis barrier mesh had been placed over the open shaft in an attempt to make the shaft safe;
- The depth of the shaft was measured to be greater than 6 m deep;
- Sparse grass cover was present in the vicinity of the shaft; and
- The mine shaft appeared in similar condition to that noted in the Coffey Stage 3 assessment report.

#### Mine Site 3, (Item JCH10, NSWA 2009)

Mine Site 3, identified in previous reports was observed in the south-western part of the site. It should be noted that this area is outside of the current development area, but still within the boundary of the site. It is understood that this mine site is within an area that will be used for public open space. The following observations were made:

- The mine site comprised an open shaft with stockpiled spoil present on the eastern, southern and western sides of the shaft. The shaft had not been in-filled;
- Trees and weeds were observed to be growing out of the shaft;
- The depth of the shaft was measured to be greater than 6 m deep;
- Weeds (bramble) were present on the stockpiled spoil;
- Three monitoring wells were observed, the locations of which were consistent with those detailed in the Coffey Stage 3 assessment report; and
- The shaft had not been in-filled and there was no evidence that any remediation works e.g. a capping layer, had been placed in the area.

#### Mine Site 4, (Item JCH7, NSWA 2009)

Mine Site 4, identified in previous reports, was observed in the central part of the site adjacent to an access track. The following observations were made:

- The mine site comprised a disturbed area of ground approximately 110 m long by 40 m wide and was located on a hillside that sloped down towards the north and east, on an inside bend of Jumping Creek;
- Two areas of open cut excavation and stockpiles of mining spoil were located in the north-western part of the area of disturbed ground;
- Several smaller stockpiles were located in the eastern part of the disturbed ground sloping towards the east along with two short open trenches. The stockpiles and trenches were overgrown with weeds and bushes;
- An adit was located in the eastern part of the disturbed ground on the lower eastern slope. The
  opening of the adit was overgrown, but it was observed that the adit opened into a passage,



however, it was not possible to ascertain the length of the adit. It should be noted that the entrance to the adit was similar in appearance to a photograph of a mine shaft presented in the Coffey Stage 3 assessment report; and

Two monitoring wells were present in the eastern part of the disturbed ground area. The monitoring
well locations appeared consistent with the locations of monitoring wells MW5 and MW6 identified
in the Coffey Stage 3 assessment report.

#### Mineral Processing Area/Stock Holding Area, (Item JCH8, NSWA 2009)

The mineral processing area/stock holding area was identified to the north-west of Mine Site 4. The following observations were made:

- The area was heavily overgrown with trees, bushes and bramble present limiting access to the area and reducing areas of the area that could be directly observed;
- Evidence of former structures was observed including concrete slabs and low courses of brickwork. Several reinforced concrete troughs were observed throughout the area. The troughs were approximately 1.5 m long and 0.5 m wide. Building and demolition rubble was present throughout the area, including brick, metal, concrete and timber fragments. Timber posts driven into the ground were also present. Remnants of an above ground storage tank were also present, which appeared to be filled with waste materials. There was no labelling on the outside of the tank and it is unknown what the tank was formerly used to store;
- An open concrete drain was present leading to a concrete sump. It was not possible to closely observe the concrete lined drainage sump due to dense overgrowth;
- A monitoring well was present to the north east of the Mineral Process/Stock Holding Area. The
  monitoring well was located in a position consistent with the location of monitoring well MW7
  identified in the Coffey Stage 3 assessment report; and
- The remaining features of the former structures appeared generally consistent with the photographs of the area provided in the Coffey Stage 3 assessment report.

#### Kiln and Limestone Quarry (Items JCH3 and JCH4, NSWA 2009)

The kiln and limestone quarry identified in previous reports was identified in the south-eastern corner of the site. The following observations were made:

- The remains of the kiln building were heavily overgrown with weeds and only parts of the structure could be observed;
- The parts of the structure observed appeared consistent with photographs presented in the Coffey Stage 3 assessment report;
- No evidence of any remediation works having been undertaken in the area was noted;
- The limestone quarry was noted in the south-east corner of the site on the lower eastern slopes of the Jumping Creek valley;
- The quarry was approximately 60 m long, 15 m wide and 5 m deep. A car body was present within the quarry area; and
- Large stockpiles of spoil were present to the west of the quarry.



#### Additional Mine and Limestone Quarry Site, (Item JCH5, NSWA 2009)

- A previously unidentified mine shaft and a small limestone quarry site (described as JCH5 in NSWA 2009) were present in the north- western part of the site, located to the south-west of the sheep dip area, on the north-eastern slope of a ridgeline;
- The small quarry site was approximately 20 m wide and 20 m long and was cut into the slope.
   Stockpiled spoil consisting of gravel to boulder sized fragments of rock was present to east of the quarry area; and
- The mine shaft was located to the south-west of the small quarry. The mouth of the shaft was
  heavily overgrown and measured approximately 3.5 m long and 2.5 m wide. Due to the overgrown
  vegetation, it was not possible to assess the depth of the shaft. Stockpiled spoil was present on the
  northern, eastern and southern sides of the shaft.

Photographs from the site inspection are presented in Appendix E.

## 9. Council Review of Development Application Documents

A previous version of this report (DP, 2019) was submitted to QPRC in support of the DA for the proposed development. Following review of the DA and accompanying documents QPRC requested additional information before determining the application.

With regards to the contamination assessment, QPRC requested that a single Detailed Site Investigation be provided for the entire site and include intrusive investigation of the additional mine site identified by DP (2019) and areas identified as JCH 5, JCH 6 and JCH13 in the Cultural Heritage Assessment prepared by NSWA (2009) and confirmed by Navin Officer (2019).

It is noted that Coffey (2010a) prepared a Stage 3 Contamination Assessment for the entire site, however, did not provide assessment of the above features requested by QPRC. Further, the ASC NEPM was amended in 2013 and introduced amended site assessment criteria which included a change in the generic land use settings. This revised report presents the data from Coffey (2010a) and the site assessment criteria published in the ASC NEPM (1999, amended 2013).

In addition, this revised report (sections 12 to 17) details the results of additional intrusive investigation undertaken at the site in order to assess the areas detailed during QPRC review of DA submission documents. A copy of the correspondence from QPRC requesting additional information is presented in Appendix F.

#### 10. Potential for Contamination and Areas of Environmental Concern

Review of historical aerial photographs and previous environmental reports indicate that the site has been used for mining activities, limestone quarrying, possible on-site mineral ore processing and pastoral activities, including sheep dipping. The use of the site for these activities is understood to date from the 1840s when pastoral use of the site was undertaken with mining activities occurring between the 1850s and early 1900s. The above uses are considered to be potentially contaminating activities.



The following areas of environmental concern (AECs) associated with the above potentially contaminating activities were identified during previous works undertaken at the site and are presented on Drawing 4, Appendix B:

- AEC1: Mine Site 1 (located in DOI3);
- AEC2: Mine Site 3 (located in DOI1);
- AEC3: Mine Site 4 (located in DOI2);
- AEC4: Additional Mine Site (located in DOI5);
- AEC5: Items JCH 5, JCH 6 and JCH 13 (as described in NSWA 2009);
- AEC6: Former Possible Mineral Processing/Stockyard Area (located in DOI2);
- AEC7: Former Sheep Dip (located in DOI4); and
- AEC8: Former Kiln (located in DOI3)

Intrusive investigations undertaken by Coffey indicated reported concentrations of contaminants of concern from Mine Site 1 and the Former Kiln were below the adopted site assessment criteria and contaminants of concern did not present a risk to human health or environmental receptors. Therefore, AEC1 and AEC8 have not been considered further.

Concentrations of contaminants of concern in samples collected from Mine Site 3, Mine Site 4, and the possible mineral processing area were identified to exceed the adopted site criteria and are considered to be active AECs. The items described in NSWA (2009) and referred to in the QPRC request for further information and the Sheep Dip area are also considered to be active AECs.

Table 5 below outlines the justification behind the identification of AECs that DP considers are currently active.



**Table 5: Summary of Areas of Environmental Concern** 

| AEC Description                                                                                                                                                                     | Justification                                                                                                           | Contaminants of Concern*                                                                                                                                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       | Mine Site 3 is located in the south-west of the site. Following assessment of this area by Coffey (2010a), remediation of the area was recommended and subsequently a RAP was prepared (Coffey 2010b).                                                                                                                                                                                                                                                                                                                                                                |
| AEC 2: Mine Site 3  Identified area of former mining activities                                                                                                                     | Identified area of former                                                                                               | Arsenic, cadmium,                                                                                                                                                                                                                                                                                                                                                                                     | Review of the RAP indicated that the preferred remediation option was consolidation of stockpiled material within the mining area, backfilling of open shafts and capping the area with imported material.                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                     | lead, copper and zinc                                                                                                   | DP considers that once remediation has been successfully completed and validated within the area, it is likely the area could be made suitable for use as public open space. It is further noted that at the time of the Coffey assessment and RAP, the area was proposed for residential use. Following revision of the proposed development, the area is proposed to be used for public open space. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AEC 3: Mine<br>Site 4                                                                                                                                                               | Identified area of former<br>mining activities, including<br>open pits, stockpiled spoil and<br>open adit               | Lead, cadmium<br>copper, zinc,<br>arsenic                                                                                                                                                                                                                                                                                                                                                             | Mine Site 4 was identified by Coffey (2010a) as requiring remediation and a RAP was subsequently prepared by Coffey. The preferred remediation option was understood to be consolidation of stockpiled material within the mining area, backfilling of any open shafts and capping the area with imported material. A SEMP was prepared for the area by Coffey (2015) in order to detail the ongoing management required for the area following remediation.  DP considers that once remediation has been successfully completed and validated within the area, it is |
|                                                                                                                                                                                     |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       | likely the area could be made suitable for use as public open space.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AEC 4: Additional Identified Mine site  During the DP site inspection, an additional mine site comprising a shaft and stockpiled spoil was identified in the north-west of the site | Lead, copper, zinc,<br>arsenic, chromium,<br>cadmium, nickel,<br>mercury, sulphate,<br>acid generating<br>potential, pH | During DP's site inspection, an additional mine site consisting of a shaft was encountered in the north-western part of the site, within the Stage 1 development area.  Review of the Coffey Stage 3 Contamination area indicates that no intrusive investigation was undertaken in this area of the site.                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                     |                                                                                                                         | Therefore, DP considers that the potential for contamination in this area of the site has not been adequately characterised and that further assessment of the additional mine site is required.                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AEC5:<br>Mining,<br>quarrying                                                                                                                                                       | Review of the AAA (NSWA, 2009) and information from QPRC identified additional                                          | Metals and polycyclic aromatic                                                                                                                                                                                                                                                                                                                                                                        | Review of the AAA indicated that items JCH5, JCH6 and JCH13 were possibly associated with either mining activity or limestone quarrying and processing (possible limekiln feature JCH6). Review of previous reports indicated that these areas have not previously been assessed.                                                                                                                                                                                                                                                                                     |
| activity and limekiln                                                                                                                                                               | mining areas not previously assessed                                                                                    | hydrocarbons                                                                                                                                                                                                                                                                                                                                                                                          | Therefore, DP considers that the potential for contamination in this area of the site has not been adequately characterised and that further assessment may be required.                                                                                                                                                                                                                                                                                                                                                                                              |



| AEC<br>Description                                            | Justification                                         | Contaminants of Concern*                 | Comments                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEC 6:<br>Former<br>Possible<br>Mineral<br>Processing<br>Area | Identified area of former possible mineral processing | Arsenic, cadmium<br>and zinc             | Inspection of historical aerial photographs indicated that the buildings present within the mineral processing area were constructed between 1961 and 1973. The historical aerial photographs indicate that the buildings were demolished prior to 1984.                                                                                               |
|                                                               |                                                       |                                          | Given that mining activities were understood to have taken place between the 1850s and the early 1900s, it is considered that the remnant structures observed in this area may not have been associated with mineral processing activities.                                                                                                            |
|                                                               |                                                       |                                          | Nevertheless, Coffey indicated that concentration of selected metals were above adopted site criteria in soils in an area associated with two drainage sump structures. In the RAP for this area, Coffey recommended that this contamination be removed off-site along with the demolition of those structures.                                        |
|                                                               |                                                       |                                          | Inspection by DP indicated that the condition of the area of the possible mineral processing area was similar to that encountered by Coffey in 2010a.                                                                                                                                                                                                  |
|                                                               |                                                       |                                          | DP has reviewed the RAP prepared by Coffey, and broadly agrees with the preferred remediation option selected and considers that following the remediation and successful validation of the sump structures, the area of the site would likely be suitable for residential end-use.                                                                    |
| AEC 7:<br>Former<br>Sheep Dip                                 | Sheep dip site.                                       | Arsenic,<br>organochlorine<br>pesticides | The sheep dip area was identified by Coffey as an area that required remediation. Subsequently Coffey prepared a separate RAP for the sheep dip area. Review of the RAP indicated that demolition of the sheep dip structure followed by excavation and off-site disposal of the surrounding soils was the preferred remediation option for this area. |
|                                                               |                                                       |                                          | DP broadly agrees with the remediation option selected in the RAP and considers that following successful remediation and validation of the sheep dip area, the area could be made suitable for residential use.                                                                                                                                       |

Notes

<sup>\*</sup> Contaminants of concern for AEC 2, AEC 3, AEC 6 and AEC 7 based on laboratory results from previous investigations where concentrations were above adopted site criteria



## 11. Conceptual Site Model

## 11.1 Coffey Conceptual Site Model

Coffey (2010a) presented a conceptual site model (CSM) for the site as part of the Stage 3 Contamination Assessment. The details of the CSM are detailed in Section 13 and Figure 10 of the report (included in Appendix C).

The CSM presented in Coffey (2010a) characterised potential sources, and identified potentially active pathways and receptors.

#### 11.1.1 Contamination Sources

The potential sources were limited to areas of mining activity as follows:

AEC2 - Mine Site 3;

AEC3 - Mine Site 4; and

AEC6 - Former Possible Mineral Processing/Stockyard Area

Coffey did not include the sheep dip in the CSM as part of the original objectives of the Stage 3 Contamination Assessment was to identify potential areas of investigations not detected during previous investigations.

#### 11.1.2 Potential Receptors

Coffey considered potential receptors included

CR1 - Site users, including residents and visitors

CR2 – Site workers, involved in construction, services, landscaping or maintenance activities;

CR3 - On-site or off-site users of groundwater; and

CR4 - Local plants, vertebrates and invertebrates

## 11.1.3 Potential Pathways

Potential migration pathways were identified as:

CP1 – Air as a result of wind action and dust movement (inhalation of dust);

CP2 - Groundwater migration;

CP3 - Surface water migration;

CP4 - Sediment movement (erosion);

CP5 - Dermal contact/ingestion of soils; and

CP6 - Food chain transfer.



## 11.1.4 Summary of Potential Complete Pathways

A summary of the Coffey CSM has been prepared for the site with reference to the National Environment Protection (Assessment of Site Contamination) Measure Schedule B2. The summary identifies potential contaminant sources and contaminants of concern, contaminant release mechanisms, exposure pathways and potential receptors. The summary is presented in Table 6 below.

Table 6: Summary of potential complete pathways for Coffey CSM

| Source                                                                      | Receptor | Transport<br>Pathway  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------|----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AEC2 –<br>Mine Site 3                                                       | CR1      | CP1, CP4,<br>CP5, CP6 | Coffey considered that dermal contact/ingestion of soi was the primary complete pathway where meta concentrations were reported to exceed applicable screening criteria over a large area. Sediment movement was also considered to be complete, but                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                             | CR2      | CP1, CP4, CP5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | CR3      | CP2, CP3              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | CR4      | CP4, CP5, CP6         | considered to be low risk due to the low level of concentrations of metals identified in stream sediment,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                             | CR1      | CP1, CP4,<br>CP5, CP6 | with only two samples reporting metal concentrations exceeding the screening criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AEC3 –                                                                      | CR2      | CP1, CP4, CP5         | Inhalation of dust was considered not to be complete,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mine Site 4                                                                 | CR3      | CP2, CP3              | given soils were not greatly available to wind erosion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                             | CR4      | CP4, CP5, CP6         | However, it was noted that this pathway may become complete during disturbance of the site. Food chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                             | CR1      | CP1, CP4,<br>CP5, CP6 | transfer was considered to be possible, but we considered that due to the skeletal soils not be suitable for growing edible produce, imported clean so would be required to support healthy vegetation grow                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                             | CR2      | CP1, CP4, CP5         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                             | CR3      | CP2, CP3              | Whilst concentrations of metals exceeding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AEC6 –<br>Former<br>Possible<br>Mineral<br>Processing/<br>Stockyard<br>Area | CR4      | CP4, CP5, CP6         | screening criteria were reported in surface and groundwater, Coffey considered these pathways were not active due to the depth of the water, meaning it is unlikely that the site users would come into contact with groundwater. Off-site users of groundwater were considered but Coffey considered that the risk was low.  In addition, surface water sampled was noted to be in standing pools within the lower reaches of the creek system. The site watercourses were noted to be ephemeral and not suited to recreational use. The pathway was considered to be complete but of low risk to human health for the proposed development. |



#### 11.2 CSM Addendum

An addendum to the CSM has been prepared by DP and is presented below. The addendum CSM considers the additional AECs have been identified following Coffey (2010a) and also includes the sheep dip. Whilst previous assessment of the sheep dip area has been completed, it has not previously been included in a CSM. As remediation works have yet to be completed it is considered an active source and should be included to compile a complete CSM for the site.

#### 11.2.1 Additional Contamination Sources

AEC4 – Additional Mine Site (shaft)

AEC5 – Mining, quarrying and limekiln activities (JCH5, JCH6 and JCH13)

AEC7 - Former sheep Dip

## 11.2.2 Potential Receptors

Potential receptors include:

- R1 Current Users (unauthorised recreational users)
- R2 Construction and maintenance workers
- R3 Future residents and visitors
- R4 Groundwater
- R5 Surface Water (On-site creek system and Queanbeyan River)
- R6 Ecology

#### 11.2.3 Potential Pathways

Potential pathways for contamination present include the following:

- P1 Incidental ingestion and dermal contact of soil and dust particulates
- P2 Outdoor inhalation of dust particulates
- P3 Ingestion of home-grown produce
- P4 Surface water run-off
- P5 Leaching of contaminants and vertical migration into groundwater
- P6 Lateral migration of groundwater providing base-flow to watercourses

#### 11.2.4 Summary of Potential Complete Pathways

An addendum Conceptual Site Model (CSM) has been prepared for the site with reference to the National Environment Protection (Assessment of Site Contamination) Measure Schedule B2. The addendum CSM identifies potential contaminant sources and contaminants of concern, contaminant release mechanisms, exposure pathways and potential receptors. The addendum CSM is presented in Table 7.



Table 7: Summary of potential complete pathways for Addendum CSM

| Source                         | Receptor | Transport<br>Pathway | Comments                                                                                                                                                                                 |  |
|--------------------------------|----------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AEC4 –                         | R1       | P1, P2               | During site the site inspection, an additional mine site consisting of a shaft was encountered in the north-west                                                                         |  |
|                                | R2       | P1, P2               | part of the site, within the Stage 1 development area. Review of the Coffey Stage 3 Contamination area indicates that no intrusive investigation was undertake in this area of the site. |  |
|                                | R3       | P1, P2 and P3        |                                                                                                                                                                                          |  |
| Additional mine site           | R4       | P5                   | Therefore, DP considers that the potential for                                                                                                                                           |  |
|                                | R5       | P4 and P6            | contamination in this area of the site has not been adequately characterised and that further assessment                                                                                 |  |
|                                | R6       | P1                   | of the additional mine site is required.                                                                                                                                                 |  |
| AEC5 –<br>Mining,<br>quarrying | R1       | P1, P2               | Review of the AAA (NSWA, 2009) indicated that items                                                                                                                                      |  |
|                                | R2       | P1, P2               | JCH5, JCH6 and JCH13 were possibly associated with either mining activity or limestone quarrying and                                                                                     |  |
|                                | R3       | P1, P2 and P3        | processing (possible limekiln feature JCH6). Review previous reports indicated that these areas have not                                                                                 |  |
| and<br>limekiln                | R4       | P5                   | previously been assessed.  Therefore, DP considers that the potential for                                                                                                                |  |
| activities                     | R5       | P4 and P6            | contamination in this area of the site has not been adequately characterised and that further assessment                                                                                 |  |
|                                | R6       | P1                   | may be required.                                                                                                                                                                         |  |
|                                | R1       | P1, P2               |                                                                                                                                                                                          |  |
| AEC7 –<br>Sheep Dip            | R2       | P1, P2               | Previous investigation has indicated reported concentrations of arsenic above applicable screening                                                                                       |  |
|                                | R3       | P1, P2 and P3        | criteria.                                                                                                                                                                                |  |
|                                | R4       | P5                   | A RAP has been prepared for this area, however, un successful remediation and validation of this area is completed, DP considers that the pollutant linkages a complete.                 |  |
|                                | R5       | P4 and P6            |                                                                                                                                                                                          |  |
|                                | R6       | P1                   |                                                                                                                                                                                          |  |

## 12. Field Work, Analysis and Quality Assurance/Quality Control

#### 12.1 Sample Rationale

Following review of the request for additional information by QPRC, DP mobilised to site to obtain additional soil samples. Based on review of the QPRC correspondence, the additional mine site, the limestone quarry (item JCH5) and the area of possible mining activity in the south-west part of the site (JCH13) were selected for sampling. Given the nature of these areas with the identified AEC being the spoil associated with the mining and quarrying activity, near surface samples of the spoil were considered appropriate to assess the AECs.



Samples were not collected from the possible limekiln (JCH6) as following inspection of the area, no evidence of burning was noted (e.g. ash or scorch marks). CoPC likely associated with use of the feature as a limekiln are considered to be limited to PAHs and given that no ash was present in the visible surface soil, testing was not considered to be required at this time.

#### 12.2 Methods and Sampling Locations

The fieldwork comprised the excavation of 10 shallow test pits (Pits ASM1 to ASM4, JCH5-1 and JCH5-2 and JCH13-1 to JCH13-4) to TP10) to a maximum depth 0.2 m below ground level (bgl) using stainless steel hand tools. Samples were collected directly from the hand tools. The sampling locations are presented on Drawings 5 and 6, Appendix B.

Fieldwork was undertaken on 21 July 2020 by an environmental scientist who undertook the following:

- Setting out of the test locations;
- Logging of the subsurface profile; and
- Collection of samples for laboratory testing purposes.

## 12.3 Soil Sampling Procedure

All sample locations were checked for underground services by a review of dial before you dig (DBYD) plans. DBYD plans indicated that no services were located in the area.

All sampling data was recorded on DP test pit logs with essential information included on the chain-ofcustody sheets. The general sampling procedure adopted for the collection of environmental samples is summarised below:

- Decontamination of reusable sampling equipment using a phosphate free detergent (Decon90);
- The use of disposable gloves for each sampling event;
- Transfer of samples into laboratory-prepared glass jars, and capping immediately;
- Collection of replicate samples for QA/QC purposes;
- Labelling of sample containers with individual and unique identification, including project number, sample location and sample depth;
- Placement of the sample jars and replicate sample bags into a cooled, insulated and sealed container for transport to the laboratory; and
- Use of chain of custody (C-O-C) documentation so that sample tracking and custody could be cross-checked at any point in the transfer of samples from the field to the laboratory.

Samples were generally collected from the near surface within each test location.

Soil samples were collected directly from the hand tools used to excavate the pits. Care was taken whilst collecting the samples to remove any extraneous material deposited on the pit walls or soil



removed from the pits during the excavation process. The tools were decontaminated between each sampling location.

Envirolab Services Pty Ltd (Envirolab, NATA accreditation number: 2901) was used for the analysis of the primary and replicate soil samples. The laboratory is required to carry out routine in-house QC procedures.

Field replicates were recovered, and analysed for a limited suite of contaminants with reference to standard industry practice and guidelines. The comparative results are outlined in Appendix G together with other QA/QC evaluations of the assessment, C-O-C documentation (Field and Laboratory) and sample receipt information.

#### 12.4 Analytical Rationale

The analytical scheme was designed to obtain an indication of the presence of COPC that may be attributable to past and present activities and features within the site, as discussed in Section 10. Selected primary soil samples were analysed for metals (As, Cd, Cr, Cu, Hg, Pb, Ni and Zn).

Laboratory analytical methods were as stated in the Envirolab certificates of analysis (Nos. 245733 and 245733-A) in Appendix G.

Three soil samples were also selected for analysis for cation exchange capacity (CEC) and pH to assist with the calculation of ecological investigation levels (EIL).

#### 12.5 Quality Assurance and Quality Control

The field QA/QC procedures for sampling as prescribed in Douglas Partners' *Field Procedures Manual* were followed during the assessment. The QA/QC procedures and results are summarised in Appendix H.

Envirolab Services Pty Ltd (Envirolab) (NATA accreditation number: 2901) was used for the analysis of soil samples. The laboratory is required to carry out routine in-house QC procedures. Envirolab is NATA accredited and is required to conduct in-house QA/QC procedures. These are normally incorporated into every analytical run and include reagent blanks, spike recovery, surrogate recovery and duplicate samples. These results are included in the laboratory certificates and are evaluated in the QA/QC procedures and results summary in Appendix H.

#### 13. Site Assessment Criteria

The site is proposed to be developed for a mixture of low density residential and public open space uses, in addition, a number of roadways will be constructed across the development allowing access to the estate.

The Site Assessment Criteria (SAC) applied in the current investigation are informed by the CSM (refer to Section 11) which identified human and environmental receptors to potential contamination on the



site. Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising the investigation and screening levels of Schedule B1, *National Environment Protection (Assessment of Site Contamination) Measure* 1999, as amended 2013 (NEPC, 2013). The NEPC guidelines are endorsed by the NSW EPA under the *Protection of the Environment Operations Act* 1997. Petroleum based health screening levels for direct contact and vapour inhalation from the *Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) Technical Report no.10 Health screening levels for petroleum hydrocarbons in soil and groundwater (2011) as referenced by NEPC (2013) have not been considered in this assessment as these values are significantly higher than the soil vapour HSL adopted.* 

The investigation and screening levels are applicable to generic land use settings and include consideration of, where relevant, the soil type and the depth of contamination. The investigation and screening levels are not intended to be used as clean up levels. Rather, they establish concentrations above which further appropriate investigation (e.g. Tier 2 assessment) should be undertaken. They are intentionally conservative and are based on a reasonable worst-case scenario.

#### 13.1 Health Investigation and Screening Levels

The Health Investigation Levels (HIL) and Health Screening Levels (HSL) are scientifically-based, generic assessment criteria designed to be used in the first stage (Tier 1) of an assessment of potential human health risk from chronic exposure to contaminants.

HILs are applicable to assessing health risk arising via all relevant pathways of exposure for a range of metals and organic substances. The HIL are generic to all soil types and apply generally to a depth of 3 m below the surface for recreational/open space land use. A depth of 1 m below the surface has been adopted for this investigation for the proposed sensitive land use.

HSLs are applicable to selected petroleum compounds and fractions to assess the risk to human health via inhalation. HSL have been developed for different land uses, soil types and depths to contamination.

The generic HIL and HSL are considered to be appropriate for the assessment of contamination at the site. Given the proposed land use, the adopted HIL and HSL are:

- HIL-A residential with garden/accessible soil;
- HIL-C public open space; and
- HIL D commercial/industrial (restricted to areas where roadways will be present).

The adopted soil HIL and HSL for the potential CoPC are presented in Table 8.



Table 8: Health Investigation and Screening Levels (HIL and HSL) in mg/kg unless otherwise indicated

| Co     | ontaminants            | HIL-A | HIL-C  | HIL-D   |
|--------|------------------------|-------|--------|---------|
|        | Arsenic                | 100   | 300    | 3,000   |
|        | Cadmium                | 20    | 90     | 900     |
|        | Chromium (VI)          | 100   | 300    | 3,600   |
|        | Copper                 | 6,000 | 17,000 | 240,000 |
| Metals | Lead                   | 300   | 600    | 1,500   |
|        | Mercury<br>(inorganic) | 40    | 80     | 730     |
|        | Nickel                 | 400   | 1,200  | 6,000   |
|        | Zinc                   | 7,400 | 30,000 | 400,000 |
|        | Aldrin + Dieldrin      | 6     | 10     | 45      |
|        | Chlordane              | 50    | 70     | 530     |
|        | DDT+DDE+DDD            | 240   | 400    | 3,600   |
| ОСР    | Endosulfan             | 270   | 340    | 2,000   |
| UCP    | Endrin                 | 10    | 20     | 100     |
|        | Heptachlor             | 6     | 10     | 50      |
|        | НСВ                    | 10    | 10     | 80      |
|        | Methoxychlor           | 300   | 400    | 2,500   |
| OPP    | Chlorpyrifos           | 160   | 250    | 2,000   |
| PAH    | Benzo(a)Pyrene         | 3     | 4      | 40      |
| ГАП    | Total PAH              | 300   | 400    | 4,000   |

Notes:

1 NC – No Criteria

### 13.2 Ecological Investigation Levels

Ecological Investigation Levels (EIL) have been derived for selected metals and organic compounds and are applicable for assessing risk to terrestrial ecosystems (NEPC, 2013). EIL depend on specific soil physiochemical properties and land use scenarios and generally apply to the top 1 m of soil, which corresponds to the root zone and habitation zone of many species. The EIL is determined for a contaminant based on the sum of the ambient background concentration (ABC) and an added contaminant limit (ACL). The ABC of a contaminant is the soil concentration in a specific locality that is the sum of naturally occurring background levels and the contaminants levels that have been introduced from diffuse or non-point sources (e.g. motor vehicle emissions). The ACL is the added concentration



(above the ABC) of a contaminant above which further appropriate investigation and evaluation of the impact on ecological values is required.

The EIL is calculated using the following formula:

EIL = ABC + ACL

The ABC is determined through direct measurement at an appropriate reference site or through the use of methods defined by Olszowy et al *Trace element concentrations in soils from rural and urban areas of Australia*, Contaminated Sites monograph no. 4, South Australian Health Commission, Adelaide, Australia 1995 (Olszowy, 1995) or Hamon et al, *Geochemical indices allow estimation of heavy metal background concentrations in soils*, Global Biogeochemical Cycles, vol. 18, GB1014, (Hamon, 2004). ACL is based on the soil characteristics of pH, CEC and clay content.

EIL (and ACLs where appropriate) have been derived in NEPC (2013) for only a short list of contaminants comprising As, Cu, Cr (III), DDT, naphthalene, Ni, Pb and Zn. An *Interactive (Excel) Calculation Spreadsheet* may be used for calculating site-specific EIL for these contaminants, and has been provided in the ASC NEPM Toolbox available on the SCEW (Standing Council on Environment and Water) website (http://www.scew.gov.au/node/941).

The adopted EIL, derived from the *Interactive (Excel) Calculation Spreadsheet* are shown in the following Table 9. The following site specific data and assumptions have been used to determine the EILs:

- A protection level of 80% for areas of the site characterised by urban residential and public open space land uses has been adopted;
- A protection level of 60% for areas of the site characterised by commercial/industrial land uses has been adopted;
- The EILs will apply to the top 1 m of the soil profile;
- Given the likely source of soil contaminants (i.e. historical filling, stockpiles and hummocky ground) the contamination is considered as "aged" (>2 years);
- ABCs have been derived using the Interactive (Excel) Calculation Spreadsheet using input
  parameters of NSW for the State in which the site is located, and low for traffic volumes. No
  background concentration is assumed for lead (conservative); and
- Based on average pH, CEC and clay content values for soils collected across the site, the following values have been used for the soil profile: pH = 8.3, CEC = 24 cmol<sub>o</sub>/kg and clay content = 18%. The Calculation Spreadsheets are included in Appendix I and the EILs are presented in Table 9 below.



Table 9: Ecological Investigation Levels (EIL) in mg/kg

| <b>c</b>                           |        | Analyte      | EIL      | Comments                                           |
|------------------------------------|--------|--------------|----------|----------------------------------------------------|
| Residential / public open<br>space | Metals | Arsenic      | 100      | Adopted pH of 8.3, CEC of 24 cmol <sub>c</sub> /kg |
| olic                               |        | Copper       | 230      | and clay content 18%                               |
| al / pul<br>space                  |        | Nickel       | 310      |                                                    |
| spá                                |        | Chromium III | 490      |                                                    |
| dent                               |        | Lead         | 1,100    |                                                    |
| esic                               |        | Zinc         | 880      |                                                    |
| Ľ                                  | ОСР    | DDT          | 180      |                                                    |
| Analyte                            |        | EIL          | Comments |                                                    |
| stria                              | Metals | Arsenic      | 160      | Adopted pH of 8.3, CEC of 24 cmol <sub>c</sub> /kg |
| snp                                |        | Copper       | 330      | and clay content 18%                               |
|                                    |        | Nickel       | 520      |                                                    |
| rcia                               |        | Chromium III | 810      |                                                    |
| Commercial / Industrial            |        | Lead         | 1,800    |                                                    |
| Соп                                |        | Zinc         | 1,300    |                                                    |
|                                    | ОСР    | DDT          | 640      |                                                    |

Note that the same EILs were applicable to both residential and public space uses.

### 13.3 Ecological Screening Levels – Petroleum Hydrocarbons

Given that petroleum hydrocarbons have not been identified as a CoPC for the site, ecological screening levels have not been applied and are not considered further.

### 13.4 Management Limits – Petroleum Hydrocarbons

Given that petroleum hydrocarbons have not been identified as a CoPC for the site, management limits have not been applied and are not considered further.

### 13.5 Asbestos in Soil

Bonded asbestos-containing material (ACM) is the most common form of asbestos contamination across Australia, generally arising from:

- Inadequate removal and disposal practices during demolition of buildings containing asbestos products;
- Widespread dumping of asbestos products and asbestos containing filling on vacant land and development sites; and
- Commonly occurring in historical filling containing unsorted demolition materials.



Mining, manufacturing or distribution of asbestos products may result in sites being contaminated by friable asbestos including free fibres. Severe weathering or damage to bonded ACM may also result in the formation of friable asbestos comprising fibrous asbestos (FA) and/or asbestos fines (AF).

Asbestos only poses a risk to human health when asbestos fibres are made airborne and inhaled. If asbestos is bound in a matrix such as cement or resin, it is not readily made airborne except through substantial physical damage. Bonded ACM in sound condition represents a low human health risk, whilst both FA and AF materials have the potential to generate, or be associated with, free asbestos fibres. Consequently, FA and AF must be carefully managed to prevent the release of asbestos fibres into the air.

Potential ACM fragments were observed during the site inspection walkover, however, given the skeletal nature of soils at the site and given the relative few buildings located on the site, as observed following historical aerial photography review, it is considered likely that ACM fragments would remain on the site surface where they can be managed through under a construction environment management plan.

### 14. Results of the Investigation

### 14.1 Additional Site Inspection Observations

An additional targeted site inspection was undertaken during the field works undertaken on 21 July 2020. The following observations were made:

### Lime kiln - JCH6 (AEC 5)

- The limekiln was noted to be a circular pit approximately 5 m across and 1.5 m deep;
- Limestone boulders were present lining the mouth of the pit; and
- The pit was noted to be overgrown with vegetation, however, no staining or evidence of remnants
  of burning, (e.g. ash or scorch marks) were noted on the exposed faces of the pit and no evidence
  of burning was noted.

### <u>Limestone Quarry - JCH5 (AEC5)</u>

- The limestone quarry comprising JCH5 was located to the north-east of the additional mine site;
- The quarry was approximately 20 m wide and 20 m long and was cut into the slope. Stockpiled spoil consisting of gravel to boulder sized fragments of limestone rock was present to east of the quarry area; and
- No staining or odorous soils were noted.

### Possible Mining Activity site -JCH13 (AEC5)

The area of possible mining activity comprised a stockpile consisting of gravel to boulder sized
fragments of limestone rock and a linear cut, running north-south, into a hill crest. The stockpile
was located at the northern end of the cut;



- The linear cut was approximately 60 m long, approximate 1 m deep at its deepest and 3 m to 4 m wide:
- Soil and rock formed an embankment on either side of the cut. On the eastern side, the material
  comprised sandy gravel with limestone cobbles and boulder. On the western side, the material
  comprised limestone cobbles and boulders; and
- No staining or odorous soils were noted.

### Additional Mine Site (AEC4)

The additional mine site was also reinspected during the site inspection. Some of the vegetation
had died back since the previous inspection completed in August 2018 and described in Section 8.
 It was possible to assess the depth of the shaft, which was approximate 2 m deep. Given the depth
of the shaft, it is not considered that extensive mining activity is likely to have occurred in this area;

### 14.2 Ground Conditions

### 14.2.1 Additional Mine Site

The samples collected from the additional mine site were collected from spoil located at the mouth of the shaft. Samples were logged as light brown to brown, silty gravelly sand, with some cobbles. The gravel and cobbles comprised light grey shale.

### 14.2.2 Limestone Quarry - JCH5

The samples collected from the limestone quarry were collected from the stockpiled spoil and the mouth of the quarry. The sample collected from the stockpiled spoil comprised grey limestone cobbles and boulders with fine to coarse grained sand. The sample from the quarry mouth comprised red brown to brown, silty clay with some fine to coarse grained sand.

### 14.2.3 Mining Activity Site – JCH13

The samples from the area described as JCH13 were collected from a small stockpile at the northern end and soil forming an embankment on the eastern side of the feature. The samples were logged as comprising grey to brown sandy gravel with cobbles and boulders. The gravel, cobbles and boulders comprised limestone.

Material forming an embankment on the western site of the feature was not sampled as it comprised limestone boulders.

### 14.3 Analytical Results

A summary of the results of the laboratory analysis undertaken by Coffey in 2010a is presented in Tables J1 to J7, Appendix J. The locations of the samples collected by Coffey are presented within Figures 3 to 7 in Coffey (2010a), presented in Appendix C.



A summary the results of the laboratory analysis undertaken on the soil samples collected from the additional mine site, JCH5 and JCH13, along with a comparison to the adopted screening criteria is presented in Table J8, Appendix J. Laboratory certificates of analysis are presented in Appendix G.

### 14.4 Assessment of Soil Laboratory Results

### 14.4.1 Coffey (2010a)

The laboratory analysis results of samples reported in Coffey (2010a) were compared to the site assessment criteria published in ASC NEPM (1999, as amended 2013) and referenced in Section 13. The results are presented with reference to the Domains of Interest identified by Coffey (2010a) (see Section 6.3 and Appendix C). Many reported concentrations of CoPC exceeded the updated site assessment criteria. The exceedances are summarised in Tables 10 to 12 below and for clarity the AEC number (as defined in this report) is included. The sample locations are shown in Figures 3 to 7 in Coffey (2010a) presented in Appendix C.

### Domain Of Interest 1

Table 10: Summary of reported concentrations exceeding screening criteria - Coffey DOI1

| Sample ID         | HIL-A                     | HIL-C             | EIL            |  |  |
|-------------------|---------------------------|-------------------|----------------|--|--|
| AEC2: Mine Site 3 |                           |                   |                |  |  |
| MS3-1_0.0-0.2     |                           | As, Pb            | As, Pb, Zn     |  |  |
| MS3-2_0.0-0.2     |                           | As, Pb            | As, Pb, Zn     |  |  |
| MS3-4_0.0-0.2     |                           | -                 | As             |  |  |
| MS3-5_0.0-0.2     |                           | As, Pb            | As, Pb, Zn     |  |  |
| MS3-6_0.0-0.2     |                           | As, Pb            | As, Pb, Zn     |  |  |
| MS3-7_0.0-0.2     |                           | As, Pb            | As, Pb, Zn     |  |  |
| MS3-8_0.0-0.2     |                           | As, Pb            | As, Cu, Pb, Zn |  |  |
| MS3-9_0.0-0.2     | Proposed land use is      | -                 | As             |  |  |
| MS3-10_0.0-0.2    | public open space. HIL-   | -                 | As             |  |  |
| MS3-11_0.0-0.2    | A not applied.            | -                 | As             |  |  |
| MS3-12_0.0-0.2    |                           | -                 | As             |  |  |
| MS3-13_0.0-0.2    |                           | -                 | As             |  |  |
| MS3-13_0.5-0.6    |                           | -                 | As             |  |  |
| MS3-14_0.0-0.2    |                           | -                 | As             |  |  |
| MS3-15_0.0-0.2    |                           | -                 | As             |  |  |
| MS3SP3            |                           | -                 | As             |  |  |
|                   | Coffey defined            | residential areas |                |  |  |
| RE34_0.0-0.2      | Updated proposed land     |                   |                |  |  |
|                   | use is public open space. |                   |                |  |  |
|                   | HIL-A not applied.        | -                 | As             |  |  |

### Notes

- No reported concentrations exceeded the site assessment criteria
- Samples prefixed 'MS3' obtained from Mine Site 3



### Domain of Interest 2

Table 11: : Summary of reported concentrations exceeding screening criteria - Coffey DOI2

| Sample ID       | HIL-A                                                 | HIL-C                  | EIL            |  |  |
|-----------------|-------------------------------------------------------|------------------------|----------------|--|--|
|                 | AEC6: Former Mineral Processing/Stockyard Area – JCH8 |                        |                |  |  |
| MP6_0.0-0.2     | Pb                                                    |                        | -              |  |  |
| MP14_0.0-0.2    | Pb                                                    |                        | -              |  |  |
| MP14_0.5-0.6    | Pb                                                    |                        | -              |  |  |
| MP15_0.0-0.2    | Pb                                                    | Proposed land use is   | -              |  |  |
| MP15_0.5-0.6    | Pb                                                    | Residential. HIL-C not | -              |  |  |
| MP16_0.0-0.2    | Pb                                                    | applied                | -              |  |  |
| MP16_0.5-0.6    | Pb                                                    |                        | -              |  |  |
| MPSUMP-1        | -                                                     |                        | Zn             |  |  |
| MPSUMP-2        | Zn                                                    |                        | Zn             |  |  |
|                 | AEC3: Mine                                            | Site 4 – JCH7          |                |  |  |
| MS4-7_0.0-0.2   |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-8_0.0-0.2   |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-9_0.0-0.2   |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-14_0.0-0.2  |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-15_0.0-0.2  |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-22_0.0-0.2  |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-23_0.0-0.2  |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-24_0.0-0.2  |                                                       | Pb                     | Pb, Zn         |  |  |
| MS4-25_0.5-0.6  | Duamanad land was in                                  | Pb                     | -              |  |  |
| MS4-26A_0.5-0.6 | Proposed land use is                                  | Cd, Pb, Zn             | Pb, Zn         |  |  |
| MS4-27_0.0-0.2  | public open space. HIL-A not applied.                 | Pb                     | Cu, Pb, Zn     |  |  |
| MS4-37_0.0-0.2  | _ пот аррнес.                                         | Pb                     | Cu, Pb, Zn     |  |  |
| MS4-38_0.0-0.2  |                                                       | Pb                     | Cu, Pb, Zn     |  |  |
| MS4-39_0.0-0.2  |                                                       | Pb                     | Cu, Pb, Zn     |  |  |
| MS4-41_0.0-0.2  |                                                       | -                      | Zn             |  |  |
| MS4-45_0.0-0.2  |                                                       | -                      | Zn             |  |  |
| MS4SP1          |                                                       | Cd, Pb, Zn             | As, Cu, Pb, Zn |  |  |
| MS4SP5          |                                                       | Pb                     | Pb             |  |  |
| MS4SP7          |                                                       | Pb                     | Pb             |  |  |
| MS4SP9          |                                                       | Pb                     | Pb             |  |  |

### Notes

- No reported concentrations exceeded the site assessment criteria
- Samples prefixed 'MP' obtained from Former Mineral Processing/Stockyard Area
- Samples prefixed 'MS4' obtained from Mine Site 4

Updated Contamination Assessment, Jumping Creek Estate Development Ellerton Drive, Queanbeyan



### Domain of Interest 5

Table 12: : Summary of reported concentrations exceeding screening criteria - Coffey DOI5

| Sample ID    | HIL-A | HIL-C | EIL |
|--------------|-------|-------|-----|
| RE18_0.0-0.2 | -     | -     | Zn  |

Notes

No reported concentrations exceeded the site assessment criteria

### 14.4.2 Additional Sampling, DP

The laboratory analysis results of the recently collected samples were compared to the site assessment criteria referenced in Section 13. A summary of samples with reported concentrations of CoPC exceeding the site assessment criteria is presented in Table 13.

Table 13: Summary of reported concentrations exceeding screening criteria - Additional sampling

| Sample ID                           | HIL-A         | HIL-C | EIL       |
|-------------------------------------|---------------|-------|-----------|
| AEC4: Additional Mine Site          |               |       |           |
| ASM1 0.1-0.2                        | Cd, Pb and Zn | -     | Pb and Zn |
| ASM3 0.1-0.2                        | -             | -     | Zn        |
| AEC 5: Item JCH5 – Limestone Quarry |               |       |           |
| JCH5-2                              | Pb            | -     | Zn        |

### 15. Discussion of Results

### 15.1 Updated assessment of Coffey (2010a) Results

Since Coffey (2010a) was prepared, the ASC NEPM has been updated and revised site assessment criteria for new generic land use scenarios have been released. The revised site assessment criteria are risk based and were updated to reflect current knowledge. DP have reviewed the work completed by Coffey and given that the CoPC identified at the site were metals and pesticides, considered it appropriate to assess the results presented in Coffey (2010a) against the current site assessment criteria detail in the ASC NEPM (1999, as amended 2013).

The proposed development layout has also been updated in the intervening time with public open space areas being included in more of the site, specifically the south-western part of the site. The results from the sampling undertaken by Coffey were compared to screening criteria applicable to the land use scenario in that part of the site. Discussion of the results is provided below.

### 15.1.1 AEC 2: Mine Site 3

Mine Site 3 is located in an area of the site that will not be developed for residential development, therefore the results presented in Coffey (2010a) have been assessed against HIL-C (public open space) and EILs. Six samples collected from the area reported concentrations of metals that exceeded



the HIL-C criteria, often by an order of magnitude and 16 samples report concentrations of metals that exceeded the EIL criteria. Based on the assessment against the currently applicable criteria, DP considers that the concentrations detected within Mine Site 3 indicate that the area is not suitable for public open space use and requires management and/or remediation to make it suitable for the proposed use.

### 15.1.2 AEC 3: Mine Site 4

Mine Site 4 is located in an area of the site that will not be developed for residential development, therefore the results presented in Coffey (2010a) have been assessed against HIL-C (public open space) and EILs. Eighteen samples collected from the area reported concentrations of metals that exceeded the HIL-C and EIL criteria, often by several orders of magnitude and one additional sample reported concentrations of metals that exceeded the EIL criteria. The samples were located in three distinct areas across the area indicating differential processing during mineralisation may have occurred.

Based on the assessment against the currently applicable criteria, DP considers that the concentrations detected within Mine Site 4 indicate that the area is not suitable for public open space use and requires management and/or remediation to make it suitable for the proposed use.

### 15.1.3 AEC 6: Possible Mineral Processing/Stock holding area

AEC 6 is located in an area of the site where residential development is currently proposed and therefore the results presented in Coffey (2010a) have been assessed against HIL-A and EILs. Seven samples collected from the area reported concentrations of lead greater than HIL-A, however, the reported concentrations only marginally exceeded the criteria. The HIL-A criteria for lead is 300 mg/kg and reported concentrations greater than HIL-A ranged from 300 mg/kg to 400 mg/kg. It is also noted that the HIL for lead applicable at the time of Coffey (2010a) was also 300 mg/kg. Following calculation of the 95% Upper Confidence Limit (UCLaverage), for samples collected from the area, Coffey considered that as the 95% UCLaverage for lead was below the HIL-A and no single result exceeded 250% of the HIL-A, the concentrations of lead detected were considered not to pose an environmental or health risk for the development.

Samples were also collected from within two drainage sumps identified within the area. Reported concentrations of zinc in these samples were above the EIL criteria and one of the reported concentrations was above the HIL-A criterion. Given the samples were collected from drainage sumps where it is likely that soil/sediment run-off would be concentrated, DP considers that use of results from surface sampling across the area to calculate summary statistics is not appropriate. DP considers that the concentrations detected within the two drainage sumps indicate that the area is not currently suitable for residential use and requires remediation to make it suitable for the proposed use.

### 15.1.4 Systematic sampling

Coffey undertook systematic sampling across the site in areas that were proposed for residential development and open space areas. A total of 45 samples were obtained from previously proposed residential areas and 24 samples collected from proposed open space areas. The results from these



samples were compared to HIL-A, HIL-C and EIL criteria based on the current proposed development plans.

Sample RE18\_0.0-0.2 reported a zinc concentration exceeding the EIL. It is noted that since the publication of the ASC NEPM (1999, as amended 2013), soil characteristics including pH, clay content and cation exchange capacity are used to generate site specific EILs. During the recent sampling undertaken by DP, samples were analysed for these analytes to generate site specific EILs. It is noted that the EIL derived from the site in this assessment is four times greater than used in Coffey (2010a). At the time of the assessment, Coffey discounted the reported zinc concentration on the basis that no mining activities had been identified in the immediate area of sample RE18. Following DP (2019), a mine site and quarrying activity was identified close to the location of sample RE18. DP therefore considers that management and/or remediation of this area is required. DP notes that the location of RE18 is likely within a residential block and the importation of clean material may be a suitable management option for this area, subject to development of a RAP for the area.

Sample RE34\_0.0-0.2 reported an arsenic concentration exceeding the EIL. In Coffey, (2010a), the concentration was noted to exceed the criterion for residential use, which was proposed for that area of the site. However, the area where sample RE34 was located is now proposed for public open space use. Coffey collected samples to delineate the area and the results indicated that the area of elevated arsenic was localised. DP considers that due to the minor exceedance, that further management in the location of sample RE34 is not required.

### 15.2 Discussion of additional investigation results

DP collected samples from additional AECs including the additional mine site, the limestone quarry (JCH5) and the area of potential mining activity (JCH13). Samples were not collected from the possible limekiln (JCH6) as CoPC likely associated with use of the feature as a limekiln are considered to be limited to PAHs. Given that no ash was present in the visible surface soil, testing was not considered to be required at this time.

Samples collected from the additional mine site (AEC4) were submitted for metal analysis. The laboratory results were assessed against HIL-A and EIL criteria. One sample (ASM1) reported concentrations of metals exceeding HIL-A and two samples reported metal concentrations that exceeded EIL criteria. Whilst it is understood that AEC4 is located within an area proposed for residential development, it is understood that AEC4 will be covered by a roadway. Whilst DP considers that the reported concentrations of metals indicated that the area is currently not suitable for residential use, it is considered that the area can be suitably managed. It is recommended that the remediation action plan for the site be updated to include the area. Following suitable remediation and validation, it is considered that the area can be made to be compatible with the proposed land use.

One sample collected from AEC5 (limestone quarry) reported concentrations of metals exceeding the HIL\_A and EIL criteria. It is noted that this sample was collected from soil at the mouth of the quarry and not the limestone stockpile present within the quarry feature. Similarly to AEC4, AEC5 (limestone quarry) is located within a proposed residential area and will likely be covered by a roadway. It is also recommended that the area be included in an updated remediation action plan for the site. Following suitable remediation and validation, it is considered that the area can be made to be compatible with the proposed land use.



Samples collected from AEC5 (JCH13) reported concentrations of metals below the applicable criteria. AEC5 (JCH13) is located in an area of the site proposed to be public open space and based on the results, further management or remediation of this feature, from a contamination perspective, is not required.

### 16. Revised Addendum Conceptual Site Model

The addendum CSM presented in Section 11 has been updated to incorporate the findings of this investigation. The updated CSM is presented in Table 14.

Table 14: Revised summary of potential pathways for Addendum CSM

| Source               | Receptor | Transport<br>Pathway | Comments                                                                                                                                                                                                            |  |
|----------------------|----------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                      | R1       | P1, P2               | During site the site inspection, an additional mine site consisting of a shaft was encountered in the north-west                                                                                                    |  |
|                      | R2       | P1, P2               | part of the site, within the Stage 1 development area. Review of the Coffey Stage 3 Contamination area                                                                                                              |  |
| AEC4 –<br>Additional | R3       | P1, P2 and P3        | indicates that no intrusive investigation was undertaken in this area of the site.                                                                                                                                  |  |
| mine site            | R4       | P5                   | Results of sampling of AEC 4 indicate that reported                                                                                                                                                                 |  |
|                      | R5       | P4 and P6            | CoPC concentrations exceed site assessment criteria.  It is recommended that the RAP be updated to include                                                                                                          |  |
|                      | R6       | P1                   | management/remediation of this area.                                                                                                                                                                                |  |
|                      | R1       | P1, P2               | Review of the AAA (NSWA, 2009) indicated that items JCH5, JCH6 and JCH13 were possibly associated with                                                                                                              |  |
|                      | R2       | P1, P2               | either mining activity or limestone quarrying and processing (possible limekiln feature JCH6). Review of previous reports indicated that these areas have not previously been assessed.                             |  |
| AEC5 –               | R3       | P1, P2 and P3        |                                                                                                                                                                                                                     |  |
| Mining,<br>quarrying | R4       | P5                   | Result of sampling from JCH5 indicate that reported                                                                                                                                                                 |  |
| and<br>limekiln      | R5       | P4 and P6            | CoPC concentrations exceed site assessment criteri It is recommended that the RAP be updated to include management/remediation of this area.                                                                        |  |
| activities           | R6       | P1                   | management/remediation of this area.  Results of sampling from JCH13 indicate that reported concentrations area below the site assessment criteria. DP consider the area is suitable for use for public open space. |  |
|                      | R1       | P1, P2               | Previous investigation has indicated reported concentrations of arsenic above applicable screening                                                                                                                  |  |
| AEC7 –               | R2       | P1, P2               | criteria.                                                                                                                                                                                                           |  |
| Sheep dip            | R3       | P1, P2 and P3        | A RAP has been prepared for this area, however, until successful remediation and validation of this area is                                                                                                         |  |
|                      | R4       | P5                   | completed, DP considers that the pollutant linkages are complete.                                                                                                                                                   |  |



| Source | Receptor | Transport<br>Pathway | Comments                                                               |
|--------|----------|----------------------|------------------------------------------------------------------------|
|        | R5       | P4 and P6            | DP considers that once remediation and validation has                  |
|        | R6       | P1                   | been completed, the area would likely be suitable for residential use. |

### 17. Conclusions and Recommendations

### 17.1 Conclusions

DP have undertaken review of previous environmental works at the site and reviewed a request for further information from QPRC in order to allow a decision to be made regarding the DA submitted for the site. The DA relates to the subdivision of the site and construction of a residential estate.

The objectives of this updated contamination assessment were to review previous works, inspect the site to assess its current condition, undertake intrusive investigation of additional AECs and advise on the need for ongoing management and/or remediation in order to support the DA.

Documents included for review included archaeological assessments, previous contamination assessments and site audit report and site audit statement prepared by the Site Auditor. It is noted that approximately ten years have passed since previous contamination assessment and site audit report was prepared and national guidance relating to the assessment of contaminated land (ASC NEPM 1999, as amended 2013) has been updated since the previous works were undertaken

Review of Coffey (2010a) identified several AECs as detailed below:

- AEC1: Mine Site 1;
- AEC2: Mine Site 3:
- AEC3: Mine Site 4:
- AEC6: Former Possible Mineral Processing/Stockyard Area;
- AEC7: Former Sheep Dip; and
- AEC8: Former Kiln.

DP site inspections, request from QPRC for additional information and review of previous Archaeological Assessments identified the additional AECs:

- AEC4: Additional Mine Site; and
- AEC5: Items JCH 5, JCH 6 and JCH 13 (as described in NSWA 2009);

In addition, several areas of minor waste dumping were identified on site including discarded car bodies and small quantities of building materials containing minor ACM fragments.

DP have assessed the results of the sampling conducted by Coffey (2010a) with site assessment criteria detailed in the ASC NEPM (1999, as amended 2013). The criteria selected were based on low density



residential land use, public open space land use and ecological receptors. Following assessment of the results, it was concluded that:

- An area of elevated metals concentrations exists within soil and rock at AEC2: Mine Site 3. This
  area of the site is proposed for public open space use and the concentrations exceeded the adopted
  HIL-C and EIL criteria:
- An area of elevated metals concentrations exists within soil and rock at AEC3: Mine Site 4. This
  area of the site is proposed for public open space use and the concentrations exceeded the adopted
  HIL-C and EIL criteria:
- An area of elevated metals concentrations exists within soil and rock in drainage sumps located at AEC6: Mineral processing area. This area of the site is proposed for low density residential use and the concentrations exceeded the adopted HIL-C and EIL criteria;
- An area of elevated zinc concentrations exists within the vicinity of sample RE18. The
  concentration exceeded the EIL criteria. This area is proposed for low density use, but is likely
  located within a proposed road reserve area;
- An area of elevated arsenic concentration exceeding the EIL is located within the vicinity of sample RE34. The area was delineated by Coffey by additional sampling;
- It is considered that AEC2 and AEC3 are not currently suitable for public open space use and remediation and management should be undertaken. It is noted that remediation of these areas is detailed in the Coffey RAP (2010b). DP considers the RAP should be updated to include regulatory framework and legislation changes implemented following its preparation. Following implementation of the RAP, DP considers it likely that these areas of the site could be made suitable for public open space use;
- It is considered that the areas of the drainage sumps within AEC6 is not currently suitable for residential use. It is also noted that remediation of these areas is detailed in the Coffey RAP (2010b). Following implementation of the RAP and successful validation, DP considers it likely that this area of the site could be made suitable for residential use; and
- Coffey did not undertake assessment of the sheep dip area, but a RAP (Coffey, 2009) has been
  prepared for remediation and validation of the area. Following implementation of the RAP and
  successful validation, DP considers it likely that this area of the site could be made suitable for
  residential use.

DP undertook additional sampling of areas identified as AECs since Coffey (2010a) was prepared. Following assessment of the results it was concluded that:

- An area of elevated metals concentrations exists within soil and rock in samples collected from AEC4: Additional Mine Site and AEC5: limestone quarry. The area of the site is proposed for residential use and the concentrations exceeded HIL-A and the EIL criteria for AEC4 and EIL criteria for AEC5. Although the area is proposed for residential use, the area will likely be located within a road corridor; and
- No elevated concentrations were reported within AEC5: JCH 13. No further management or remediation is required in this area.



### 17.2 Recommendations

DP makes the following recommendations following this assessment:

- The RAPs prepared by Coffey (2009 and 2010b) should be updated to reflect the regulatory framework and legislation changes that have occurred since the preparation of the RAPs;
- Coffey RAP (2010b) should be updated to include remediation and management details for AEC4:
   additional mine site, AEC5: limestone quarry and the area around sample RE34;
- Once the RAPs are updated, the remediation, validation and management actions detailed should be implemented. In areas where capping of soil and rock is recommended, site environmental management plans should be implemented;
- It is also recommended that a construction environmental management plan including an
  unexpected finds protocol be prepared and implemented during site development works to manage
  areas of contamination that may exist outside the areas identified in this report. DP considers this
  is an appropriate way of managing small, isolated areas of concern such as anthropogenic waste,
  car bodies and building and demolition waste that may be present across the site; and
- Soil and rock that requires off-site disposal should be assessed prior to removal from the site.
  Given the proximity of the site to the ACT, it is possible soil may be disposed of in the ACT. Material
  for disposal should be assessed with reference to NSW EPA Waste Classification Guidelines, Part
  1 Classifying Waste (2014) or Environment ACT, ACT's Environmental Standards: Assessment &
  Classification of Liquid and Non-liquid Wastes (2000).

DP also broadly agrees with the following recommendations made in Coffey (2010a)

- Restriction of access to the Mine Site 3 and Mine Site 4 areas in the short term to avoid unhealthy
  exposures to metal concentrations in these areas, as well as unsafe conditions associated with
  mine shafts, adits and other structures;
- The removal or management of physical hazards (such as mine shafts or other structures)
  associated with these areas;

The findings of the Site Audit Report and Site Audit Statement indicated that subject to the implementation of the remediation outlined in the RAPs, the site would be suitable for the following uses:

- Residential with accessible soil, including garden (minimal home-grown produce contributing less than 10% fruit and vegetable intake), excluding poultry;
- Day care centre, preschool, primary school;
- Secondary school; and
- Park, recreational open space, playing field.

### 18. References

Abell, R.S. (1992). *Geology of Canberra Geological Series* Sheet 8727, 1:100 000. Canberra, Australia: Bureau of Mineral Resources Geology and Geophysics.



- Coffey Environments Pty Ltd (2009) *Draft Remediation Action Plan, Sheep Dip Area, Jumping Creek, Queanbeyan, New South Wales.* Report ref ENVICANB00233AA-R02a, dated 21 October 2009
- Coffey Environments Pty Ltd (2010a) Stage 3 Contamination Assessment, Jumping Creek, Queanbeyan, NSW. Report ref ENVICANB00233AA-R01b, dated 16 June 2010.
- Coffey Environments Pty Ltd (2010b) *Draft Remediation Action Plan, Sheep Dip Area, Jumping Creek, Queanbeyan, New South Wales.* Report ref ENVICANN00233AA-R03a, dated 4 June 2010
- Coffey Environments Pty Ltd (2015) *Jumping Creek Development Site Environmental Management Plan, Mine Site Area 4.* Report ref ENAURHOD04744AA-R02, dated 2 November 2015.
- Environmental Strategies Pty Ltd (2010a) *Site Audit Report, Jumping Creek, Queanbeyan, NSW.* Report ref 9014SAR145, dated 20 August 2010.
- Environmental Strategies Pty Ltd (2010b) *NSW Site Auditor Scheme, Site Audit Statement for Jumping Creek Site.* dated 25 August 2010.
- Evans, W.R. (1984). *Hydrogeology of the Australian Capital Territory and Environs*, 1:100,000. Canberra, Australia: Bureau of Mineral Resources, Geology and Geophysics.
- Friebel, E. and Nadebaum, P. (2011) *Technical Report no.10 Health screening levels for petroleum hydrocarbons in soil and groundwater, Summary*. Adelaide, Australia: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE).
- Jenkins, B.R. (2000). Canberra Soil Landscape Series, Sheet 8727, 1:100 000. Sydney, Australia: NSW Department of Land and Water Conservation.
- Navin Officer (2019) Cultural Heritage Assessment, Jumping Creek, Queanbeyan, NSW, dated 19 March 2019
- New South Wales Archaeology Pty Ltd (2009), Aboriginal Archaeological Assessment, Proposed Jumping Creek Rezoning, Queanbeyan, NSW, dated January 2009
- National Environment Protection Council (1999, as amended 2013). *National Environment Protection* (Assessment of Site Contamination) Measure.
- NSW Environment Protection Authority (2017). *Guidelines for the NSW Site Auditor Scheme* (3rd ed). Sydney, Australia: NSW Environment Protection Authority.
- NSW Environment Protection Authority (2020). *Consultants Reporting on Contaminated Land.* Sydney: NSW Environment Protection Authority.

### 19. Limitations

Douglas Partners (DP) has prepared this report for this project at Lot 1, DP1249543, Greenleigh, NSW in accordance with DP's proposal dated 11 April 2018 and acceptance received from PEET dated 25



May 2018. The work was carried out under the term and conditions of the sub-consultants agreement, dated August 2018. This report is provided for the exclusive use of PEET for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

The contents of this report do not constitute formal design components such as are required, by the Health and Safety Legislation and Regulations, to be included in a Safety Report specifying the hazards likely to be encountered during construction and the controls required to mitigate risk. This design process requires risk assessment to be undertaken, with such assessment being dependent upon factors relating to likelihood of occurrence and consequences of damage to property and to life. This, in turn, requires project data and analysis presently beyond the knowledge and project role respectively of DP. DP may be able, however, to assist the client in carrying out a risk assessment of potential hazards contained in the Comments section of this report, as an extension to the current scope of works, if so requested, and provided that suitable additional information is made available to DP. Any such risk assessment would, however, be necessarily restricted to the environmental components set out in this report and to their application by the project designers to project design, construction, maintenance and demolition.

### **Douglas Partners Pty Ltd**

# Appendix A

About This Report

# About this Report

#### Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

### Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

### **Borehole and Test Pit Logs**

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

#### Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

### Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

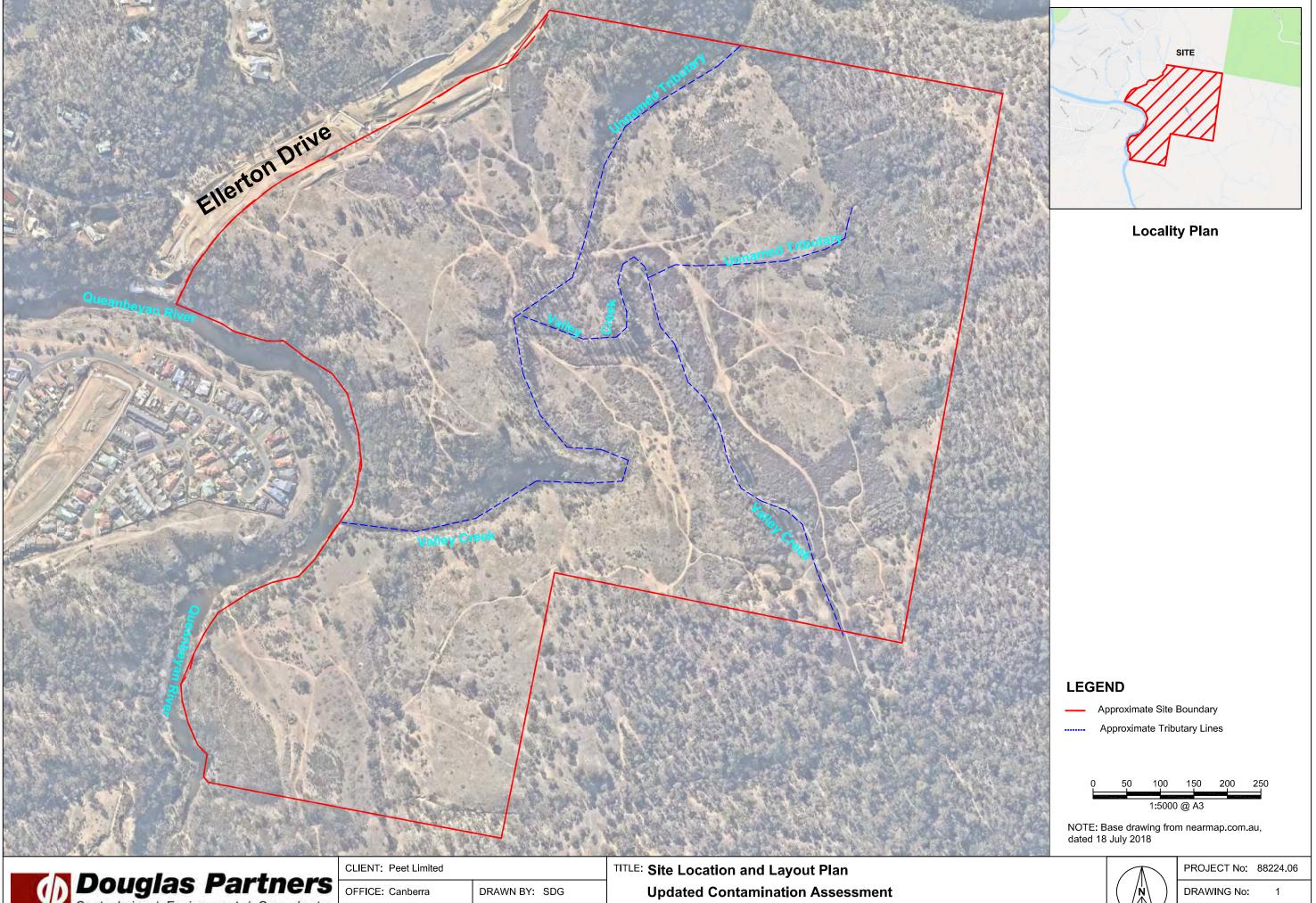
If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

# About this Report

### **Site Anomalies**

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

### **Information for Contractual Purposes**


Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

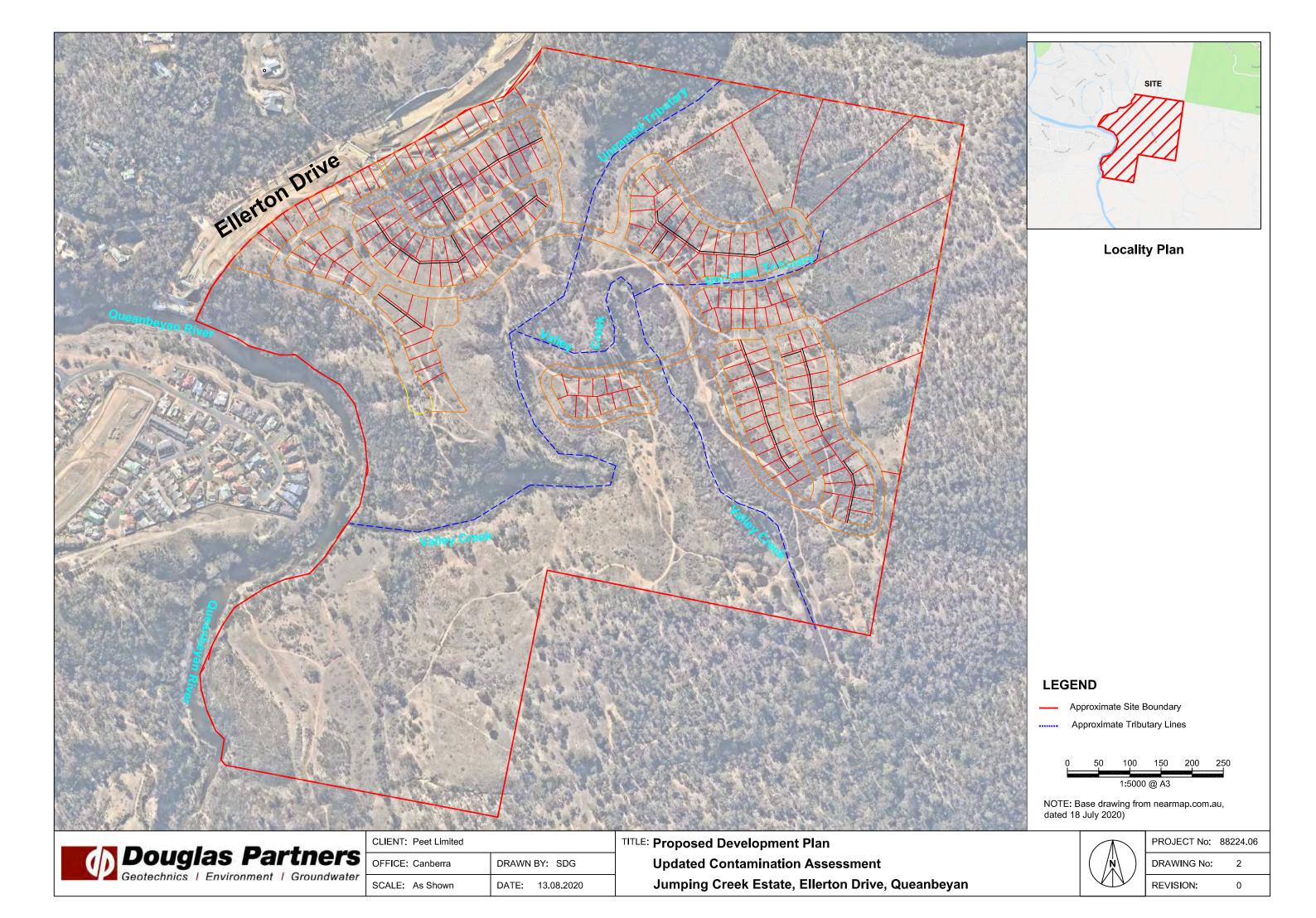
### **Site Inspection**

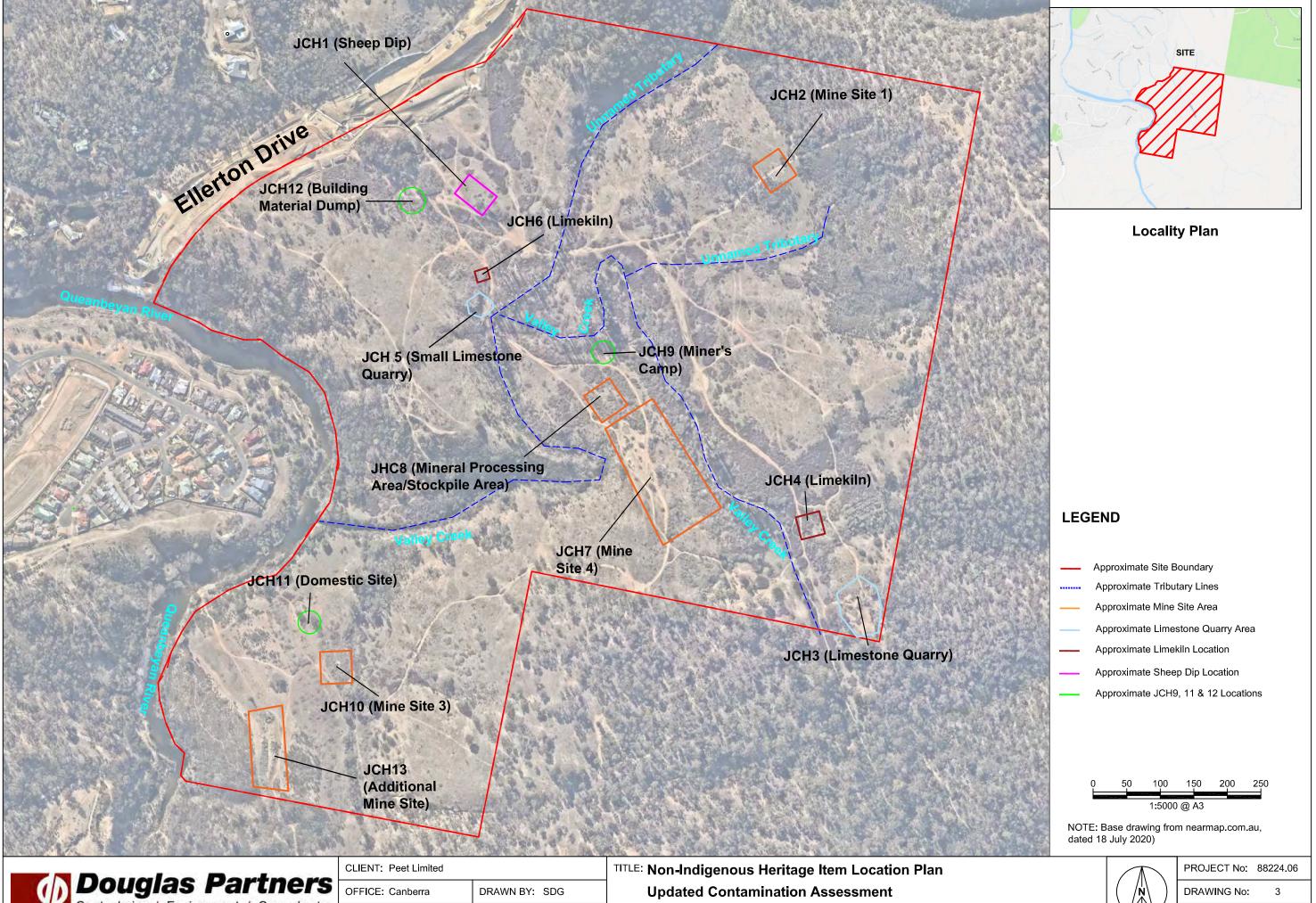
The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

# Appendix B

Drawings




Douglas Partners

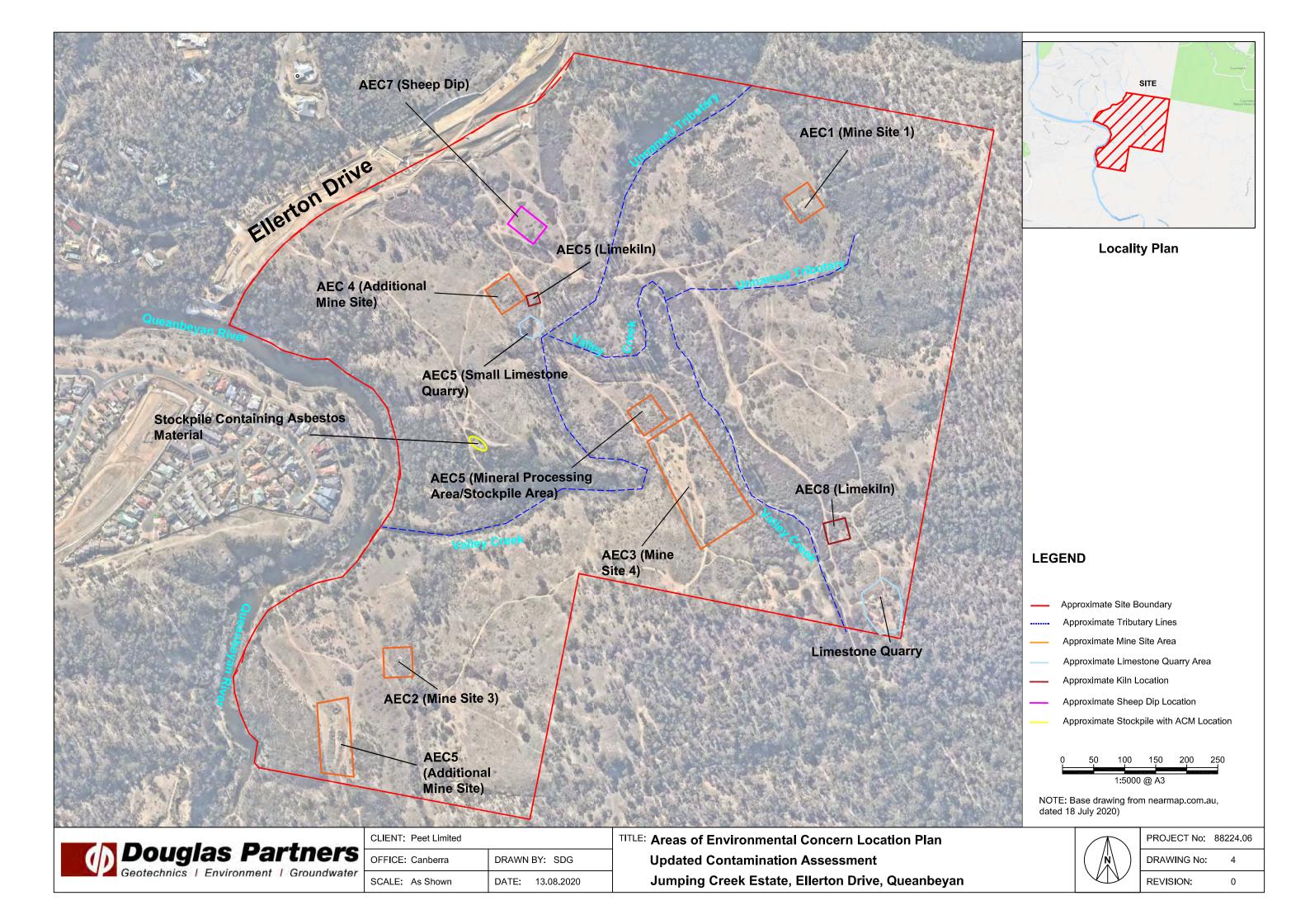

Geotechnics | Environment | Groundwater

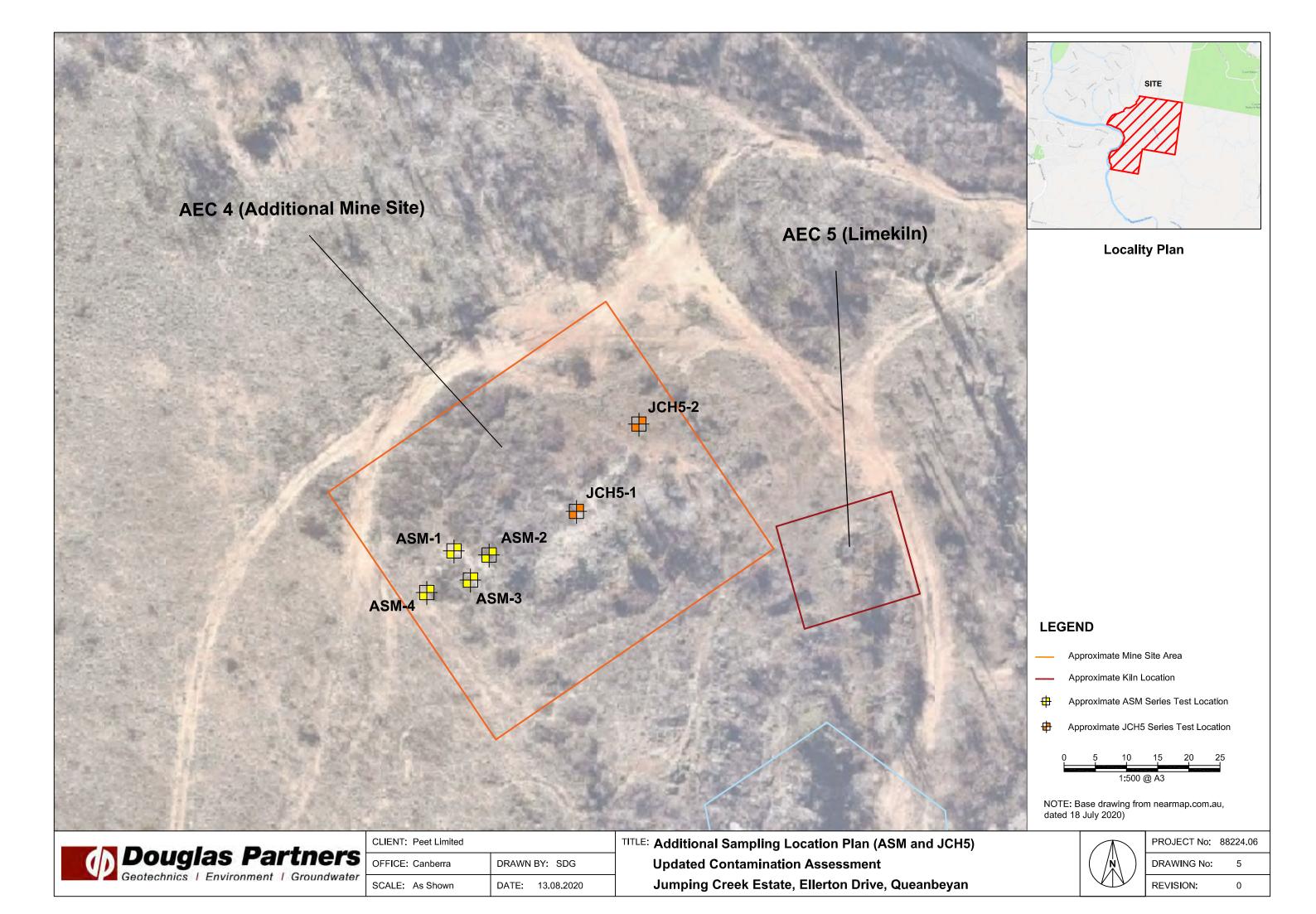
SCALE: As Shown DATE: 13.08.2020 Jumping Creek Estate, Ellerton Drive, Queanbeyan

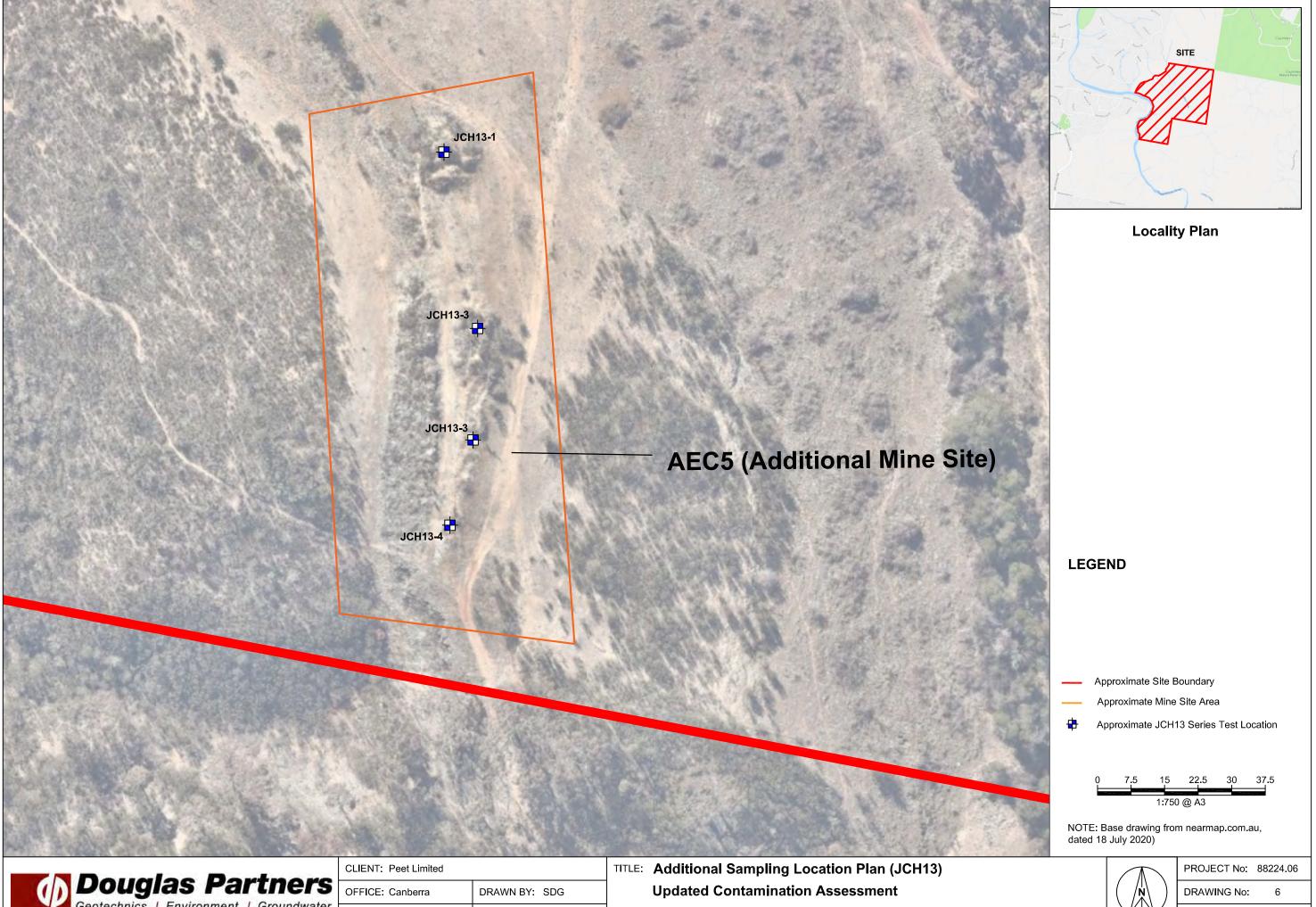


| PROJECT No: | 88224.06 |
|-------------|----------|
| DRAWING No: | 1        |
| REVISION:   | 0        |







Geotechnics | Environment | Groundwater


SCALE: As Shown DATE: 13.08.2020 Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| DRAWING No: | 3        |
| REVISION:   | 0        |







Geotechnics | Environment | Groundwater

SCALE: As Shown DATE: 13.08.2020 Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| DRAWING No: | 6        |
| REVISION:   | 0        |

# Appendix C

Site History Searches



# Land Zoning Map -Sheet LZN\_005

B1 Neighbourhood Centre

B2 Local Centre

B3 Commercial Core

B4 Mixed Use

B5 Business Development

E1 National Parks and Nature Reserves

E2 Environmental Conservation

E3 Environmental Management

E4 Environmental Living

IN1 General Industrial

IN2 Light Industrial

R1 General Residential

R2 Low Density Residential

R3 Medium Density Residential

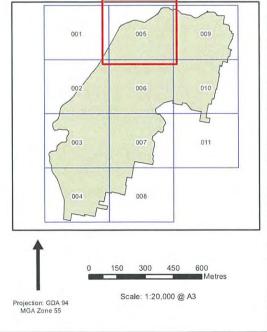
R4 High Density Residential

R5 Large Lot Residential

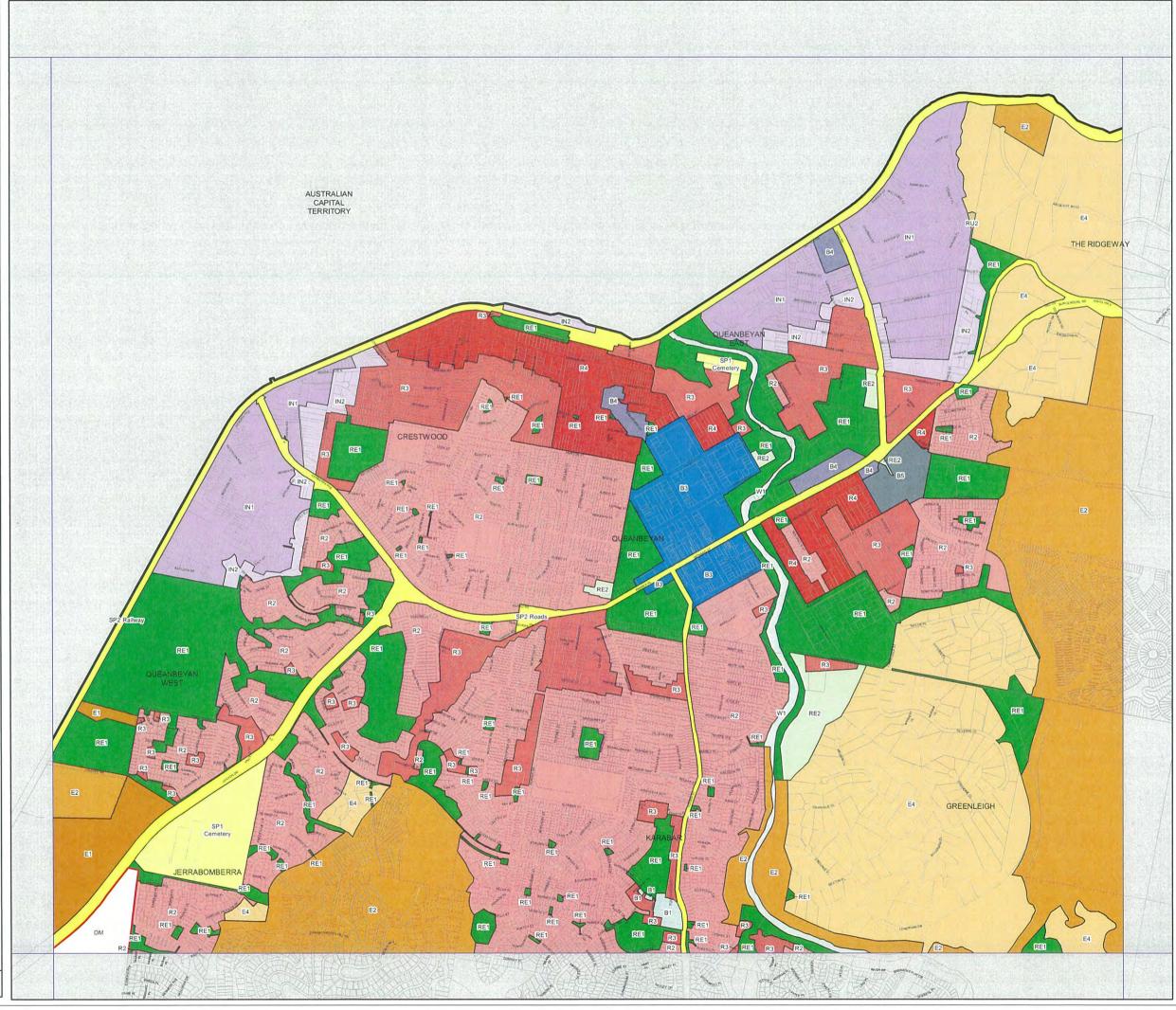
Public Recreation

RE2 Private Recreation RU2 Rural Landscape

SP1 Special Activities


SP2 Infrastructure

W1 Natural Waterways


DM Deferred Matter

### Cadastre

Cadastre 29/08/18 © Spatial Services



6470\_COM\_LZN\_005\_020\_20180829





### Land Zoning Map -Sheet LZN\_006

### Zone

B1 Neighbourhood Centre

B2 Local Centre

B3 Commercial Core

B4 Mixed Use

B5 Business Development

E1 National Parks and Nature Reserves

E2 Environmental Conservation

E3 Environmental Management

E4 Environmental Living

IN1 General Industrial

IN2 Light Industrial

R1 General Residential

R2 Low Density Residential

R3 Medium Density Residential

High Density Residential

R5 Large Lot Residential

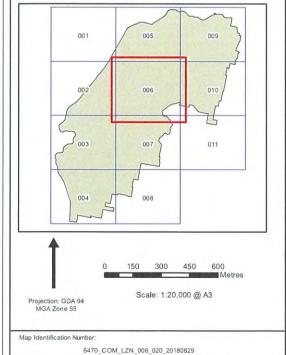
Public Recreation

RE2 Private Recreation

RU2 Rural Landscape

Special Activities

SP2 Infrastructure


Thirdstructure

W1 Natural Waterways

DM Deferred Matter

### Cadastre

Cadastre 29/08/18 © Spatial Services





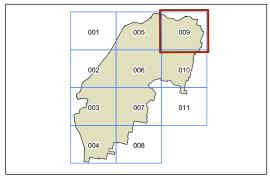


### **Queanbeyan Local** Environmental Plan 2012

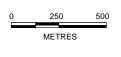
### Land Zoning Map - Sheet LZN\_009

### Zone Neighbourhood Centre B2 Local Centre Commercial Core B4 Mixed Use **Business Development** National Parks and Nature Reserves E2 **Environmental Conservation** E3 Environmental Management E4 Environmental Living IN1 General Industrial IN2 Light Industrial R1 General Residential Low Density Residential R3 Medium Density Residential High Density Residential R5 Large Lot Residential Public Recreation RE2 Private Recreation RU2 Rural Landscape Special Activities Infrastructure

### Cadastre

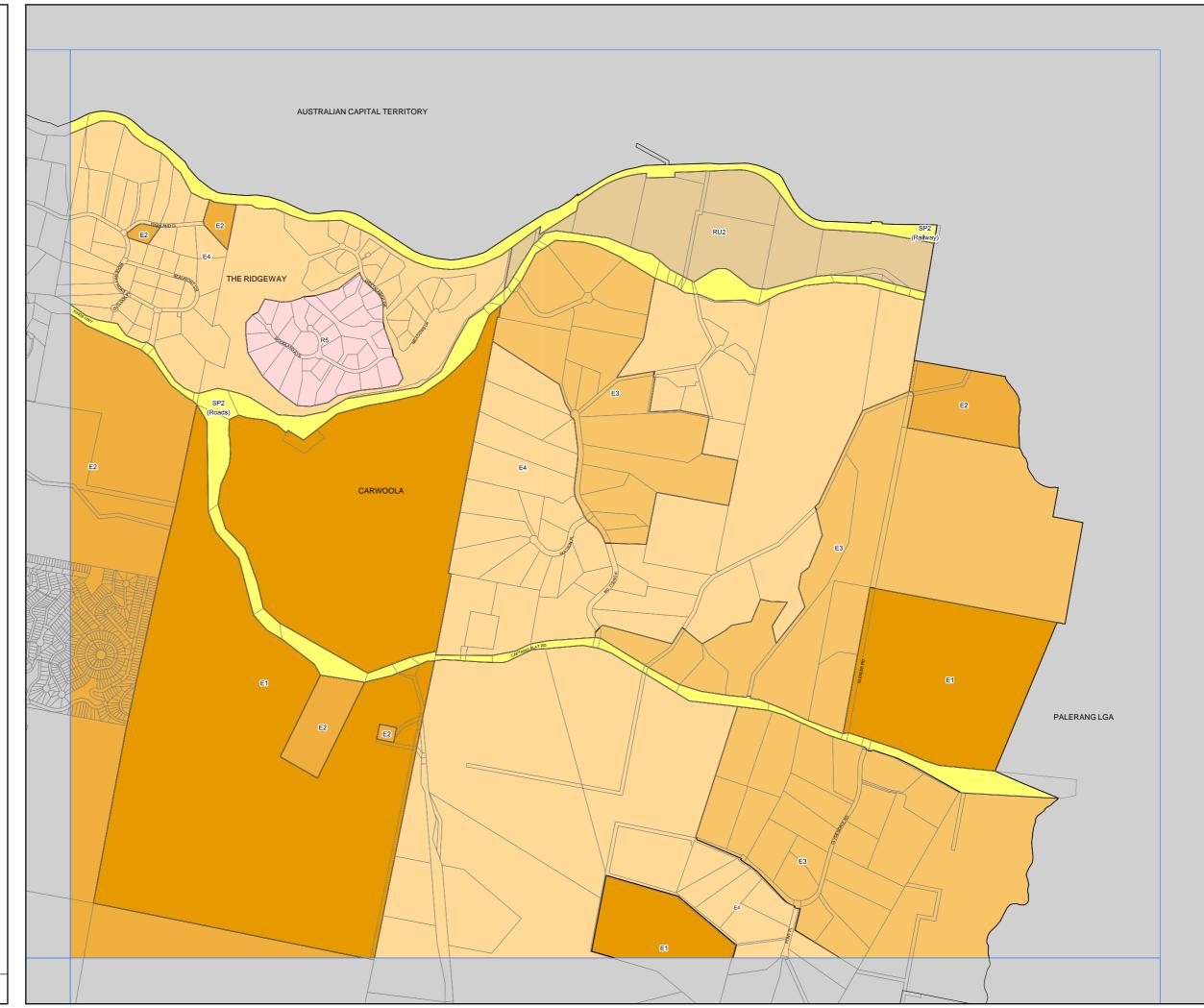

SP2

W1 DM


Cadastre 01/08/2015 © Land and Property Information (LPI)

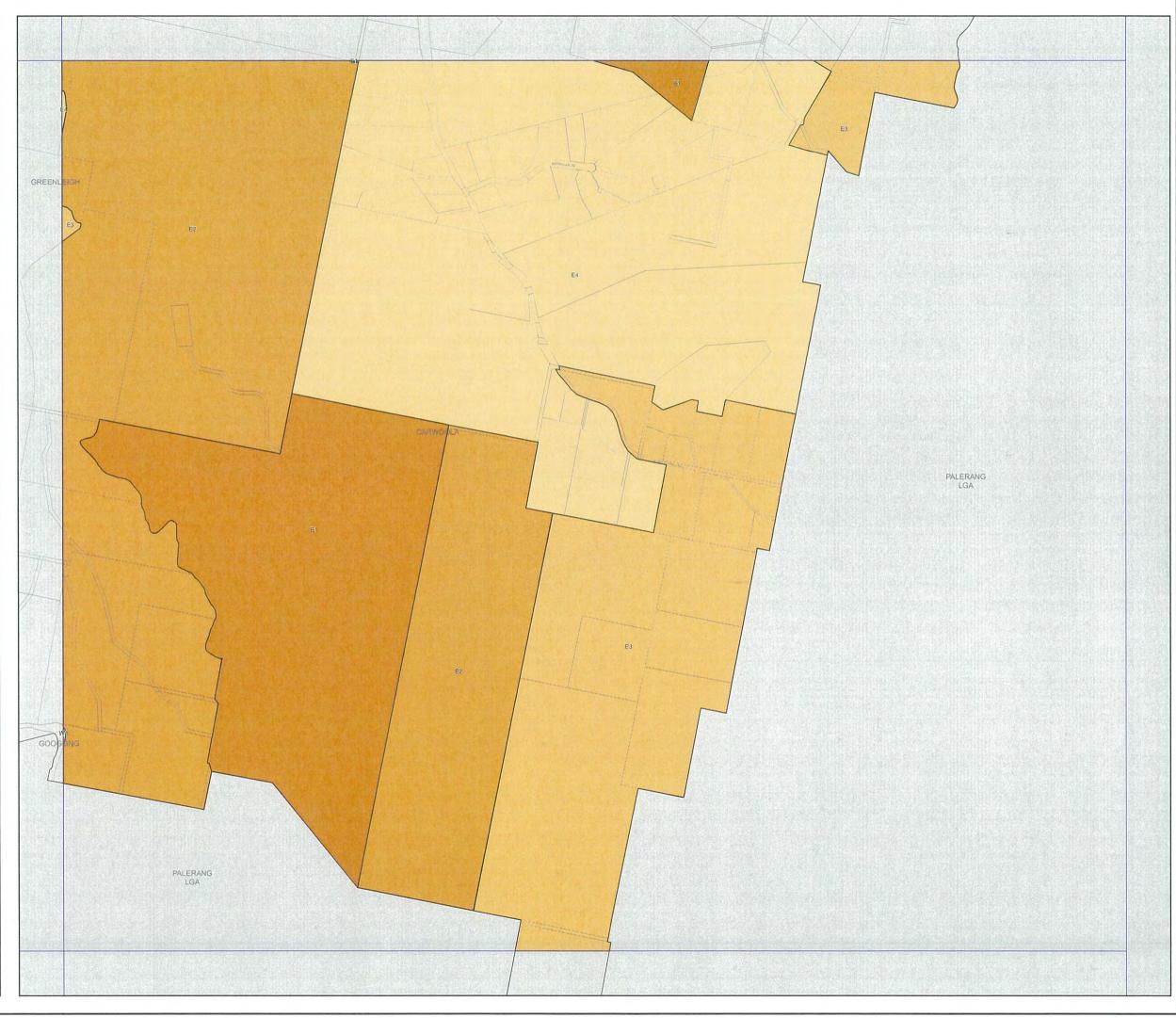
Natural Waterways

Deferred Matter









Scale 1: 20000 @ A3

6470\_COM\_LZN\_009\_020\_20150818





Map identification number: 6470\_COM\_LZN\_010\_020\_20120919



# **Background**

A strategy to systematically prioritise, assess and respond to notifications under Section 60 of the **Contaminated Land Management Act 1997** (CLM Act) has been developed by the EPA. This strategy acknowledges the EPA's obligations to make information available to the public under **Government Information** (**Public Access**) **Act 2009**.

When a site is notified to the EPA, it may be accompanied by detailed site reports where the owner has been proactive in addressing the contamination and its source. However, often there is minimal information on the nature or extent of the contamination.

After receiving a report, the first step is to confirm that the report does not relate to a pollution incident. The Protection of the Environment Operations Act 1997 (POEO Act) deals with pollution incidents, waste stockpiling or dumping. The EPA also has an incident management process to manage significant incidents (https://www.epa.nsw.gov.au/reporting-and-incidents/incident-management).

In many cases, the information indicates the contamination is securely immobilised within the site, such as under a building or carpark, and is not currently causing any significant risks for the community or environment. Such sites may still need to be cleaned up, but this can be done in conjunction with any subsequent building or redevelopment of the land. These sites do not require intervention under the CLM Act, and are dealt with through the planning and development consent process. In these cases, the EPA informs the local council or other planning authority, so that the information can be recorded and considered at the appropriate time (https://www.epa.nsw.gov.au/your-environment/contaminated-land/managing-contaminated-land/role-of-planning-authorities).

Where indications are that the contamination could cause actual harm to the environment or an unacceptable offsite impact (i.e. the land is 'significantly contaminated'), the EPA would apply the regulatory provisions of the CLM Act to have the responsible polluter and/or landowner investigate and remediate the site. If the reported contamination could present an immediate or long-term threat to human health NSW Health will be consulted. SafeWork NSW and Water NSW can also be consulted if there appear to be occupational health and safety risks or an impact on groundwater quality.

As such, the sites notified to the EPA and presented in the list of contaminated sites notified to the EPA are at various stages of the assessment and remediation process. Understanding the nature of the underlying contamination, its implications and implementing a remediation program where required, can take a considerable period of time. The list provides an indication, in relation to each nominated site, as to the management status of that particular site. Further detailed information may be available from the EPA or the person who notified the site.

The following questions and answers may assist those interested in this issue.

### Frequently asked questions

Why does my land appear on the list of notified sites?

Your land may appear on the list because:

- the site owner and/or the polluter has notified the EPA under section 60 of the CLM Act
- the EPA has been notified via other means and is satisfied that the site is or was contaminated.

If a site is on the list, it does not necessarily mean the contamination is significant enough to regulate under the CLM Act.

List current as at 14 August 2020
Page 1 of 117

### Does the list contain all contaminated sites in NSW?

No. The list only contains contaminated sites that EPA is aware of. If a site is not on the list, it does not necessarily mean the site is not contaminated.

The EPA relies on responsible parties and the public to notify contaminated sites.

### How are notified contaminated sites managed by the EPA?

There are different ways the EPA can manage notified contaminated sites. Options include:

- regulation under the CLM Act, POEO Act, or both
- notifying the relevant planning authority for management under the planning and development process
- managing the site under the Protection of the Environment Operation (Underground Petroleum Storage Systems) Regulation 2014.

There are specific cases where contamination is managed under a tailored program operated by another agency (for example, the Resources & Geoscience's Legacy Mines Program).

### What should I do if I am a potential buyer of a site that appears on the list?

You should seek advice from the seller to understand the contamination issue. You may need to seek independent contamination or legal advice.

The information provided in the list is indicative only and a starting point for your own assessment. Land contamination from past site uses is common, mainly in urban environments. If the site is properly remediated or managed, it may not affect the intended future use of the site.

### Who can I contact if I need more information about a site?

You can contact the Environment Line at any time by calling 131 555 or by emailing info@environment.nsw.gov.au.

# List of NSW Contaminated Sites Notified to the EPA

Page 2 of 117

### Disclaimer

The EPA has taken all reasonable care to ensure that the information in the list of contaminated sites notified to the EPA (the list) is complete and correct. The EPA does not, however, warrant or represent that the list is free from errors or omissions or that it is exhaustive.

The EPA may, without notice, change any or all of the information in the list at any time.

You should obtain independent advice before you make any decision based on the information in the list.

The list is made available on the understanding that the EPA, its servants and agents, to the extent permitted by law, accept no responsibility for any damage, cost, loss or expense incurred by you as a result of:

- 1. any information in the list; or
- 2. any error, omission or misrepresentation in the list; or
- 3. any malfunction or failure to function of the list;
- 4. without limiting (2) or (3) above, any delay, failure or error in recording, displaying or updating information.

| Site Status                           | Explanation                                                                                                                                                                                                                                                                                                          |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Under assessment                      | The contamination is being assessed by the EPA to determine whether regulation is required. The EPA may require further information to complete the assessment. For example, the completion of management actions regulated under the planning process or <i>Protection of the Environment Operations Act 1997</i> . |
| Under Preliminary Investigation Order | The EPA has issued a Preliminary Investigation Order under s10 of the Contaminated Land Management Act 1997, to obtain additional information needed to complete the assessment.                                                                                                                                     |
| Regulation under CLM Act not required | The EPA has completed an assessment of the contamination and decided that regulation under the Contaminated Land Management Act 1997 is not required.                                                                                                                                                                |

List current as at 14 August 2020

| Regulation being finalised                                      | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the <i>Contaminated Land Management Act 1997</i> . A regulatory approach is being finalised.                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contamination currently regulated under CLM Act                 | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). Management of the contamination is regulated by the EPA under the CLM Act. Regulatory notices are available on the EPA's Contaminated Land Public Record.                                                                                                                                                       |
| Contamination currently regulated under POEO Act                | Contamination is currently regulated under the Protection of the Environment Operations Act 1997 (POEO Act). The EPA as the appropriate regulatory authority reasonably suspects that a pollution incident is occurring/ has occurred and that it requires regulation under the POEO Act. The EPA may use environment protection notices, such as clean up notices, to require clean up action to be taken. Such regulatory notices are available on the POEO public register.                                     |
| Contamination being managed via the planning process (EP&A Act) | The EPA has completed an assessment of the contamination and decided that the contamination is significant enough to warrant regulation. The contamination of this site is managed by the consent authority under the <i>Environmental Planning and Assessment Act 1979</i> (EP&A Act) planning approval process, with EPA involvement as necessary to ensure significant contamination is adequately addressed. The consent authority is typically a local council or the Department of Planning and Environment. |
| Contamination formerly regulated under the CLM Act              | The EPA has determined that the contamination is no longer significant enough to warrant regulation under the Contaminated Land Management Act 1997 (CLM Act). The contamination was addressed under the CLM Act.                                                                                                                                                                                                                                                                                                  |
| Contamination formerly regulated under the POEO Act             | The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed under the <i>Protection of the Environment Operations Act 1997</i> (POEO Act).                                                                                                                                                                                                                                                                                                |

Page 4 of 117

| Contamination was addressed via the planning process (EP&A Act)         | The EPA has determined that the contamination is no longer significant enough to warrant regulation. The contamination was addressed by the appropriate consent authority via the planning process under the <i>Environmental Planning and Assessment Act</i> 1979 (EP&A Act). |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ongoing maintenance required to manage residual contamination (CLM Act) | The EPA has determined that ongoing maintenance, under the Contaminated Land Management Act 1997 (CLM Act), is required to manage the residual contamination. Regulatory notices under the CLM Act are available on the EPA's Contaminated Land Public Record.                 |

List current as at 14 August 2020

| Suburb      | SiteName                                            | Address                            | ContaminationActivityType | ManagementClass                                  | Latitude     | Longitude   |
|-------------|-----------------------------------------------------|------------------------------------|---------------------------|--------------------------------------------------|--------------|-------------|
| GERRINGONG  | Gerringong Cooperative                              | 18 Belinda STREET                  | Other Petroleum           | Regulation under CLM Act not required            | -34.74518835 | 150.8181054 |
| GERRINGONG  | Germigonia cooperative                              | 15 Delinaa STREET                  | other retroicum           | Regulation under etim Act not required           | 34.74310033  | 130.0101034 |
| GILGANDRA   | United (Former Mobil) Service Station               | 13 Castlereagh STREET              | Service Station           | Regulation under CLM Act not required            | -31.71715641 | 148.6581574 |
| GILGANDRA   | Former Mobil Depot                                  | 2 Federation STREET                | Other Petroleum           | Regulation under CLM Act not required            | -31.70937362 | 148.6522102 |
| GILGANDRA   | Former Mobil Depot                                  | 20 Federation STREET               | Other Petroleum           | Regulation under CLM Act not required            | -31.70771744 | 148.6514198 |
| GILGANDRA   | Caltex Service Station Gilgandra                    | 6425 Newell HIGHWAY                | Service Station           | Regulation under CLM Act not required            | -31.72545524 | 148.65281   |
| GILLENBAH   | Caltex (Former Mobil) Narrandera<br>Service Station | 16321 - 16335 Newell HIGHWAY       | Service Station           | Regulation under CLM Act not required            | -34.76124219 | 146.5398604 |
| GIRRAWEEN   | Industrial Galvanizers site                         | 20-22 Amax AVENUE                  | Metal Industry            | Contamination currently regulated under POEO Act | -33.80500693 | 150.9396743 |
| GIRRAWEEN   | Caltex Pendle Hill Service Station<br>Girraween     | 602 Great Western HIGHWAY          | Service Station           | Regulation under CLM Act not required            | -33.80827518 | 150.9421511 |
| GLADESVILLE | Caltex Service Station                              | 287-295 Victoria ROAD              | Service Station           | Regulation under CLM Act not required            | -33.8285374  | 151.1268639 |
| GLADESVILLE | Road Reserve                                        | Pittwater ROAD                     | Other Industry            | Regulation under CLM Act not required            | -33.81603924 | 151.1355085 |
| GLADESVILLE | Caltex Service Station                              | 116 Victoria ROAD                  | Service Station           | Regulation under CLM Act not required            | -33.83575319 | 151.1277863 |
| GLADESVILLE | Glade View Business Park                            | 436-484 Victoria ROAD              | Other Industry            | Under assessment                                 | -33.82382382 | 151.1223941 |
| GLEBE       | The Hill and Jubilee Embankment                     | 12 Maxwell ROAD                    | Other Industry            | Regulation under CLM Act not required            | -33.87573032 | 151.1776027 |
| GLEN INNES  | Ambulance Station                                   | 106 Bourke STREET                  | Unclassified              | Regulation under CLM Act not required            | -29.73805854 | 151.7313138 |
| GLEN INNES  | Telstra Depot Glen Innes                            | 126 Lambeth STREET                 | Unclassified              | Regulation under CLM Act not required            | -29.73565341 | 151.7278271 |
| GLEN INNES  | Caltex Glen Innes Service Station                   | Meade Street, corner Church STREET | Service Station           | Regulation under CLM Act not required            | -29.73699014 | 151.7379335 |

| Suburb      | SiteName                                         | Address                               | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude     |
|-------------|--------------------------------------------------|---------------------------------------|---------------------------|----------------------------------------------------|--------------|---------------|
| GLEN INNES  | Former Shell Depot                               | Lambeth STREET                        | Other Petroleum           | Regulation under CLM Act not required              | -29.7376309  | 151.7276309   |
|             |                                                  |                                       |                           |                                                    |              |               |
| GLEN INNES  | Former Caltex Depot, Glen Innes                  | Lot 1 DP785636 Lambeth STREET         | Other Petroleum           | Regulation under CLM Act not required              | -29.73525485 | 151.7279167   |
| GLEN INNES  | Council-owned Laneway                            | Lot 2 Lang STREET                     | Gasworks                  | Regulation under CLM Act not required              | -29.74385432 | 151.7323049   |
| GLEN INNES  | Caltex Service Station                           | Cnr Taylor Street & Church STREET     | Service Station           | Regulation under CLM Act not required              | -29.73289036 | 151.739653    |
| GLEN INNES  | Caltex Glen Innes Paddock                        | 9979 New England HIGHWAY              | Service Station           | Regulation under CLM Act not required              | -29.75608853 | 151.7344106   |
| GLENBROOK   | Caltex Service Station Glenbrook                 | 78 Great Western HIGHWAY              | Service Station           | Regulation under CLM Act not required              | -33.76545234 | 150.6215447   |
| GLENDALE    | Coles Express Glendale                           | 593 Main ROAD                         | Service Station           | Regulation under CLM Act not required              | -32.92709242 | 151.637946    |
| GLENDALE    | Settlement Pond                                  | 65 Glendale DRIVE                     | Unclassified              | Regulation under CLM Act not required              | -32.93411399 | 151.6483695   |
| GLENDALE    | Former Service Station                           | 334-342 Lake ROAD                     | Unclassified              | Regulation under CLM Act not required              | -32.92775076 | 151.6433463   |
| OLENO, ILE  | r officer sections                               | SO Y S 12 ZUNE NOVIS                  | one.assimea               | ricgulation and complete not required              | 32.32773378  | 19110 100 100 |
| GLENDALE    | Woolworths Service Station                       | Stockland DRIVE                       | Service Station           | Regulation under CLM Act not required              | -32.93250548 | 151.6404097   |
| GLENDENNING | 7-Eleven Plumpton Service Station<br>Glendenning | 1 Dublin Street, corner Richmond ROAD | Service Station           | Regulation under CLM Act not required              | -33.73988232 | 150.8603323   |
| GLENORIE    | Caltex Glenorie Service Station                  | 912 Old Northern ROAD                 | Service Station           | Regulation under CLM Act not required              | -33.60550946 | 151.0126731   |
| GLENTHORNE  | Caltex Taree Service Station                     | Manning River DRIVE                   | Service Station           | Regulation under CLM Act not required              | -31.94415251 | 152.4703511   |
| GLOUCESTER  | Caltex Service Station                           | 141 Church STREET                     | Service Station           | Regulation under CLM Act not required              | -32.01222514 | 151.9579521   |
| GOOLMANGAR  | Goolmangar General Store                         | 851 Nimbin ROAD                       | Service Station           | Regulation under CLM Act not required              | -28.74694441 | 153.225401    |
| GOONELLABAH | Former Invercauld Road Cattle Dip                | 161 Invercauld ROAD                   | Cattle Dip                | Contamination formerly regulated under the CLM Act | -28.8308417  | 153.3098878   |

| Suburb    | SiteName                               | Address                                     | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|-----------|----------------------------------------|---------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
|           |                                        | Corner Merinee Road and Bowen               |                           |                                                    |              |             |
| GOSFORD   | United (former Mobil) Depot            | CRESCENT                                    | Other Petroleum           | Regulation under CLM Act not required              | -33.41523225 | 151.3257069 |
|           |                                        |                                             |                           | Contamination currently regulated                  |              |             |
| GOULBURN  | Former Goulburn Gasworks               | 1 Blackshaw ROAD                            | Gasworks                  | under CLM Act                                      | -34.75237525 | 149.725507  |
|           |                                        |                                             |                           |                                                    |              |             |
| GOULBURN  | Goulburn Tannery                       | 13 Gibson STREET                            | Other Industry            | Regulation under CLM Act not required              | -34.73756525 | 149.72059   |
|           |                                        |                                             |                           |                                                    |              |             |
| GOULBURN  | Caltex Depot                           | 13 Sloane STREET                            | Other Petroleum           | Regulation under CLM Act not required              | -34.77423152 | 149.7088626 |
|           |                                        |                                             |                           |                                                    |              |             |
| GOULBURN  | Metro Goulburn Depot                   | 23 Braidwood ROAD                           | Other Petroleum           | Regulation under CLM Act not required              | -34.76217302 | 149.7170897 |
|           |                                        |                                             |                           |                                                    |              |             |
| GOULBURN  | Caltex Service Station                 | 72-74 Clinton STREET                        | Service Station           | Regulation under CLM Act not required              | -34.75728157 | 149.7135824 |
|           |                                        |                                             |                           |                                                    |              |             |
| GOULBURN  | Caltex Service Station                 | 68 Goldsmith STREET                         | Service Station           | Regulation under CLM Act not required              | -34.75054432 | 149.7192098 |
|           |                                        |                                             |                           |                                                    |              |             |
| GOULBURN  | Former Shell Autoport Service Station  | Corner Bruce Street and Lagoon STREET       | Service Station           | Regulation under CLM Act not required              | -34.74807885 | 149.7266246 |
|           | ·                                      |                                             |                           |                                                    |              |             |
| GOULBURN  | Coles Express Service Station          | 90 Cowper (Corner Clinton Street)<br>STREET | Service Station           | Regulation under CLM Act not required              | -34.75566648 | 149.7107831 |
|           | ·                                      |                                             |                           |                                                    |              |             |
| GOULBURN  | Mobil Service Station                  | 129 Lagoon STREET                           | Service Station           | Contamination formerly regulated under the CLM Act | -34.74618793 | 149.7330484 |
| GGCESONIV | Widom Service Station                  | 123 Lagoon STREET                           | Service station           | the central                                        | 31.71010733  | 113.7330101 |
| GOULBURN  | Caltex Service Station                 | 315 Auburn, corner Bradley STREET           | Service Station           | Regulation under CLM Act not required              | -34.74942293 | 149.7232692 |
| GOOLBORN  | Cartex Service Station                 | 313 Auburn, comer brauley 3TKEET            | Service Station           | Regulation under CLIVI Act not required            | -34.74342233 | 143.7232032 |
| GOULBURN  | Former Mobil Service Station Goulburn  | 422-426 Auburn STREET                       | Service Station           | Regulation under CLM Act not required              | -34.74869879 | 149.7229392 |
| GOOLBORN  | Politiei Mobil Service Station Godibum | 422-420 AUDUITI STREET                      | Service Station           | Regulation under CLIVI Act not required            | -34.74803873 | 143.7225352 |
| 00.4570.1 | Former General Store and Service       | 4647 (670557                                |                           |                                                    | 20 67442044  | 450 000660  |
| GRAFTON   | Station Grafton                        | 161 Turf STREET                             | Service Station           | Regulation under CLM Act not required              | -29.67412811 | 152.9336609 |
|           | Lowes Petroleum (BP-Branded) Depot,    |                                             |                           |                                                    |              |             |
| GRAFTON   | Grafton                                | 13 Orara STREET                             | Other Petroleum           | Regulation under CLM Act not required              | -29.67016421 | 152.918161  |
|           |                                        |                                             |                           |                                                    |              |             |
| GRAFTON   | Former Shell Depot                     | 2 Milton STREET                             | Other Petroleum           | Regulation under CLM Act not required              | -29.67723019 | 152.9205374 |
|           |                                        |                                             |                           |                                                    |              |             |
| GRAFTON   | Grafton Works Depot                    | 26-28 Bruce STREET                          | Other Petroleum           | Regulation under CLM Act not required              | -29.67975507 | 152.9249357 |

| Suburb    | SiteName                                | Address                                  | ContaminationActivityType | ManagementClass                                                    | Latitude     | Longitude    |
|-----------|-----------------------------------------|------------------------------------------|---------------------------|--------------------------------------------------------------------|--------------|--------------|
|           | Former BP Service Station (Reliance     |                                          |                           |                                                                    |              |              |
| GRAFTON   | Petroleum)                              | 202 Queen STREET                         | Service Station           | Regulation under CLM Act not required                              | -29.67645469 | 152.9423977  |
| 00.45704  |                                         |                                          |                           |                                                                    | 22 52224742  | 450 00 40500 |
| GRAFTON   | Woolworths Petrol                       | 75 - 77 Fitzroy Street Cnr of Duke STREE | Service Station           | Regulation under CLM Act not required                              | -29.69221713 | 152.9343562  |
| GRAFTON   | Caltex Service Station                  | Corner Villiers St and Fitzroy STREET    | Service Station           | Regulation under CLM Act not required                              | -29.69296308 | 152.9366431  |
| GRAFTON   | BP Service Station (Reliance Petroleum) | 14 Villiers (Cnr Fitzroy) STREET         | Service Station           | Regulation under CLM Act not required                              | -29.69345456 | 152.9373123  |
|           |                                         |                                          |                           |                                                                    |              |              |
| GRAFTON   | Former Mobil Depot Grafton              | 2-16 Bruce STREET                        | Other Petroleum           | Regulation under CLM Act not required                              | -29.68093591 | 152.9231289  |
| GRAFTON   | Caltex Service Station                  | 179 Prince STREET                        | Service Station           | Regulation under CLM Act not required                              | -29.68600117 | 152.9371093  |
| GRANVILLE | Caltex Service Station                  | 144 Parramatta ROAD                      | Service Station           | Regulation under CLM Act not required                              | -33.83039605 | 151.0109216  |
| GRANVILLE | Australand                              | 15-17 Berry STREET                       | Other Industry            | Regulation under CLM Act not required                              | -33.83600073 | 151.0211988  |
| GRANVILLE | Woolworths Service Station Granville    | 158 Clyde STREET                         | Service Station           | Regulation under CLM Act not required                              | -33.84623338 | 151.0124885  |
|           |                                         |                                          |                           | Ongoing maintenance required to manage residual contamination (CLM |              |              |
| GRANVILLE | Commercial Property                     | 2B Factory STREET                        | Other Industry            | Act)                                                               | -33.84173556 | 151.0165687  |
| GRANVILLE | Old Granville Depot                     | 23 Elizabeth STREET                      | Unclassified              | Regulation under CLM Act not required                              | -33.83765925 | 151.008528   |
| GRANVILLE | 7-Eleven Service Station                | 154-160 Parramatta ROAD                  | Service Station           | Regulation under CLM Act not required                              | -33.83022685 | 151.0101322  |
| GRANVILLE | A'Becketts Creek                        | Albert STREET                            | Unclassified              | Under assessment                                                   | -33.82735397 | 151.0113643  |
|           |                                         |                                          |                           |                                                                    |              |              |
| GREENACRE | Former Plating Works                    | 12 Claremont STREET                      | Unclassified              | Regulation under CLM Act not required                              | -33.89992254 | 151.0386128  |
| GREENACRE | 7-Eleven (former Mobil) Service Station | 301-305 Hume HIGHWAY                     | Service Station           | Regulation under CLM Act not required                              | -33.90524488 | 151.0419971  |
| GREENACRE | Caltex Service Station                  | 87 - 91 Roberts ROAD                     | Service Station           | Regulation under CLM Act not required                              | -33.90461089 | 151.0648581  |

| Suburb     | SiteName                                        | Address                                   | ContaminationActivityType | ManagementClass                            | Latitude     | Longitude   |
|------------|-------------------------------------------------|-------------------------------------------|---------------------------|--------------------------------------------|--------------|-------------|
|            |                                                 |                                           |                           |                                            |              |             |
| GREENACRE  | Coles Greenacre                                 | 13-19 Boronia ROAD                        | Other Industry            | Regulation under CLM Act not required      | -33.9061123  | 151.0561759 |
| GREENWICH  | Gore Creek Reserve - Drainage Line              | St Vincents ROAD                          | Other Industry            | Regulation under CLM Act not required      | -33.82888693 | 151.1819101 |
| GRENFELL   | Former SRA Fuel Depot                           | Grafton STREET                            | Other Petroleum           | Regulation under CLM Act not required      | -33.89351237 | 148.1560188 |
| GRENFELL   | Grenfell Gasworks                               | Corner Gooloogong Road & Bourke<br>STREET | Gasworks                  | Regulation under CLM Act not required      | -33.89006016 | 148.1615443 |
| GRETA      | Coles Express Greta                             | 122 New England HIGHWAY                   | Service Station           | Regulation under CLM Act not required      | -32.67656357 | 151.3872818 |
| CDETA      |                                                 | 112 114 High CTDEET                       | Oth or ladusta.           | Deculation and or CIM Act act act acquired | 22.67706700  | 151 2076602 |
| GRETA      | redevelopment site                              | 112-114 High STREET                       | Other Industry            | Regulation under CLM Act not required      | -32.67706709 | 151.3876682 |
| GRETA      | Former landfill                                 | Hollingshed ROAD                          | Landfill                  | Regulation under CLM Act not required      | -32.66705287 | 151.3923474 |
| GREYSTANES | Metro Branded (former Mobil) Service<br>Station | 73 Ettalong ROAD                          | Service Station           | Regulation under CLM Act not required      | -33.81822648 | 150.9513946 |
| GRIFFITH   | Liberty Depot (former Shell CVRO) Griffith      | 6-10 Mackay AVENUE                        | Other Petroleum           | Regulation under CLM Act not required      | -34.2910045  | 146.063824  |
| GRIFFITH   | Former Murrumbidgee Irrigation Depot            | 55-77 Banna AVENUE                        | Other Industry            | Regulation under CLM Act not required      | -34.28858242 | 146.0567509 |
| GRIFFITH   | Mobil Depot - Griffith Airport                  | Off Rememberance DRIVE                    | Other Petroleum           | Regulation under CLM Act not required      | -34.25618872 | 146.0620449 |
| GRIFFITH   | Former Ampol Depot                              | 32-34 Mackay AVENUE                       | Other Petroleum           | Regulation under CLM Act not required      | -34.2933331  | 146.0679503 |
| GRIFFITH   | Caltex Service Station and Depot                | 2-4 Mackay AVENUE                         | Service Station           | Regulation under CLM Act not required      | -34.2908766  | 146.0630815 |
| GRIFFITH   | Former Landmark Fertiliser Storage<br>Facility  | 2-8 Jensen ROAD                           | Chemical Industry         | Regulation under CLM Act not required      | -34.29365599 | 146.0536413 |
| GRIFFITH   | Belford Petroleum (former Mobil) Depot          | 30 Banna AVENUE                           | Service Station           | Regulation under CLM Act not required      | -34.29042827 | 146.0595497 |
| GRIFFITH   | Former BP Service Station (Reliance Petroleum)  | 81 Banna AVENUE                           | Service Station           | Regulation under CLM Act not required      | -34.28851251 | 146.0540815 |

| Suburb      | SiteName                                | Address                                           | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|-------------|-----------------------------------------|---------------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
|             |                                         |                                                   |                           |                                                    |              |             |
| GUILDFORD   | 7-Eleven Service Station Guildford West | 176 Fowler ROAD                                   | Service Station           | Regulation under CLM Act not required              | -33.85149493 | 150.9722491 |
|             | Lowes Petroleum (former BP) Depot       |                                                   |                           |                                                    |              |             |
| GULGONG     | Gulgong                                 | 6 Railway STREET                                  | Other Petroleum           | Regulation under CLM Act not required              | -32.35950625 | 149.5461499 |
| GULGONG     | The Oval Site                           | Queen STREET                                      | Unclassified              | Regulation under CLM Act not required              | -32.36169815 | 149.531075  |
| GULMARRAD   | BP Service Station Maclean              | 3976 Pacific HIGHWAY                              | Service Station           | Regulation under CLM Act not required              | -29.48537407 | 153.2004311 |
|             |                                         |                                                   |                           |                                                    |              |             |
| GUMLY GUMLY | Caltex Service Station                  | 3723 Sturt HIGHWAY                                | Service Station           | Regulation under CLM Act not required              | -35.13590309 | 147.4424551 |
| GUMLY GUMLY | Brick Kiln Reserve                      | Eunony Bridge ROAD                                | Landfill                  | Regulation under CLM Act not required              | -35.12098411 | 147.4196309 |
|             |                                         |                                                   |                           |                                                    |              |             |
| GUNDAGAI    | Former Mobil Depot                      | 98 Mount STREET                                   | Other Petroleum           | Regulation under CLM Act not required              | -35.08206783 | 148.096221  |
| GUNNEDAH    | Caltex Service Station                  | 21 Abbott STREET                                  | Service Station           | Regulation under CLM Act not required              | -30.98021001 | 150.2561856 |
| GUNNEDAH    | Former Shell Depot Gunnedah             | 85-89 Barber STREET                               | Other Petroleum           | Regulation under CLM Act not required              | -30.97949284 | 150.2507401 |
| GUNNEDAH    | Mobil Gunnedah Depot                    | 16-24 Wentworth STREET                            | Other Petroleum           | Regulation under CLM Act not required              | -30.98428725 | 150.260609  |
| CONTENT     | iwosii Gaimeaan Bepot                   | 10 21 Welleworth STREET                           | other retroleum           | Contamination currently regulated                  | 30.30120723  | 130,200003  |
| GUNNEDAH    | BP Depot Gunnedah                       | 103 Mathias ROAD                                  | Other Petroleum           | under CLM Act                                      | -30.96665001 | 150.2326526 |
| GUNNEDAH    | BP Service Station                      | Corner Conadilly Street & Henry STREET            | Service Station           | Contamination formerly regulated under the CLM Act | -30.98116266 | 150.2583066 |
|             |                                         |                                                   |                           | Contamination formerly regulated under             |              |             |
| GUNNEDAH    | Mobil Service Station                   | 341 Conadilly STREET                              | Service Station           | the CLM Act                                        | -30.9807394  | 150.2578428 |
| GUNNEDAH    | Property NSW Site                       | 35-37 Abbott STREET                               | Other Petroleum           | Regulation under CLM Act not required              | -30.9789841  | 150.25737   |
| GUNNEDAH    | Former Telstra Line Depot               | 81 Barber STREET                                  | Other Petroleum           | Regulation under CLM Act not required              | -30.97933809 | 150.2503121 |
| GUNNEDAH    | Adjacent to Service Station             | Intersection of Henry Street and Conadilly STREET | Service Station           | Contamination formerly regulated under the CLM Act | -30.98072588 | 150.2582802 |

| Suburb    | SiteName                                                 | Address                                             | ContaminationActivityType | ManagementClass                                 | Latitude     | Longitude   |
|-----------|----------------------------------------------------------|-----------------------------------------------------|---------------------------|-------------------------------------------------|--------------|-------------|
| JENNINGS  |                                                          | Duke Street, Manor Street, and<br>Ballandean STREET | Chemical Industry         | Contamination currently regulated under CLM Act | -28.929342   | 151.9298622 |
|           |                                                          |                                                     |                           |                                                 |              |             |
| JENNINGS  | United Jennings Service Station                          | 1823 New England HIGHWAY                            | Service Station           | Regulation under CLM Act not required           | -28.9323235  | 151.9260334 |
| JESMOND   | Caltex Service Station                                   | 27 Bluegum ROAD                                     | Service Station           | Regulation under CLM Act not required           | -32.9029287  | 151.691164  |
| JINDABYNE | BP Service Station (Reliance Petroleum)                  | 8 Kosciuszko ROAD                                   | Service Station           | Regulation under CLM Act not required           | -36.41478692 | 148.6178882 |
| JINDABYNE | Caltex Service Station                                   | 50 Kosciuszko ROAD                                  | Service Station           | Regulation under CLM Act not required           | -36.41395847 | 148.6225113 |
| JINGELLIC | Former Jingellic School                                  | 3179 River ROAD                                     | Other Industry            | Regulation under CLM Act not required           | -35.926501   | 147.701011  |
| JUNEE     | Subdivision Proposal                                     | 5858 Gundagai ROAD                                  | Unclassified              | Regulation under CLM Act not required           | -34.87783587 | 147.6067578 |
| JUNEE     | United Junee Service Station                             | No. 118-134 BROADWAY                                | Service Station           | Regulation under CLM Act not required           | -34.86805686 | 147.583483  |
| JUNEE     | Junee Railway Workshops                                  | 92 Harold STREET                                    | Other Industry            | Under assessment                                | -34.88393    | 147.579631  |
| КАNАНООКА | Former Dapto Smelter Site, Kanahooka (redeveloped)       | Off Kanahooka ROAD                                  | Metal Industry            | Regulation under CLM Act not required           | -34.4941348  | 150.8224482 |
| KANDOS    | Cement Australia Kandos Cement Works                     | 1 Jamison STREET                                    | Other Industry            | Regulation under CLM Act not required           | -32.86399912 | 149.9779259 |
| KANWAL    | Kanwal General Store and Fuel Supplies and Adjacent Land | 68 and part of 70 Craigie AVENUE                    | Service Station           | Contamination currently regulated under CLM Act | -33.263026   | 151.482125  |
| KANWAL    | Former Bus and Truck Rental Yard                         | 645-647 Pacific Highway HIGHWAY                     | Other Petroleum           | Regulation under CLM Act not required           | -33.26233802 | 151.4825469 |
| KARIONG   | Coles Express Kariong                                    | 6 Central Coast HIGHWAY                             | Service Station           | Regulation under CLM Act not required           | -33.43443192 | 151.2963401 |
| KARIONG   | Caltex Service Station                                   | Lot 2 Langford DRIVE                                | Service Station           | Regulation under CLM Act not required           | -33.43934827 | 151.2935447 |
| KARUAH    | BP Roadhouse Karuah                                      | 403 Tarean ROAD                                     | Service Station           | Regulation under CLM Act not required           | -32.65371781 | 151.9629963 |

| Suburb        | SiteName                                | Address                | ContaminationActivityType | ManagementClass                       | Latitude     | Longitude   |
|---------------|-----------------------------------------|------------------------|---------------------------|---------------------------------------|--------------|-------------|
|               |                                         |                        |                           |                                       |              |             |
| КАТООМВА      | Aldi Stores                             | 201 Katoomba STREET    | Service Station           | Regulation under CLM Act not required | -33.71756625 | 150.3101649 |
|               |                                         |                        |                           | Contamination currently regulated     |              |             |
| КАТООМВА      | Former Katoomba/Leura Gasworks          | Megalong STREET        | Gasworks                  | under CLM Act                         | -33.71318559 | 150.3187284 |
|               |                                         |                        |                           |                                       |              |             |
| KELLYVILLE    | Caltex Service Station                  | 3-5 Windsor ROAD       | Service Station           | Regulation under CLM Act not required | -33.71436125 | 150.9602175 |
|               |                                         |                        |                           |                                       |              |             |
| KELLYVILLE    | BP Service Station Kellyville           | 19-23 Windsor ROAD     | Service Station           | Regulation under CLM Act not required | -33.71280997 | 150.9590756 |
|               |                                         |                        |                           |                                       |              |             |
| KELSO         | Caltex Service Station Kelso            | 19 Sydney ROAD         | Service Station           | Regulation under CLM Act not required | -33.41904247 | 149.6023985 |
|               |                                         |                        |                           |                                       |              |             |
| KELSO         | BP Service Station (Reliance Petroleum) | 63 Sydney ROAD         | Service Station           | Regulation under CLM Act not required | -33.41925328 | 149.6076677 |
|               |                                         |                        |                           |                                       |              |             |
| KEMBLA GRANGE | ShawCor Australia                       | 66 West Dapto ROAD     | Other Petroleum           | Regulation under CLM Act not required | -34.46875328 | 150.8106326 |
|               |                                         |                        |                           |                                       |              |             |
| KEMBLAWARRA   | Griffins Bay, Lake Illawarra            | Shellharbour ROAD      | Landfill                  | Regulation under CLM Act not required | -34.49653984 | 150.8943776 |
|               |                                         |                        |                           |                                       |              |             |
| KEMPS CREEK   | Caltex-branded Service Station          | 1163 Mamre ROAD        | Service Station           | Regulation under CLM Act not required | -33.86972102 | 150.7966074 |
|               |                                         |                        |                           | Contamination being managed via the   |              |             |
| KEMPSEY       | Kempsey Showground                      | 19 Sea STREET          | Unclassified              | planning process (EP&A Act)           | -31.07334836 | 152.8308795 |
|               |                                         |                        |                           |                                       |              |             |
| KEMPSEY       | Former Shell Depot                      | 43-51 Gladstone STREET | Other Petroleum           | Regulation under CLM Act not required | -31.07500944 | 152.8346699 |
|               |                                         |                        |                           |                                       |              |             |
| KEMPSEY       | Former Mobil Depot                      | 14 Hopetoun STREET     | Other Petroleum           | Regulation under CLM Act not required | -31.07603107 | 152.8350132 |
|               | Shell Coles Express Service Station     |                        |                           |                                       |              |             |
| KEMPSEY       | Kempsey                                 | 165 Smith STREET       | Service Station           | Regulation under CLM Act not required | -31.07036743 | 152.8461571 |
|               |                                         |                        |                           |                                       |              |             |
| KEMPSEY       | Mobil Depot                             | 154 Belgrave STREET    | Service Station           | Regulation under CLM Act not required | -31.07965043 | 152.8326303 |
|               |                                         |                        |                           |                                       |              |             |
| KEMPSEY       | Liberty (Former Mobil) Service Station  | 108-112 Smith STREET   | Service Station           | Regulation under CLM Act not required | -31.07492508 | 152.8431945 |
|               |                                         |                        |                           |                                       |              |             |
| KENSINGTON    | 7-Eleven Kensington                     | 135 Anzac PARADE       | Service Station           | Regulation under CLM Act not required | -33.91035885 | 151.2228537 |

| Suburb        | SiteName                                        | Address                                       | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|---------------|-------------------------------------------------|-----------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
| KENSINGTON    | Former Ampol Service Station                    | 76-82 Anzac PARADE                            | Service Station           | Regulation under CLM Act not required              | -33.9059246  | 151.2242891 |
| KENSINGTON    |                                                 | 70-02 AIIZACT AINADE                          | Service station           | Regulation under CLIVI Act not required            | -55.5055240  | 131.2242031 |
| KENSINGTON    | Footpath adjacent to 10-20 Anzac Parade         | 10-20 Anzac PARADE                            | Service Station           | Regulation under CLM Act not required              | -33.9032124  | 151.2237836 |
|               |                                                 |                                               |                           |                                                    |              |             |
| KENSINGTON    | Caltex Service Station                          | 211-213 Anzac PARADE                          | Service Station           | Regulation under CLM Act not required              | -33.91460752 | 151.2251266 |
|               |                                                 |                                               |                           |                                                    |              |             |
| KENTHURST     | Vacant Land                                     | 259 McCylmonts ROAD                           | Unclassified              | Regulation under CLM Act not required              | -33.61283529 | 150.9425303 |
| KHANCOBAN     | Khancoban Tip                                   | Alpine WAY                                    | Landfill                  | Regulation under CLM Act not required              | -36.21994191 | 148.1542718 |
| KIANCODAN     | Kitancobarrip                                   | Alpine WAT                                    | Landini                   | Regulation under CLIVI Act not required            | -30.21334131 | 140.1342710 |
| KIAMA         | Former Gasworks                                 | 105 to 109 and 113 Shoalhaven STREET          | Gasworks                  | Regulation under CLM Act not required              | -34.67416881 | 150.8504143 |
|               |                                                 |                                               |                           |                                                    |              |             |
| KIAMA HEIGHTS | Former Mobil Service Station Kiama              | 7-9 South Kiama DRIVE                         | Service Station           | Regulation under CLM Act not required              | -34.69553931 | 150.8437977 |
| KILLARA       | 7-Eleven Service Station (Former Mobil)         | 496 Pacific HIGHWAY                           | Service Station           | Contamination currently regulated under CLM Act    | -33.77146554 | 151.1606903 |
|               |                                                 |                                               |                           |                                                    |              |             |
| KILLARA       | Former Caltex Service Station                   | 692B-694 Pacific HIGHWAY                      | Service Station           | Contamination formerly regulated under the CLM Act | -33.76306802 | 151.1550109 |
|               |                                                 |                                               |                           |                                                    |              |             |
| KILLARA       | Killara Garage                                  | 544 Pacific HIGHWAY                           | Service Station           | Regulation under CLM Act not required              | -33.76974164 | 151.1599696 |
| KILLARA       | Former BP Service Station Lindfield             | 478 Pacific HIGHWAY                           | Service Station           | Contamination currently regulated under CLM Act    | -33.7719298  | 151.1613874 |
| NILLAIVA      | Torrier by Service Station Emaneia              | 4701 delile HIGHWAT                           | Service station           | diddi Clivi Act                                    | 33.7713230   | 131.1013074 |
| KILLARA       | Land Adjacent to Former Service Station<br>Site | 684-684a, 690, 692 and 696 Pacific<br>HIGHWAY | Service Station           | Contamination formerly regulated under the CLM Act | -33.76312226 | 151.1549237 |
|               |                                                 |                                               |                           | Contamination surrently regulated                  |              |             |
| KINCUMBER     | Frost Reserve                                   | Avoca DRIVE                                   | Landfill                  | Contamination currently regulated under CLM Act    | -33.47065695 | 151.3909044 |
|               |                                                 |                                               |                           |                                                    |              |             |
| KINGS PARK    | Multi-Fill                                      | 14 Garling ROAD                               | Chemical Industry         | Under assessment                                   | -33.74478046 | 150.9111964 |
| KINGS PARK    | Former Dow Corning Factory                      | 21 Tattersall ROAD                            | Chemical Industry         | Regulation under CLM Act not required              | -33.75012653 | 150.9138477 |
|               | 2. 2                                            |                                               | ,                         | -0                                                 | 22.7.5012000 | 230.323377  |
| KINGSFORD     | Caltex Service Station                          | 603-611 Anzac PARADE                          | Service Station           | Regulation under CLM Act not required              | -33.93435787 | 151.2371198 |

| Suburb     | SiteName                                | Address                                     | ContaminationActivityType | ManagementClass                                 | Latitude     | Longitude   |
|------------|-----------------------------------------|---------------------------------------------|---------------------------|-------------------------------------------------|--------------|-------------|
|            |                                         |                                             |                           |                                                 |              |             |
| KINGSFORD  | Coles Express Service Station Kingsford | 58 Gardeners ROAD                           | Service Station           | Regulation under CLM Act not required           | -33.9250054  | 151.2257601 |
| KINGSGROVE | Shell Coles Express Service Station     | 137 Kingsgrove ROAD                         | Service Station           | Regulation under CLM Act not required           | -33.93276948 | 151.099026  |
| KINGSGROVE | Caltex Kingsgrove                       | 351-357 Stoney Creek ROAD                   | Service Station           | Regulation under CLM Act not required           | -33.95132175 | 151.0926872 |
| KINGSGROVE | State Transit Authority Depot           | 17-23 Richland STREET                       | Other Petroleum           | Regulation under CLM Act not required           | -33.93646086 | 151.0973617 |
|            |                                         |                                             |                           |                                                 |              |             |
| KIRRAWEE   | Ingal Civil Products                    | 127-141 Bath ROAD                           | Metal Industry            | Regulation under CLM Act not required           | -34.03029516 | 151.0754469 |
| KIRRAWEE   | 7-Eleven (former Mobil) Service Station | 542-546 Princes HIGHWAY                     | Service Station           | Regulation under CLM Act not required           | -34.03238179 | 151.0758071 |
| KIRRAWEE   | Caltex-branded Kirrawee Service Station | (1-3 Waratah Street) 487 Princes<br>HIGHWAY | Service Station           | Regulation under CLM Act not required           | -34.02915971 | 151.0808279 |
| KOGARAH    | Scarborough Park South                  | 184R Production AVENUE                      | Landfill                  | Regulation being finalised                      | -33.97922253 | 151.140276  |
| KOGARAH    | Caltex Service Station                  | 29 President AVENUE                         | Service Station           | Regulation under CLM Act not required           | -33.96516866 | 151.141145  |
| KOGARAH    | 7-Eleven Service Station                | 736 Princes HIGHWAY                         | Service Station           | Regulation under CLM Act not required           | -33.96406472 | 151.1376011 |
| KOGARAH    | Woolworths Petrol Service Station       | 69 Princes HIGHWAY                          | Service Station           | Regulation under CLM Act not required           | -33.96330397 | 151.1371182 |
| KOOLKHAN   | Former Koolkhan Power Station           | Summerland WAY                              | Other Industry            | Regulation under CLM Act not required           | -29.61688704 | 152.9300645 |
| KOORAGANG  | NPC, berths 2 and 3                     | Heron ROAD                                  | Metal Industry            | Regulation being finalised                      | -32.89260063 | 151.7742527 |
|            |                                         |                                             |                           | Contamination currently regulated               |              |             |
| KOORAGANG  | Kooragang Island Waste Facility         | Off Cormorant ROAD                          | Metal Industry            | under POEO Act                                  | -32.86901125 | 151.7377773 |
| KOORAGANG  | Orica Kooragang Island                  | 15 Greenleaf ROAD                           | Chemical Industry         | Contamination currently regulated under CLM Act | -32.89654619 | 151.7771372 |
| KOORAGANG  | Former Boral Timber Export Facility     | 16 Heron ROAD                               | Other Industry            | Regulation under CLM Act not required           | -32.89710295 | 151.7739966 |

| Suburb      | SiteName                                        | Address                                       | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|-------------|-------------------------------------------------|-----------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
|             |                                                 |                                               |                           |                                                    |              |             |
| KOORAGANG   | Cleanaway Technical Services                    | 19 Egret STREET                               | Other Industry            | Regulation under CLM Act not required              | -32.8812145  | 151.766282  |
| KOORAGANG   | Industrial Facility                             | 39 Heron ROAD                                 | Chemical Industry         | Under assessment                                   | -32.89106439 | 151.7784064 |
| KOORAGANG   | Vacant Land                                     | Raven Street and Cormorant ROAD               | Unclassified              | Regulation under CLM Act not required              | -32.88410199 | 151.7701334 |
| ROUNAUANU   | vacant canu                                     | Ravell Street and Commorant ROAD              | Unclassified              | Regulation under CEIVI Act not required            | -32.00410199 | 131.7701334 |
| KOORAGANG   | Linx Logistics                                  | 240 Cormorant ROAD                            | Other Industry            | Regulation under CLM Act not required              | -32.87480951 | 151.7757352 |
| KOORINGAL   | Former Shell Wagga Depot                        | 11-15 Lake Albert ROAD                        | Other Petroleum           | Regulation under CLM Act not required              | -35.12273113 | 147.3786005 |
| KOORINGAL   | Caltex Service Station                          | 265-267 Lake Albert ROAD                      | Service Station           | Regulation under CLM Act not required              | -35.14078443 | 147.3755442 |
| ROOKINGAL   | Cartex Service Station                          | 203-207 Lake Albert NOAD                      | Service station           | Regulation under CLIVI Act not required            | -53.14076445 | 147.3733442 |
| KOORINGAL   | Caltex-branded (former Mobil) Service Station   | 24 Lake Albert ROAD                           | Service Station           | Regulation under CLM Act not required              | -35.12239591 | 147.3769936 |
| KOSCIUSZKO  | Smiggin Holes Snow Clearing Shed                | Link ROAD                                     | Landfill                  | Regulation under CLM Act not required              | -36.39098211 | 148.4304981 |
| KOSCIUSZKO  | Khancoban Spoil Dump                            | Alpine WAY                                    | Landfill                  | Regulation under CLM Act not required              | -36.21982803 | 148.1527401 |
| KOSCIUSZKO  | Sawpit Creek landfill                           | 13km from Jindabyne, off Kosciuszko<br>ROAD   | Landfill                  | Regulation under CLM Act not required              | -36.34858097 | 148.5673374 |
| ROSCIOSERO  | Sawpit Creek landini                            | NOAD                                          | Landin                    | Contamination formerly regulated under             | -30.34636037 | 140.30/33/4 |
| KURMOND     | BP Service Station                              | 501 Bells Line of road ROAD                   | Service Station           | the CLM Act                                        | -33.55096662 | 150.6911676 |
| KURNELL     | Former Phillips Imperial Chemicals site         | 260 Captain Cook DRIVE                        | Chemical Industry         | Regulation under CLM Act not required              | -34.02493837 | 151.1952149 |
| KURNELL     | Caltex Kurnell Terminal (refer also to ID23868) | 2 Solander STREET                             | Other Petroleum           | Contamination currently regulated under POEO Act   | -34.0175214  | 151.2159572 |
| KONNELL     | 1023606)                                        | 2 Solativer STREET                            | other retroleum           |                                                    | -34.0173214  | 131.2135372 |
| KURNELL     | Abbott Australasia                              | Captain Cook DRIVE                            | Chemical Industry         | Contamination formerly regulated under the CLM Act | -34.02339937 | 151.19921   |
| KURNELL     | Former Caltex Kurnell Service Station           | Corner Captain Cook Drive and Solander STREET | Service Station           | Regulation under CLM Act not required              | -34.01269846 | 151.2094347 |
| KURRI KURRI | United Petroleum Service Station Kurri<br>Kurri | 279-281 Lang STREET                           | Service Station           | Contamination formerly regulated under the CLM Act | -32.82047175 | 151.477646  |

| Suburb          | SiteName                                                   | Address                          | ContaminationActivityType | ManagementClass                                                         | Latitude     | Longitude   |
|-----------------|------------------------------------------------------------|----------------------------------|---------------------------|-------------------------------------------------------------------------|--------------|-------------|
| W. D.D. W. D.D. | W .W .G .B                                                 |                                  |                           |                                                                         | 22 727225    | 454 400000  |
| KURRI KURRI     | Kurri Kurri Smelter                                        | Hart ROAD                        | Metal Industry            | Regulation under CLM Act not required                                   | -32.7873063  | 151.4828827 |
| KYOGLE          | Caltex Service Station                                     | 22-24 Summerland WAY             | Service Station           | Regulation under CLM Act not required                                   | -28.61806766 | 153.003862  |
| LAKE HAVEN      | Caltex Service Station                                     | Goobarabah Ave Cnr Gorokan DRIVE | Service Station           | Regulation under CLM Act not required                                   | -33.24337276 | 151.5065335 |
| LAKEMBA         | Former Lakemba Police Station                              | 59 Quigg STREET                  | Unclassified              | Regulation under CLM Act not required                                   | -33.92199239 | 151.079412  |
| LAKEMBA         | Caltex Service Station - Corner Punchbowl Rd and Wangee Rd | 81 Wangee ROAD                   | Service Station           | Regulation under CLM Act not required                                   | -33.91153044 | 151.073306  |
| LAKEMBA         | Caltex Service Station                                     | 961-967 Canterbury ROAD          | Service Station           | Regulation under CLM Act not required                                   | -33.92671102 | 151.0814905 |
| LAMBTON         | Caltex Service Station                                     | 422 Newcastle ROAD               | Service Station           | Regulation under CLM Act not required                                   | -32.9095592  | 151.7109684 |
| LAMBTON         | 4-26 Verulam Road, Lambton NSW 2299                        | 4-26 Verulam ROAD                | Other Industry            | Under assessment                                                        | -32.911599   | 151.717604  |
| LANE COVE       | 7-Eleven Service Station                                   | 203 Burns Bay ROAD               | Service Station           | Regulation under CLM Act not required                                   | -33.81458334 | 151.1543844 |
| LANE COVE       | BP-branded Jasbe Service Station                           | 62-70 Epping ROAD                | Service Station           | Regulation under CLM Act not required                                   | -33.81108427 | 151.1641531 |
| LANE COVE       | Pacific Power                                              | Sirius ROAD                      | Other Industry            | Ongoing maintenance required to manage residual contamination (CLM Act) | -33.80701776 | 151.1449658 |
| LANE COVE       | Coles Express Service Station Burns Bay                    | 254 Burns Bay ROAD               | Service Station           | Regulation under CLM Act not required                                   | -33.81719214 | 151.1518774 |
| LANE COVE       | 331-335 Burns Bay Road, Lane Cove<br>NSW 2066              | 331-335 Burns Bay ROAD           | Other Industry            | Under assessment                                                        | -33.821255   | 151.149445  |
| LANE COVE NORTH | Former Caltex Service Station                              | 428-432 Mowbray ROAD             | Service Station           | Regulation under CLM Act not required                                   | -33.80804563 | 151.1721538 |
| LANE COVE NORTH | BP Artarmon Service Station, Lane Cove<br>North            | 432 Pacific HIGHWAY              | Service Station           | Contamination currently regulated under CLM Act                         | -33.8112038  | 151.175547  |
| LANE COVE WEST  | Caltex Lane Cove West                                      | 235-245 Burns Bay ROAD           | Service Station           | Regulation under CLM Act not required                                   | -33.81719214 | 151.1518774 |

| Suburb         | SiteName                              | Address                                                   | ContaminationActivityType | ManagementClass                       | Latitude     | Longitude   |
|----------------|---------------------------------------|-----------------------------------------------------------|---------------------------|---------------------------------------|--------------|-------------|
|                |                                       |                                                           |                           |                                       |              |             |
| MUSWELLBROOK   | Vacant Rail Land                      | 27 Brook STREET                                           | Unclassified              | Regulation under CLM Act not required | -32.26346086 | 150.8873181 |
|                | United Branded (Former Mobil) Service |                                                           |                           |                                       |              |             |
| MUSWELLBROOK   | Station Muswellbrook                  | 49-51 Maitland STREET                                     | Service Station           | Regulation under CLM Act not required | -32.27218162 | 150.8900206 |
| MUSWELLBROOK   | Former Mobil Depot Muswellbrook       | 43-51 Ford STREET                                         | Other Petroleum           | Regulation under CLM Act not required | -32.2599725  | 150.887573  |
|                |                                       |                                                           |                           |                                       |              |             |
| MUSWELLBROOK   | Woolworths Petrol                     | 72 Brook STREET                                           | Service Station           | Regulation under CLM Act not required | -32.26325377 | 150.8905966 |
| MUSINELL PROOK |                                       | DA OC NA TIL LI STREET                                    |                           |                                       | 22.27702004  | 450 000000  |
| MUSWELLBROOK   | Caltex Muswellbrook Service Station   | 84-86 Maitland STREET                                     | Service Station           | Regulation under CLM Act not required | -32.27793094 | 150.8980938 |
| MUSWELLBROOK   | Former Gasworks                       | Corner Carl Street and Foley STREET                       | Gasworks                  | Regulation under CLM Act not required | -32.26672337 | 150.8935982 |
|                |                                       |                                                           |                           |                                       |              |             |
| MUSWELLBROOK   | Bayswater Power Station               | New England HIGHWAY                                       | Other Industry            | Regulation under CLM Act not required | -32.3954046  | 150.9502683 |
| MUSWELLBROOK   | Former Industrial Site                | Lot 89 Rathmore STREET                                    | Other Industry            | Regulation under CLM Act not required | -32.30544071 | 150.8823657 |
| MUSWELLBROOK   | Caltex Service Station                | 12-16 Sydney STREET                                       | Service Station           | Regulation under CLM Act not required | -32.26785559 | 150.8879601 |
|                |                                       |                                                           |                           |                                       |              |             |
| MUSWELLBROOK   | Former Caltex Depot                   | 47-50 Victoria STREET                                     | Service Station           | Regulation under CLM Act not required | -32.26788823 | 150.8930609 |
| MUSWELLBROOK   |                                       | Corner Clendinning Street and Victoria STREET             | Other Industry            | Regulation under CLM Act not required | -32.27031992 | 150.9009981 |
|                |                                       |                                                           |                           |                                       |              |             |
| NABIAC         |                                       | 3964 Wallanbah (Cnr Wallanbah Rd and<br>Pacific Hwy) ROAD | Service Station           | Regulation under CLM Act not required | -32.09864883 | 152.3754346 |
|                |                                       |                                                           |                           |                                       |              |             |
| NAMBUCCA HEADS | Former Mobil Service Station          | 6 Bowra STREET                                            | Service Station           | Regulation under CLM Act not required | -30.64282127 | 153.0035884 |
| NARELLAN       | Caltex Service Station Narellan       | 1 George Hunter DRIVE                                     | Service Station           | Regulation under CLM Act not required | -34.03963992 | 150.7432386 |
| NARELLAN       | Former Landfill                       | 1 Elyard STREET                                           | Landfill                  | Regulation under CLM Act not required | -34.043474   | 150.7393256 |
|                |                                       |                                                           |                           |                                       | 37.073774    | 130.733230  |
| NAROOMA        | Narooma Service Station               | 60 Princes HIGHWAY                                        | Service Station           | Regulation under CLM Act not required | -36.21617955 | 150.126261  |

| Suburb     | SiteName                                          | Address                                                           | ContaminationActivityType | ManagementClass                                                         | Latitude     | Longitude   |
|------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------|--------------|-------------|
|            |                                                   |                                                                   |                           | Contamination formerly regulated under                                  |              |             |
| NAROOMA    | Former Caltex - Narooma                           | 82 Princes HIGHWAY                                                | Service Station           | the CLM Act                                                             | -36.21711766 | 150.1279305 |
| NARRABEEN  | Caltex Service Station                            | 1509-1511 Pittwater ROAD                                          | Service Station           | Regulation under CLM Act not required                                   | -33.70455756 | 151.2969352 |
|            |                                                   |                                                                   |                           |                                                                         |              |             |
| NARRABEEN  | Shell Coles Express Service Station               | 1418 Pittwater ROAD                                               | Service Station           | Regulation under CLM Act not required                                   | -33.70013931 | 151.3002782 |
| NARRABEEN  | Narrabeen Shotgun Range Sydney Academy of Sport   | Wakehurst PARKWAY                                                 | Unclassified              | Ongoing maintenance required to manage residual contamination (CLM Act) | -33.72138423 | 151.2642798 |
|            |                                                   |                                                                   |                           |                                                                         |              |             |
| NARRABEEN  | 7-Eleven Service Station                          | 1234 Pittwater ROAD                                               | Service Station           | Regulation under CLM Act not required                                   | -33.71958892 | 151.298272  |
| NARRABRI   | Caltex Service Station                            | 13 Doyle STREET                                                   | Service Station           | Regulation under CLM Act not required                                   | -30.3239182  | 149.7843052 |
| NARRABRI   | Lowes Petroleum (Former Mobil)<br>Narrabri Depot  | 3 Old Gunnedah ROAD                                               | Other Petroleum           | Regulation under CLM Act not required                                   | -30.33473586 | 149.789587  |
| NARRABRI   | Caltex Service Station                            | 31-35 Cooma ROAD                                                  | Service Station           | Regulation under CLM Act not required                                   | -30.33968576 | 149.7657241 |
| NARRABRI   |                                                   | 31 Dangar (Cnr Anne and Dangar) STREET                            | Service Station           | Regulation under CLM Act not required                                   | -30.32989667 | 149.7756598 |
| IVANNADNI  | Callex Narrabit Service Station                   | STREET                                                            | Service Station           | Regulation under CLIW Act not required                                  | -30.32363007 | 145.7730356 |
| NARRABRI   | Caltex Service Station                            | 12 Reid STREET                                                    | Other Petroleum           | Regulation under CLM Act not required                                   | -30.32282764 | 149.7901182 |
| NARRABRI   | Cargill Soapstock Disposal Site                   | Westport ROAD                                                     | Unclassified              | Contamination formerly regulated under the CLM Act                      | -30.4698458  | 149.6981931 |
| NARRABRI   | Caltex Service Station                            | 7-13 James STREET                                                 | Service Station           | Regulation under CLM Act not required                                   | -30.33016168 | 149.7940732 |
|            |                                                   |                                                                   |                           |                                                                         |              |             |
| NARRANDERA | Former Mobil Narrandera Depot                     | 24 Whitton STREET                                                 | Other Petroleum           | Regulation under CLM Act not required                                   | -34.7410523  | 146.5620667 |
| NARRANDERA | Former Mobil Emoleum Narrandera<br>Depot          | 5-7 Margaret STREET                                               | Other Petroleum           | Regulation under CLM Act not required                                   | -34.74105391 | 146.5628144 |
| NARROMINE  | Narromine Fuel (Former Caltex) Service<br>Station | Cnr Burraway Street and Algalah STREET                            | Service Station           | Regulation under CLM Act not required                                   | -32.23565321 | 148.2454259 |
| NELLIGEN   |                                                   | 1398 Kings Highway and adjoining land on Old Bolaro Mountain ROAD | Unclassified              | Contamination currently regulated under CLM Act                         | -35.64392469 | 150.0955224 |

| Suburb         | SiteName                                     | Address                                               | ContaminationActivityType | ManagementClass                          | Latitude     | Longitude   |
|----------------|----------------------------------------------|-------------------------------------------------------|---------------------------|------------------------------------------|--------------|-------------|
|                |                                              |                                                       |                           | Contamination formerly regulated under   |              |             |
| NELLIGEN       | Lot 2 Old Bolaro Road                        | Old Bolaro ROAD                                       | Unclassified              | the CLM Act                              | -35.64485609 | 150.0937341 |
| NELSON BAY     | Shell Coles Express Service Station          | 25 Stockton STREET                                    | Service Station           | Regulation under CLM Act not required    | -32.72265762 | 152.1437317 |
| NELSON BAT     | Shell coles Express service station          | 23 STOCKTON STREET                                    | Service station           | regulation ander elivinet not required   | 32.72203702  | 132.1437317 |
| NELSON BAY     | Former Caltex Service Station Nelson<br>Bay  | 38 Stockton STREET                                    | Service Station           | Regulation under CLM Act not required    | -32.72335662 | 152.1429384 |
| NEMINGHA       | Caltex Service Station and Depot<br>Nemingha | 428 Armidale (previously 16 New England Highway) ROAD | Service Station           | Regulation under CLM Act not required    | -31.12425169 | 150.9909054 |
|                |                                              |                                                       |                           |                                          |              |             |
| NEUTRAL BAY    | Caltex Service Station                       | 16-38 Military ROAD                                   | Service Station           | Regulation under CLM Act not required    | -33.82907162 | 151.2163342 |
| NEUTRAL BAY    | Shell Coles Express Service Station          | 200-204 Ben Boyd ROAD                                 | Service Station           | Regulation under CLM Act not required    | -33.82915781 | 151.219437  |
|                |                                              |                                                       |                           |                                          |              |             |
| NEW LAMBTON    | Caltex Service Station New Lambton           | 144 Bridges ROAD                                      | Service Station           | Regulation under CLM Act not required    | -32.93283668 | 151.7141748 |
| NEW LAMBTON    | BP Service Station                           | 105 St James ROAD                                     | Service Station           | Regulation under CLM Act not required    | -32.92910325 | 151.7155801 |
| NEW LAMBTON    | 7-Eleven (former Mobil) Service Station      | 291 Turton ROAD                                       | Service Station           | Regulation under CLM Act not required    | -32.91773864 | 151.7243096 |
|                |                                              |                                                       |                           | Contamination formerly regulated under   |              |             |
| NEWCASTLE      | Reclaimed Land                               | 26-28 Honeysuckle DRIVE                               | Unclassified              | the CLM Act                              | -32.92604705 | 151.7649508 |
| NEWCASTLE      | Wharf Road Newcastle Car Park                | 313-317 Wharf ROAD                                    | Unclassified              | Regulation under CLM Act not required    | -32.92570385 | 151.7744076 |
| NEWCASTLE      | Newcastle Foreshore                          | 40 Stevenson Place STREET                             | Other Industry            | Regulation under CLM Act not required    | -32.92556503 | 151.7876742 |
| NEWCASTLE      | CDA Lond                                     | Cook CTDEET                                           | Carrontle                 | December of the CIAM Action to receive d | 22.02644.425 | 454 7027047 |
| NEWCASTLE      | SRA Land                                     | Scott STREET                                          | Gasworks                  | Regulation under CLM Act not required    | -32.92641425 | 151.7837817 |
| NEWCASTLE WEST | Former Mobil Service Station                 | 113 Parry STREET                                      | Service Station           | Regulation under CLM Act not required    | -32.92560628 | 151.7558542 |
| NEWPORT        | 7-Eleven (former Mobil) Service Station      | 307 Barrenjoey ROAD                                   | Service Station           | Regulation under CLM Act not required    | -33.65632902 | 151.3182089 |
| NEWPORT        | Former Caltex Service Station Newport        | 316-324 Barrenjoey ROAD                               | Service Station           | Regulation under CLM Act not required    | -33.65634516 | 151.3191571 |

| Suburb               | SiteName                               | Address                                    | ContaminationActivityType | ManagementClass                                                 | Latitude     | Longitude     |
|----------------------|----------------------------------------|--------------------------------------------|---------------------------|-----------------------------------------------------------------|--------------|---------------|
| NEWTOWN              | Caltex Service Station Newtown         | 26 - 36 Enmore ROAD                        | Service Station           | Regulation under CLM Act not required                           | -33.89851331 | 151.17714     |
| NEWTOWN              | Cartex Service Station Newtown         | 20 - 30 Ellillore NOAD                     | Service Station           | Regulation under CLIW ACT not required                          | -55.63631551 | 131.17714     |
| NEWTOWN              | Former Service Station                 | 81 Wilson STREET                           | Service Station           | Contamination formerly regulated under the CLM Act              | -33.89626791 | 151.1827556   |
|                      |                                        |                                            |                           |                                                                 |              |               |
| NEWTOWN              | Aluminium Enterprises                  | 66 Brocks LANE                             | Metal Industry            | Contamination was addressed via the planning process (EP&A Act) | -33.89467126 | 151.1847528   |
| NEWTOWN              | Adjacent to Former Service Station     | 79 Wilson STREET                           | Service Station           | Contamination formerly regulated under the CLM Act              | -33.89630155 | 151.1826567   |
|                      |                                        |                                            |                           |                                                                 |              |               |
| NORAVILLE            | Former Toukley Landfill                | Wilfred Barrett DRIVE                      | Landfill                  | Regulation under CLM Act not required                           | -33.27734185 | 151.5537784   |
| NORTH ALBURY         | Caltex Service Station and Diesel Stop | 79 Union ROAD                              | Service Station           | Regulation under CLM Act not required                           | -36.05496713 | 146.9487635   |
| NORTH BOAMBEE VALLEY | Caltex Service Station                 | Cnr Pacific Hwy & Halls ROAD               | Service Station           | Regulation under CLM Act not required                           | -30.30639482 | 153.1007996   |
| NORTH BONDI          | Caltex Service Station North Bondi     | 321 Old South Head ROAD                    | Service Station           | Regulation under CLM Act not required                           | -33.88463526 | 151.268551    |
| NORTH NARRABEEN      | 7-Eleven Service Station               | 1501-1503 Pittwater ROAD                   | Service Station           | Regulation under CLM Act not required                           | -33.70749859 | 151.296351    |
|                      |                                        |                                            |                           |                                                                 |              |               |
| NORTH RICHMOND       | Caltex Service Station                 | 50 Bells Line Of ROAD                      | Service Station           | Regulation under CLM Act not required                           | -33.57991338 | 150.7202346   |
| NORTH ROCKS          | 7-Eleven Service Station North Rocks   | 340 North Rocks ROAD                       | Service Station           | Regulation under CLM Act not required                           | -33.76895144 | 151.0305952   |
| NORTH ST MARYS       | BP Service Station                     | 76 Glossop STREET                          | Service Station           | Regulation under CLM Act not required                           | -33.76020183 | 150.7818149   |
| NORTH STRATHFIELD    | Budget Service Station                 | 143 Concord ROAD                           | Service Station           | Regulation under CLM Act not required                           | -33.85945248 | 151.0927853   |
| NORTH CTRATUE S      | Former Celter Service Statis           | 020 Concerd 20 A D                         | Coming Station            | Degulation under CIMA Act act act                               | 22.062.44207 | 454 0000 40 4 |
| NORTH STRATHFIELD    | Former Caltex Service Station          | 92a Concord ROAD                           | Service Station           | Regulation under CLM Act not required                           | -33.86244297 | 151.0932434   |
| NORTH SYDNEY         | Iora Complex                           | 1 Kiara PLACE                              | Gasworks                  | Regulation under CLM Act not required                           | -33.843145   | 151.2161142   |
| NORTH SYDNEY         | Neutral Bay Sediments                  | Adjacent to Sub Base Platypus, High STREET | Gasworks                  | Contamination formerly regulated under the CLM Act              | -33.842724   | 151.2174523   |

| Suburb           | SiteName                                     | Address                             | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|------------------|----------------------------------------------|-------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
| NORTH SYDNEY     | Sub Base Platypus (previously HMAS Platypus) | High STREET                         | Gasworks                  | Contamination formerly regulated under the CLM Act | -33.84325935 | 151.2170347 |
|                  |                                              |                                     |                           |                                                    |              |             |
| NORTH WOLLONGONG | Former Mobil Depot                           | 122-126 Montague STREET             | Other Petroleum           | Regulation under CLM Act not required              | -34.40988259 | 150.8939374 |
| NORTHMEAD        | Former Prestige Plastics                     | 1C Redbank ROAD                     | Other Industry            | Regulation under CLM Act not required              | -33.79716925 | 150.989926  |
| NORTHMEAD        | Coles Express Service Station Northmead      | 197 Windsor ROAD                    | Service Station           | Regulation under CLM Act not required              | -33.77741733 | 151.0001719 |
| NORTHMEAD        | Sydney Water Land                            | 51c Hammers ROAD                    | Landfill                  | Regulation under CLM Act not required              | -33.7887535  | 150.9858088 |
|                  |                                              |                                     |                           |                                                    |              |             |
| NORTHMEAD        | Caltex Service Station                       | 98-100 Windsor ROAD                 | Service Station           | Regulation under CLM Act not required              | -33.78786563 | 150.9945909 |
| NORTHMEAD        | 7-Eleven Service Station Northmead           | 56 Windsor ROAD                     | Service Station           | Regulation under CLM Act not required              | -33.79090731 | 150.9967332 |
| NOWRA            | Former Gasworks Managers Residence           | 24 Osborne STREET                   | Gasworks                  | Regulation under CLM Act not required              | -34.8708875  | 150.5992586 |
| NOWRA            | Fire Station                                 | 69 Bridge ROAD                      | Gasworks                  | Regulation under CLM Act not required              | -34.87081582 | 150.6004881 |
| NOWRA            | Historically Filled Land                     | 70 Bridge ROAD                      | Unclassified              | Regulation under CLM Act not required              | -34.87081809 | 150.6013231 |
| NOWRA            | Shell Coles Express Service Station          | 55 Kinghorne STREET                 | Service Station           | Regulation under CLM Act not required              | -34.87633757 | 150.6023481 |
| NOWRA            | Former gasworks                              | Lamonds LANE                        | Gasworks                  | Contamination currently regulated under CLM Act    | -34.87111182 | 150.6000803 |
| NOWRA            | Former Hollingworth Scrap Yard               | 72-74 Jervis and 117 East STREET    | Other Industry            | Regulation under CLM Act not required              | -34.88324216 | 150.6034361 |
| NOWRA            | Woolworths Service Station                   | 60 North Street STREET              | Service Station           | Regulation under CLM Act not required              | -34.87266278 | 150.6014052 |
| NOWRA            | Harry Sawkins Park                           | Bounded by Princes Hwy, Graham St & | Gasworks                  | Regulation under CLM Act not required              | -34.87093993 | 150.6037157 |
|                  | TIGITY SAWKIIIS FAIK                         | MICGIGUII AVENUE                    | Gasworks                  | Contamination formerly regulated under             | -54.0/055333 | 130.003/13/ |
| NOWRA EAST       | Mobil Service Station                        | Lot 3 Kalandar STREET               | Service Station           | the CLM Act                                        | -34.88850535 | 150.6093504 |

| Suburb        | SiteName                                        | Address                                      | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|---------------|-------------------------------------------------|----------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
|               |                                                 |                                              |                           |                                                    |              |             |
| NYNGAN        | Caltex Service Station                          | 39-41 Pangee STREET                          | Service Station           | Regulation under CLM Act not required              | -31.56101006 | 147.1914997 |
| NYNGAN        | Caltex Service Station                          | 126 Pangee STREET                            | Service Station           | Regulation under CLM Act not required              | -31.56482841 | 147.2002892 |
| OAK FLATS     | Shellharbour City Works Depot                   | 132 Industrial ROAD                          | Other Industry            | Regulation under CLM Act not required              | -34.56546013 | 150.8087225 |
| OBERON        | Caltex Service Station and Depot                | Lowes Mount ROAD                             | Service Station           | Regulation under CLM Act not required              | -33.69509055 | 149.8570553 |
| OBERON        | Oberon Timber Complex                           | Lowes Mount ROAD                             | Other Industry            | Regulation under CLM Act not required              | -33.69264862 | 149.8564588 |
|               |                                                 |                                              |                           |                                                    |              |             |
| OBERON        | Former Shell Depot                              | 32 O'Connell ROAD                            | Other Petroleum           | Regulation under CLM Act not required              | -33.6997172  | 149.8450057 |
| OBERON        | CSR Ltd Property and King's Stockyard<br>Creek  | Off Endeavour STREET                         | Other Industry            | Contamination formerly regulated under the CLM Act | -33.6922152  | 149.8686909 |
| OCEAN SHORES  | Former Ocean Shores Service Station             | Pacific HIGHWAY                              | Service Station           | Regulation under CLM Act not required              | -28.51270299 | 153.5301496 |
| OLD GUILDFORD | Caltex Service Station                          | 636-644 Woodville ROAD                       | Service Station           | Regulation under CLM Act not required              | -33.86670857 | 150.9879189 |
| ORANGE        | Former Fuel Depot                               | 24-28 Peisley STREET                         | Other Petroleum           | Contamination currently regulated under CLM Act    | -33.29624293 | 149.1017277 |
| ORANGE        | Caltex Orange Depot                             | 184 Byng STREET                              | Service Station           | Regulation under CLM Act not required              | -33.28285589 | 149.1050273 |
| ORANGE        | Woolworths Orange Service Station               | 357-361 Summer Street, corner William STREET | Service Station           | Regulation under CLM Act not required              | -33.28445811 | 149.1053604 |
| ORAINGE       |                                                 | STREET                                       | Service Station           | Regulation under CLIVI ACT not required            | -55.20445611 | 149.1055004 |
| ORANGE        | BP Orange Service Station (Reliance Petroleum)  | 81 Summer STREET                             | Service Station           | Regulation under CLM Act not required              | -33.2825884  | 149.0951535 |
| ORANGE        | BP-Branded Lowes Petroleum Depot                | 197 - 201 Margaret STREET                    | Other Petroleum           | Regulation under CLM Act not required              | -33.27145977 | 149.1078103 |
| ORANGE        | Caltex Summer Street Service Station<br>Orange  | 70-74 Summer Street, corner Hill STREET      | Service Station           | Regulation under CLM Act not required              | -33.28311722 | 149.0940712 |
| ORANGE        | Lowes Petroleum (BP-branded) Service<br>Station | 76 Peisley STREET                            | Service Station           | Regulation under CLM Act not required              | -33.29025034 | 149.1027194 |

| Suburb      | SiteName                                       | Address               | ContaminationActivityType | ManagementClass                                 | Latitude     | Longitude   |
|-------------|------------------------------------------------|-----------------------|---------------------------|-------------------------------------------------|--------------|-------------|
| 00.4405     |                                                |                       |                           |                                                 | 22 2255242   | 440 400000  |
| ORANGE      | Former Mobil Service Station                   | 24-28 Bathurst ROAD   | Service Station           | Regulation under CLM Act not required           | -33.2866912  | 149.1066505 |
|             | BP (Reliance Petroleum) Service Station        |                       |                           |                                                 |              |             |
| ORANGE      | Orange                                         | 56-60 Bathurst ROAD   | Service Station           | Regulation under CLM Act not required           | -33.28980053 | 149.1086212 |
| ORANGE      | Former Mobil Service Station                   | 168 Peisley STREET    | Service Station           | Regulation under CLM Act not required           | -33.28525478 | 149.1037259 |
| ORANGE      | 5-7 Edward St Orange                           | 5-7 Edward STREET     | Other Industry            | Contamination currently regulated under CLM Act | -33.2991077  | 149.1034092 |
|             |                                                |                       |                           |                                                 |              |             |
| OURIMBAH    | Palmdale Service Centre Pty Ltd                | 3130 Pacific HIGHWAY  | Service Station           | Regulation under CLM Act not required           | -33.3381336  | 151.374586  |
| OURIMBAH    | United Ourimbah                                | 51 Pacific HIGHWAY    | Service Station           | Under assessment                                | -33.36025941 | 151.3694483 |
|             |                                                |                       |                           |                                                 |              |             |
| OURIMBAH    | Shell Coles Express Service Station            | 78-80 Pacific HIGHWAY | Service Station           | Regulation under CLM Act not required           | -33.3468202  | 151.3710098 |
| OXLEY VALE  | Hayes Transport Services                       | 10 Manilla ROAD       | Other Petroleum           | Regulation under CLM Act not required           | -31.06991417 | 150.9101381 |
| OYSTER BAY  | Shell Coles Express Service Station            | 20 Carvers ROAD       | Service Station           | Contamination currently regulated under CLM Act | -34.00934475 | 151.0758626 |
|             |                                                |                       |                           | Contamination currently regulated               |              |             |
| OYSTER COVE | Cove Marine Pty Ltd                            | 60 Frederick STREET   | Unclassified              | under POEO Act                                  | -32.73549959 | 151.952446  |
| PADDINGTON  | 7-Eleven Service Station                       | 59 Oxford STREET      | Service Station           | Contamination currently regulated under CLM Act | -33.88322921 | 151.2205024 |
|             |                                                |                       |                           |                                                 |              |             |
| PADDINGTON  | Former Workshop                                | 52 Hopewell STREET    | Other Industry            | Regulation under CLM Act not required           | -33.881947   | 151.222074  |
| PADSTOW     | Caltex Padstow                                 | 115 Fairford ROAD     | Service Station           | Regulation under CLM Act not required           | -33.9434571  | 151.0345671 |
|             |                                                |                       |                           |                                                 |              |             |
| PADSTOW     | Selleys / Dulux                                | 1-29 Gow STREET       | Chemical Industry         | Regulation under CLM Act not required           | -33.93904125 | 151.0381725 |
| PADSTOW     | Former Exide Battery Manufacturing & Recycling | 55 Bryant STREET      | Other Industry            | Contamination currently regulated under CLM Act | -33.94265241 | 151.0378986 |
|             |                                                |                       |                           | Contamination currently regulated               |              |             |
| PADSTOW     | Galvatech                                      | 49 Gow STREET         | Metal Industry            | under POEO Act                                  | -33.93808679 | 151.03468   |

| Suburb     | SiteName                                                              | Address                                      | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|------------|-----------------------------------------------------------------------|----------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
| DARCTOW    | Face and Associate                                                    | 7 Church CTDEET                              | Charried to deather       | December in a condense CIAAA at a cat according of | 22.042.42057 | 454 0277246 |
| PADSTOW    | Foseco Australia                                                      | 7 Stuart STREET                              | Chemical Industry         | Regulation under CLM Act not required              | -33.94342957 | 151.0377316 |
| PADSTOW    | Sebel Furniture                                                       | Parts 64 and 92 Gow STREET                   | Other Industry            | Regulation under CLM Act not required              | -33.93606752 | 151.0322057 |
| PAGEWOOD   |                                                                       | Corner of Page Street and Holloway<br>STREET | Metal Industry            | Contamination currently regulated under CLM Act    | -33.94302462 | 151.2132036 |
| PAMBULA    | ·                                                                     | Corner Quondola Street and Bullara STREET    | Service Station           | Regulation under CLM Act not required              | -36.93104481 | 149.8746763 |
| PARKES     | Caltex Service Station Parkes                                         | 352-360 Clarinda STREET                      | Service Station           | Regulation under CLM Act not required              | -33.13317454 | 148.173643  |
| PARKES     | Former Caltex Parkes (Mugincoble) Depot - Eugowra Rd, Mugincoble      | Eugowra ROAD                                 | Service Station           | Regulation under CLM Act not required              | -33.19007031 | 148.224822  |
| PARKES     | BP Truckstop                                                          | (Newell Highway) 1 Forbes ROAD               | Other Petroleum           | Regulation under CLM Act not required              | -33.14309226 | 148.1710282 |
| PARKES     | Former BP Telescope Service Station                                   | 339-341 Clarinda STREET                      | Service Station           | Regulation under CLM Act not required              | -33.13216152 | 148.1743239 |
| PARKES     | BP Reliance East End Service Station<br>Parkes                        | 46 Clarinda STREET                           | Service Station           | Regulation under CLM Act not required              | -33.14243539 | 148.1846227 |
| PARKES     | Former Parkes Gas Works (including Rail<br>Corridor and offsite land) |                                              | Gasworks                  | Contamination currently regulated under CLM Act    | -33.146775   | 148.186353  |
| PARKLEA    |                                                                       | Old Windsor (north of Miami Street)<br>ROAD  | Service Station           | Regulation under CLM Act not required              | -33.72427108 | 150.9388531 |
| PARRAMATTA | BP Service Station                                                    | 435 Church STREET                            | Service Station           | Regulation under CLM Act not required              | -33.80498714 | 151.0056151 |
| PARRAMATTA | Coleman Oval Embankment                                               | Cnr of Pitt STREET and Maquarie STREET       | Unclassified              | Regulation under CLM Act not required              | -33.80441625 | 150.9954841 |
| PARRAMATTA | 7-Eleven (former Mobil) Service Station                               | 81 Victoria ROAD                             | Service Station           | Regulation under CLM Act not required              | -33.80919769 | 151.0142894 |
| PARRAMATTA |                                                                       | The Cresent Toilet Block Parramatta PARK     | Unclassified              | Regulation under CLM Act not required              | -33.81054034 | 150.9961968 |
| PAUPONG    | Former Timber Treatment Plant                                         | Off Paupong ROAD                             | Other Industry            | Regulation under CLM Act not required              | -36.57657408 | 148.6624998 |

| Suburb          | SiteName                                        | Address                              | ContaminationActivityType | ManagementClass                                                    | Latitude     | Longitude   |
|-----------------|-------------------------------------------------|--------------------------------------|---------------------------|--------------------------------------------------------------------|--------------|-------------|
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENDLE HILL     | 7-Eleven Service Station                        | 217 Wentworth AVENUE                 | Service Station           | Regulation under CLM Act not required                              | -33.8017814  | 150.9577994 |
|                 |                                                 |                                      |                           | Contamination currently regulated                                  |              |             |
| PENNANT HILLS   | Shell Coles Express Pennant Hills West          | 386 Pennant Hills ROAD               | Service Station           | under CLM Act                                                      | -33.73928611 | 151.0679704 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENRITH         | Mirvac Industrial Site                          | 2101 Castlereagh ROAD                | Other Industry            | Regulation under CLM Act not required                              | -33.73497514 | 150.6954097 |
| PENRITH         | 7-Eleven (former Mobil) Service Station         | 212-222 Andrews ROAD                 | Service Station           | Regulation under CLM Act not required                              | -33.73059678 | 150.6952571 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENRITH         | Lowes Petroleum (Former Mobil) Depot<br>Penrith | 174 Coreen AVENUE                    | Other Petroleum           | Regulation under CLM Act not required                              | -33.74484268 | 150.6980504 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENRITH         | Caltex Service Station                          | Castlereagh Rd Cnr Lugard STREET     | Service Station           | Regulation under CLM Act not required                              | -33.73426843 | 150.6933382 |
|                 |                                                 | Corner Coreen Avenue and Castlereagh |                           |                                                                    |              |             |
| PENRITH         | BP Express Service Station                      | ROAD                                 | Service Station           | Regulation under CLM Act not required                              | -33.74385498 | 150.6925743 |
|                 |                                                 |                                      |                           | Ongoing maintenance required to manage residual contamination (CLM |              |             |
| PENRITH         | Crane Enfield Metals                            | Castlereagh ROAD                     | Metal Industry            | Act)                                                               | -33.73734959 | 150.696442  |
| PENRITH         | 7-Eleven Service Station Penrith                | 30 Henry STREET                      | Service Station           | Regulation under CLM Act not required                              | -33.75408799 | 150.7045594 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENRITH         | Caltex Penrith Service Station                  | 153 Coreen AVENUE                    | Service Station           | Regulation under CLM Act not required                              | -33.74287244 | 150.6927071 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENRITH         | Jet 60 Dry Cleaners                             | Shop 3 134-138 Henry STREET          | Unclassified              | Regulation under CLM Act not required                              | -33.75231953 | 150.6964541 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENRITH         | St Mary's Shopping Village                      | Charles Hackett DRIVE                | Other Industry            | Regulation under CLM Act not required                              | -33.766814   | 150.770363  |
| PENRITH         | Former Dry Cleaners                             | Shop 3, 134-138 Henry STREET         | Other Industry            | Regulation under CLM Act not required                              | -33.75231953 | 150.6964541 |
| 1 ENIMITI       | Tornier Dry Cleaners                            | SHOP 3, 134-130 HEIRY STILLET        | outer maastry             | The Bullation under CLIVI Act not required                         | -33.13231333 | 130.0304341 |
| PENSHURST       | 7-Eleven Service Station                        | 612 Forest ROAD                      | Service Station           | Regulation under CLM Act not required                              | -33.96153533 | 151.0793525 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PENSHURST       | Caltex Service Station                          | 641 King Georges ROAD                | Service Station           | Regulation under CLM Act not required                              | -33.95985335 | 151.0891118 |
|                 |                                                 |                                      |                           |                                                                    |              |             |
| PERISHER VALLEY | Perisher Centre Loading Dock                    | Kosciuszko ROAD                      | Other Petroleum           | Regulation under CLM Act not required                              | -36.40392862 | 148.4111593 |

| Suburb          | SiteName                                                         | Address                                            | ContaminationActivityType | ManagementClass                       | Latitude     | Longitude   |
|-----------------|------------------------------------------------------------------|----------------------------------------------------|---------------------------|---------------------------------------|--------------|-------------|
|                 |                                                                  |                                                    |                           |                                       |              |             |
| PERISHER VALLEY | Perisher Ski Resort                                              | Kosciuszko ROAD                                    | Other Petroleum           | Regulation under CLM Act not required | -36.41106374 | 148.4005469 |
| PETERSHAM       | Fanny Durack Aquatic Centre                                      | Station STREET                                     | Unclassified              | Regulation under CLM Act not required | -33.89194583 | 151.151824  |
| PHEASANTS NEST  | 7-Eleven Service Station                                         | (Southbound) Hume HIGHWAY                          | Service Station           | Regulation under CLM Act not required | -34.28291571 | 150.6394606 |
| PHEASANTS NEST  | 7-Eleven (former Mobil) Service Station                          | (Northbound) Hume HIGHWAY                          | Service Station           | Regulation under CLM Act not required | -34.28303112 | 150.6363145 |
| PICTON          | Coles Express Picton                                             | 93-99 Argyle STREET                                | Service Station           | Regulation under CLM Act not required | -34.16844337 | 150.6114236 |
| PICTON          | McDonalds                                                        | 69 -71 Argyle STREET                               | Service Station           | Regulation under CLM Act not required | -34.16711877 | 150.6121524 |
| PITT TOWN       | Whites Water Service                                             | 1 Canning PLACE                                    | Other Industry            | Under preliminary investigation order | -33.574095   | 150.881258  |
| PLUMPTON        | Woolworths Service Station Plumpton (Plumpton Marketplace Shops) | 260 Jersey ROAD                                    | Service Station           | Regulation under CLM Act not required | -33.74478874 | 150.8369408 |
| PORT BOTANY     | Vopak B                                                          | 20 Friendship ROAD                                 | Chemical Industry         | Regulation under CLM Act not required | -33.97946548 | 151.2121752 |
| PORT BOTANY     | Vopak A                                                          | 49 Friendship ROAD                                 | Chemical Industry         | Regulation under CLM Act not required | -33.97426175 | 151.2206228 |
| PORT BOTANY     | Terminals                                                        | 45 Friendship ROAD                                 | Chemical Industry         | Regulation under CLM Act not required | -33.97609287 | 151.2174402 |
| PORT BOTANY     | Bunnerong Canal                                                  | Between Brotherson Dock and<br>Bumborah Point ROAD | Unclassified              | Regulation under CLM Act not required | -33.96798227 | 151.2230052 |
| PORT BOTANY     | Bulk Liquids Berth UPSS, Port Botany                             | Charlotte ROAD                                     | Other Petroleum           | Regulation under CLM Act not required | -33.97386329 | 151.2120157 |
| PORT BOTANY     | Port Operations Centre UPSS, Port<br>Botany                      | Penrhyn ROAD                                       | Other Petroleum           | Regulation under CLM Act not required | -33.96803686 | 151.2205968 |
| PORT BOTANY     | Port Botany Railway Corridors                                    | Friendship ROAD                                    | Other Industry            | Regulation under CLM Act not required | -33.95467008 | 151.2178012 |
| PORT BOTANY     | Smith Bros                                                       | 4 Bumborah Point ROAD                              | Other Petroleum           | Regulation under CLM Act not required | -33.9681757  | 151.2239505 |

| Suburb      | SiteName                                        | Address                           | ContaminationActivityType | ManagementClass                                    | Latitude       | Longitude   |
|-------------|-------------------------------------------------|-----------------------------------|---------------------------|----------------------------------------------------|----------------|-------------|
|             |                                                 |                                   |                           |                                                    |                |             |
| PORT BOTANY | Vopak Terminals                                 | 21 Fishburn ROAD                  | Other Industry            | Under assessment                                   | -33.978961     | 151.217144  |
| PORT KEMBLA | Coates Hire Facility (Eastern Portion)          | 1 Flinders STREET                 | Other Industry            | Regulation under CLM Act not required              | -34.47104817   | 150.89162   |
| PORT KEMBLA | Shell Port Kembla CVRO                          | 87-89 Flinders STREET             | Other Petroleum           | Regulation under CLM Act not required              | -34.46964995   | 150.8953859 |
|             |                                                 |                                   |                           |                                                    |                |             |
| PORT KEMBLA | Darcy Road Rail Sidings                         | Darcy ROAD                        | Other Industry            | Regulation under CLM Act not required              | -34.47792834   | 150.9105503 |
| PORT KEMBLA | No 2 Steelworks                                 | Five Islands ROAD                 | Metal Industry            | Regulation under CLM Act not required              | -34.45965024   | 150.8844432 |
| PORT KEMBLA | Port Kembla Orica                               | Foreshore Road and Darcy ROAD     | Other Industry            | Contamination currently regulated under CLM Act    | -34.47773583   | 150.9054545 |
|             |                                                 |                                   |                           |                                                    |                |             |
| PORT KEMBLA | Port Kembla, Auszinc Metals and Alloys          | Lot 2 Shellharbour ROAD           | Metal Industry            | Regulation under CLM Act not required              | -34.49335414   | 150.8961205 |
| PORT KEMBLA | South Yard Rail Sidings                         | Lot 3 Old Port ROAD               | Unclassified              | Regulation under CLM Act not required              | -34.47500551   | 150.8951759 |
| PORT KEMBLA | Manildra Park                                   | Flinders STREET                   | Other Petroleum           | Contamination formerly regulated under the CLM Act | -34.46946878   | 150.8935731 |
|             |                                                 |                                   |                           | Contamination currently regulated                  |                |             |
| PORT KEMBLA | Port Kembla Copper Smelter                      | Military ROAD                     | Metal Industry            | under POEO Act                                     | -34.4810006    | 150.9063426 |
| PORT KEMBLA | Caltex Service Station                          | 16 Flinders STREET                | Service Station           | Regulation under CLM Act not required              | -34.47058088   | 150.8945864 |
| PORT KEMBLA | BHP Area 21                                     | Springhill ROAD                   | Metal Industry            | Contamination formerly regulated under the CLM Act | -34.45244614   | 150.8676517 |
| PORT KEMBLA | Port Kembla Steelworks Recycling Area           | Springhill ROAD                   | Unclassified              | Regulation under CLM Act not required              | -34.45271181   | 150.8677127 |
| T ON NEW JE | To the moral occurrence help coming the co      |                                   | - Oriolassinea            | negaration and comment required                    | 3 11 1327 2132 | 133.0077127 |
| PORT KEMBLA | Commonwealth Rolling Mills (CRM)                | Old Port ROAD                     | Metal Industry            | Regulation under CLM Act not required              | -34.47476117   | 150.8974746 |
| PORT KEMBLA | Port Kembla, Former Electricity Commission Site | Old Port Road/Christie Drive ROAD | Other Industry            | Regulation under CLM Act not required              | -34.46899143   | 150.8982854 |
| PORT KEMBLA | Port Kembla Steelworks - Steelhaven             | Five Islands ROAD                 | Other Industry            | Regulation under CLM Act not required              | -34.47605247   | 150.891144  |

| Suburb          | SiteName                                 | Address                                    | ContaminationActivityType | ManagementClass                       | Latitude     | Longitude   |
|-----------------|------------------------------------------|--------------------------------------------|---------------------------|---------------------------------------|--------------|-------------|
|                 | Port Kembla Steelworks - No.1 Works      |                                            |                           |                                       |              |             |
| PORT KEMBLA     | Site                                     | Five Islands ROAD                          | Metal Industry            | Regulation under CLM Act not required | -34.47386606 | 150.8794912 |
| PORT KEMBLA     | Port Kembla Springhill Works             | Springhill ROAD                            | Metal Industry            | Regulation under CLM Act not required | -34.45905808 | 150.8749558 |
| PORT MACQUARIE  | Former Mobil Depot                       | 211 Lake ROAD                              | Other Petroleum           | Regulation under CLM Act not required | -31.44688513 | 152.8864499 |
| PORT MACQUARIE  | Caltex Service Station                   | 112-114 Gordon STREET                      | Service Station           | Regulation under CLM Act not required | -31.43491709 | 152.9047618 |
|                 |                                          |                                            |                           |                                       |              |             |
| PORT MACQUARIE  | Caltex Port Macquarie Service Station    | 29 Lord STREET                             | Service Station           | Regulation under CLM Act not required | -31.43326436 | 152.9169873 |
| PORT MACQUARIE  | Coles Myer                               | 43 John Oxley DRIVE                        | Service Station           | Regulation under CLM Act not required | -31.45741442 | 152.8739626 |
| PORT MACQUARIE  | Air BP Avgas Facility                    | Oliver DRIVE                               | Other Petroleum           | Regulation under CLM Act not required | -31.43227222 | 152.8681083 |
| PORT MACQUARIE  | Former Mobil Service Station             | Corner Oxley Highway and Major Innes DRIVE | Service Station           | Regulation under CLM Act not required | -31.45738931 | 152.873956  |
| PORT MACQUARIE  | Port Macquarie Council Depot             | Koala STREET                               | Unclassified              | Regulation under CLM Act not required | -31.45341586 | 152.9032764 |
| DODT MACOLLABIE | Shell Coles Express Port Macquarie       | 131 Cordon CTDEET                          | Convince Station          | Degulation under CLM Act not required | 21 4242121   | 152.9046869 |
| PORT MACQUARIE  | Service Station                          | 121 Gordon STREET                          | Service Station           | Regulation under CLM Act not required | -31.4343131  | 152.9046869 |
| PORT MACQUARIE  | Caltex Service Station                   | 92 Hastings River DRIVE                    | Service Station           | Regulation under CLM Act not required | -31.42934052 | 152.8830188 |
| PORT MACQUARIE  | Caltex Service Station                   | 12-14 Bolwarra ROAD                        | Service Station           | Regulation under CLM Act not required | -31.45015286 | 152.8854769 |
| PORT MACQUARIE  | Car park                                 | 28 Hayward STREET                          | Other Industry            | Regulation under CLM Act not required | -31.43385131 | 152.9072399 |
| PORTLAND        | Ivanhoe Colliery                         | Pipers Flat ROAD                           | Other Industry            | Regulation under CLM Act not required | -33.36595748 | 150.0099577 |
|                 |                                          |                                            |                           |                                       |              |             |
| PORTLAND        | Mt Piper Power Station                   | 350 Boulder ROAD                           | Other Petroleum           | Regulation under CLM Act not required | -33.35581541 | 150.0350801 |
| PRAIRIEWOOD     | 7-Eleven (former Caltex) Service Station | 485-487 Smithfield ROAD                    | Service Station           | Regulation under CLM Act not required | -33.87102509 | 150.9031383 |

| Suburb       | SiteName                                                        | Address                               | ContaminationActivityType | ManagementClass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latitude     | Longitude   |
|--------------|-----------------------------------------------------------------|---------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
|              | 7-Eleven (former Mobil) Service Station                         |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PROSPECT     |                                                                 | 354 Flushcombe ROAD                   | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.79541624 | 150.9049417 |
|              |                                                                 |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PROSPECT     | Pincott's Cottage, Gate C1                                      | Off Reservoir ROAD                    | Unclassified              | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.81589773 | 150.9144343 |
| DDOCDECT     | Catabayca EAA Basaryair Boad                                    | E44 Posonioir POAD                    | Linclassified             | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.91040244  | 150.0157420 |
| PROSPECT     | Gatehouse, 544 Reservoir Road                                   | 544 Reservoir ROAD                    | Unclassified              | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.81049244 | 150.9157439 |
| PROSPECT     | Cottage 3, William Lawson Drive                                 | William Lawson DRIVE                  | Unclassified              | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.81490331 | 150.9149885 |
|              |                                                                 | 1375 Canterbury Road, corner Victoria |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PUNCHBOWL    |                                                                 | ROAD                                  | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.93170424 | 151.0537302 |
|              |                                                                 |                                       |                           | Contamination currently regulated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |             |
| PUNCHBOWL    | Punchbowl Laundry                                               | 42-44 Belmore ROAD                    | Chemical Industry         | under CLM Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -33.93582701 | 151.0562638 |
| PUNCHBOWL    | Caltex Service Station Punchbowl                                | 1285-1289 Canterbury ROAD             | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.93146308 | 151.0596348 |
|              |                                                                 |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PUTNEY       | Putney Marina                                                   | 20 Waterview STREET                   | Other Industry            | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.82608091 | 151.1003966 |
| PYMBLE       | Caltex Service Station                                          | 1089 Pacific HIGHWAY                  | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.74102977 | 151.1385257 |
|              |                                                                 |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PYMBLE       | Shell Coles Express Service Station                             | 21 Ryde ROAD                          | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.75198512 | 151.1438115 |
| PYMBLE       | Former 3M site                                                  | 950 Pacific HIGHWAY                   | Gasworks                  | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.75050288 | 151.1460578 |
|              |                                                                 |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PYMBLE       | Pymble West Dry Cleaners                                        | 6 Philip MALL                         | Other Industry            | Under preliminary investigation order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.76109009 | 151.1284329 |
|              | Former Council Works Depot (Fig and                             |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| PYRMONT      |                                                                 | 14-26 Wattle STREET                   | Other Industry            | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.8752655  | 151.1942645 |
| QUAKERS HILL | 7-Eleven (former Mobil) Service Station                         | 83 Lalor ROAD                         | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.72759077 | 150.8966764 |
|              |                                                                 |                                       |                           | - Salara and a sal | 23.72.7330.7 | 155.555701  |
| QUAKERS HILL | BP Branded Parkway (Former Caltex) Service Station Quakers Hill | 450 Quakers Hill PARKWAY              | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.72998613 | 150.9023617 |
|              |                                                                 |                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| QUEANBEYAN   | Former Mobil Service Station                                    | 153 Uriarra ROAD                      | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -35.34425514 | 149.2148687 |

| Suburb                                              | SiteName                              | Address                                                | ContaminationActivityType | ManagementClass                               | Latitude     | Longitude     |
|-----------------------------------------------------|---------------------------------------|--------------------------------------------------------|---------------------------|-----------------------------------------------|--------------|---------------|
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUEANBEYAN                                          | Bill Lilley Automotive                | 169 Crawford STREET                                    | Service Station           | Regulation under CLM Act not required         | -35.35138121 | 149.232486    |
|                                                     | Woolworths Queanbeyan Service         |                                                        |                           |                                               |              |               |
| QUEANBEYAN                                          | Station                               | 196 Crawford (Cnr Morisset St) STREET                  | Service Station           | Regulation under CLM Act not required         | -35.35163055 | 149.2335759   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUEANBEYAN                                          | Caltex Queanbeyan Service Station     | 88 Macquoid (also known as<br>Bungendore Rd) STREET    | Service Station           | Regulation under CLM Act not required         | -35.34930535 | 149.2438607   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUEANBEYAN                                          | Former Mobil Emoleum Depot            | 109-111 High STREET                                    | Other Petroleum           | Regulation under CLM Act not required         | -35.3396115  | 149.237556    |
| QOD/WDE//W                                          | Torrier Wood Emoleum Bepot            | 100 III III GII OTILET                                 | other recipies.           | regulation ander celly for hot required       | 33,033,113   | 1131207330    |
| 0.15441957444                                       |                                       | 20 20 0 11                                             |                           |                                               | 25.04407405  | 4 40 00 47077 |
| QUEANBEYAN                                          | Former Caltex Depot                   | 20-30 Railway STREET                                   | Other Petroleum           | Regulation under CLM Act not required         | -35.34187485 | 149.2247277   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUEANBEYAN EAST                                     | BP-Branded Service Station Queanbeyan | 50 Yass ROAD                                           | Service Station           | Regulation under CLM Act not required         | -35.34126641 | 149.2445103   |
|                                                     |                                       | Lanyon Dr Cnr Mccrae St (1 Suraci Place)               |                           |                                               |              |               |
| QUEANBEYAN WEST                                     | Caltex Service Station                | 1                                                      | Service Station           | Regulation under CLM Act not required         | -35.36372923 | 149.2067531   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUIRINDI                                            | Former Mobil Depot Quirindi           | 4-6 Cross STREET                                       | Other Petroleum           | Regulation under CLM Act not required         | -31.49903355 | 150.681972    |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUIRINDI                                            | Tamarang ServiCentre Quirindi         | 113-117 Station (also known as 119-121 Nowland) STREET | Service Station           | Under assessment                              | -31.50179204 | 150.6814611   |
| QUININDI                                            | Tamarang Servicentie Quimui           | Nowialia, STREET                                       | Service Station           | Officer assessment                            | -31.301/3204 | 150.0014011   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| QUIRINDI                                            | Caltex Service Station, Quirindi      | 199-201 George STREET                                  | Service Station           | Regulation under CLM Act not required         | -31.5068778  | 150.6805874   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| RAMSGATE                                            | Shell Coles Express Service Station   | Grand Parade cnr Ramsgate ROAD                         | Service Station           | Regulation under CLM Act not required         | -33.98537988 | 151.1471234   |
|                                                     |                                       |                                                        |                           | Contamination currently regulated             |              |               |
| RANDWICK                                            | 7-Eleven Service Station              | 126-130 Barker STREET                                  | Service Station           | under CLM Act                                 | -33.92096152 | 151.2355927   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| RANDWICK                                            | Caltex Service Station                | 2 Alison ROAD                                          | Service Station           | Regulation under CLM Act not required         | -33.9065752  | 151.2320697   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| RANDWICK                                            | Metro Petroleum                       | 345 Avoca STREET                                       | Service Station           | Regulation under CLM Act not required         | -33.92544832 | 151.2396799   |
| INCHARACTOR AND | IMELIO FELIOIEUIII                    | JAJ AVOCA SINLLI                                       | JOI VICE STATION          | The Building in united CEINI Act Hot required | -53.92344632 | 131.2390/99   |
|                                                     |                                       |                                                        |                           | Contamination currently regulated             |              |               |
| RANDWICK                                            | Service Station, Randwick             | 33-37 Carrington ROAD                                  | Service Station           | under CLM Act                                 | -33.90655015 | 151.2525065   |
|                                                     |                                       |                                                        |                           |                                               |              |               |
| RAVENSWORTH                                         | Ravensworth Operations Narama Mine    | Lemington ROAD                                         | Other Industry            | Regulation under CLM Act not required         | -32.47115903 | 151.0359579   |

| Suburb          | SiteName                                                                | Address                                 | ContaminationActivityType | ManagementClass                                  | Latitude     | Longitude    |
|-----------------|-------------------------------------------------------------------------|-----------------------------------------|---------------------------|--------------------------------------------------|--------------|--------------|
|                 |                                                                         |                                         |                           |                                                  |              |              |
| RAVENSWORTH     | Cumnock Colliery                                                        | Pikes Gully ROAD                        | Other Industry            | Regulation under CLM Act not required            | -32.40218281 | 150.9960082  |
|                 |                                                                         | 107 Adelaide (formerly Pacific Highway) |                           |                                                  |              |              |
| RAYMOND TERRACE | Shell Coles Express Raymond Terrace                                     | STREET                                  | Service Station           | Regulation under CLM Act not required            | -32.76110922 | 151.7492847  |
|                 |                                                                         | 136 Adelaide Street, corner Glenelg     |                           |                                                  |              |              |
| RAYMOND TERRACE | Caltex Service Station Raymond Terrace                                  | _                                       | Service Station           | Regulation under CLM Act not required            | -32.76503842 | 151.7425264  |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| RAYMOND TERRACE | Former Motor Registry                                                   | 53 William STREET                       | Other Petroleum           | Regulation under CLM Act not required            | -32.76286473 | 151.7445839  |
|                 | Raymond Terrace Wastewater                                              |                                         |                           |                                                  |              |              |
| RAYMOND TERRACE | Treatment Works                                                         | 22 Elizabeth AVENUE                     | Other Industry            | Regulation under CLM Act not required            | -32.774658   | 151.749978   |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REDFERN         | BP Service Station                                                      | 116 Regent STREET                       | Service Station           | Regulation under CLM Act not required            | -33.89367876 | 151.1995256  |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REDFERN         | Former Printing Works                                                   | 101a Marriott STREET                    | Other Industry            | Regulation under CLM Act not required            | -33.89512556 | 151.2113422  |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REDFERN         | BP-branded Jasbe Surry Hills                                            | 411 Cleveland STREET                    | Service Station           | Regulation under CLM Act not required            | -33.89183974 | 151.2132466  |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REDFERN         | Surry Hills Shopping Village                                            | 397-399 Cleveland & 2-38 Baptist STREET | Other Industry            | Regulation under CLM Act not required            | -33.89229521 | 151.2119397  |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REVESBY         | Dorf Clark Industries                                                   | 184-194 Milperra ROAD                   | Metal Industry            | Regulation under CLM Act not required            | -33.93387149 | 151.000553   |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REVESBY         | Bituminous Products                                                     | 33-35 Violet STREET                     | Chemical Industry         | Contamination currently regulated under CLM Act  | -33.93702092 | 151.0067896  |
|                 |                                                                         |                                         |                           |                                                  |              |              |
| REVESBY         | Mirotone Pty Ltd                                                        | 21 Marigold STREET                      | Chemical Industry         | Contamination currently regulated under POEO Act | -33.93559608 | 151.0002207  |
|                 | ·                                                                       |                                         | ,                         |                                                  |              |              |
| REVESBY         | Caltex Service Station Revesby                                          | 181 The River ROAD                      | Service Station           | Regulation under CLM Act not required            | -33.95573605 | 151.0171779  |
|                 |                                                                         |                                         |                           | Ongoing maintenance required to                  |              |              |
| RHODES          | Homebush Bay Sediments adjoining the former UCAL and Allied Feeds sites | Homebush BAY                            | Chemical Industry         | manage residual contamination (CLM Act)          | -33.8263749  | 151.0839216  |
|                 | TOTHER OCAL UNIT AMICUTECUS SILES                                       | TIOMEDIUSII DATI                        | Chemical madatry          | , rocj                                           | -33.0203743  | 131.0033210  |
| RHODES          | Former Glad factory site                                                | 10-16 Marquet STREET                    | Chemical Industry         | Regulation under CLM Act not required            | -33.82884048 | 151.0848716  |
| MIODES          | Troffiler Glad factory site                                             | 10 10 Marquet STREET                    | Chemical muustry          | Ongoing maintenance required to                  | -53.02004040 | 131.0040/10  |
| BUODES          | Formon Alliand Franch air                                               | Wellier CTREET                          | Oth on Indicator          | manage residual contamination (CLM               | 22.02.455275 | 454 0070 404 |
| RHODES          | Former Allied Feeds site                                                | Walker STREET                           | Other Industry            | Act)                                             | -33.82465376 | 151.0870401  |

| Suburb     | SiteName                                | Address                              | ContaminationActivityType | ManagementClass                         | Latitude     | Longitude   |
|------------|-----------------------------------------|--------------------------------------|---------------------------|-----------------------------------------|--------------|-------------|
|            |                                         |                                      |                           | Ongoing maintenance required to         |              |             |
| RHODES     | Former UCAL site                        | Walker STREET                        | Chemical Industry         | manage residual contamination (CLM Act) | -33.82727505 | 151.0853195 |
|            |                                         |                                      | ,                         | Ongoing maintenance required to         |              |             |
|            | Homebush Bay sediments adjoining        |                                      |                           | manage residual contamination (CLM      |              |             |
| RHODES     | former Berger Paint factory             | Oulton AVENUE                        | Chemical Industry         | Act)                                    | -33.83535308 | 151.083238  |
| RICHMOND   | Caltex Richmond Service Station         | 98 March (Cnr East Market St) STREET | Service Station           | Regulation under CLM Act not required   | -33.59937996 | 150.7514483 |
|            |                                         |                                      |                           |                                         |              |             |
| RIVERSTONE | Axalta Coating Systems                  | 15-23 Melbourne ROAD                 | Other Industry            | Regulation under CLM Act not required   | -33.6636649  | 150.8557519 |
|            |                                         |                                      |                           |                                         |              |             |
| RIVERSTONE | 7-Eleven Riverstone                     | 55 Garfield ROAD                     | Service Station           | Regulation under CLM Act not required   | -33.67802232 | 150.8635246 |
|            |                                         | 1 Woodland Street, corner of Windsor |                           |                                         |              |             |
| RIVERSTONE | Riverstone                              | ROAD                                 | Service Station           | Regulation under CLM Act not required   | -33.65607641 | 150.8724067 |
| RIVERSTONE | Vacant Commercial Land                  | 88-94 Junction ROAD                  | Unclassified              | Regulation under CLM Act not required   | -33.66226398 | 150.8789967 |
|            |                                         |                                      |                           |                                         |              |             |
| RIVERWOOD  | 7-Eleven Riverwood                      | 30 Bonds ROAD                        | Service Station           | Regulation under CLM Act not required   | -33.9523701  | 151.0583887 |
| ROCKDALE   | 7-Eleven (former Mobil) Service Station | 293 West Botany STREET               | Service Station           | Regulation under CLM Act not required   | -33.94995672 | 151.1484667 |
|            |                                         | ·                                    |                           |                                         |              |             |
| ROCKDALE   | 7-Eleven Service Station                | 99 Railway STREET                    | Service Station           | Regulation under CLM Act not required   | -33.95247322 | 151.1356785 |
|            |                                         |                                      |                           |                                         |              |             |
| ROCKDALE   | Lindsay St, Rockdale                    | 7 Lindsay STREET                     | Other Industry            | Under assessment                        | -33.95900867 | 151.1436466 |
| ROOTY HILL | 7-Eleven (former Mobil) Service Station | 106 Rooty Hill Road South ROAD       | Service Station           | Regulation under CLM Act not required   | -33.78036181 | 150.8501998 |
|            |                                         |                                      |                           |                                         |              |             |
| ROOTY HILL | 7-Eleven (former Mobil) Service Station | 1042 Great Western HIGHWAY           | Service Station           | Regulation under CLM Act not required   | -33.78214955 | 150.8287656 |
| DOOTY UIL: | Infrabuild NSW Pty Ltd (formerly        | 22 K H                               |                           |                                         |              |             |
| ROOTY HILL | OneSteel NSW Pty Ltd)                   | 22 Kellogg ROAD                      | Other Industry            | Regulation under CLM Act not required   | -33.76664143 | 150.8493465 |
| ROSE BAY   | Caltex Rose Bay Service Station         | 488 Old South Head ROAD              | Service Station           | Regulation under CLM Act not required   | -33.87475145 | 151.2723847 |
|            |                                         |                                      |                           | Contamination formerly regulated under  |              |             |
| ROSE BAY   | Rose Bay Budget Service station         | 638-646 New South Head ROAD          | Service Station           | the CLM Act                             | -33.87062149 | 151.2677617 |

| Suburb          | SiteName                                                | Address                              | ContaminationActivityType | ManagementClass                                                         | Latitude     | Longitude   |
|-----------------|---------------------------------------------------------|--------------------------------------|---------------------------|-------------------------------------------------------------------------|--------------|-------------|
|                 |                                                         |                                      |                           |                                                                         |              |             |
| ROSEBERY        | Autofoil P/L                                            | 2 Mentmore AVENUE                    | Other Industry            | Regulation under CLM Act not required                                   | -33.91121318 | 151.2054882 |
|                 |                                                         |                                      |                           | Contamination currently regulated                                       |              |             |
| ROSEBERY        | Caltex Rosebery Service Station                         | 321 Gardeners (Cnr Macquarie St) ROA | AD Service Station        | under CLM Act                                                           | -33.92302898 | 151.2059541 |
|                 | Former Industrial Site (Former                          |                                      |                           |                                                                         |              |             |
| ROSEBERY        |                                                         | 108 Dunning AVENUE                   | Other Industry            | Regulation under CLM Act not required                                   | -33.91630811 | 151.201557  |
| ROSEBERY        | Rosebery Service Station                                | 395 Gardeners ROAD                   | Service Station           | Contamination formerly regulated under the CLM Act                      | -33.92246784 | 151.2024589 |
|                 |                                                         |                                      |                           | Ongoing maintenance required to                                         |              |             |
| ROSEHILL        | James Hardie Australia and former<br>James Hardie lands | Devon STREET                         | Landfill                  | manage residual contamination (CLM Act)                                 | -33.82539019 | 151.0339466 |
|                 |                                                         |                                      |                           | Contamination formerly regulated under                                  |              |             |
| ROSEHILL        | 2 Ritchie Street, Rosehill                              | 2 Ritchie STREET                     | Unclassified              | the CLM Act                                                             | -33.82691192 | 151.0154948 |
| ROSEHILL        | James Hardie Factory (former, western portion)          | 181 James Ruse DRIVE                 | Other Industry            | Ongoing maintenance required to manage residual contamination (CLM Act) | -33.81605834 | 151.0238145 |
| NOSERILL        | portion)                                                | 101 James Ruse Drive                 | Other industry            | Acti                                                                    | -55.81003634 | 131.0236143 |
| ROSELANDS       | Roselands Shopping Centre                               | 24 Roseland AVENUE                   | Service Station           | Regulation under CLM Act not required                                   | -33.93499281 | 151.0691284 |
| ROSELANDS       | Woolworths Caltex Petrol Service<br>Station Roselands   | 218 King Georges ROAD                | Service Station           | Regulation under CLM Act not required                                   | -33.93303118 | 151.0735036 |
|                 |                                                         |                                      |                           |                                                                         |              |             |
| ROSELANDS       | 7-Eleven (former Mobil) Service Station                 | 91 Canary's ROAD                     | Service Station           | Regulation under CLM Act not required                                   | -33.93356078 | 151.0736274 |
| ROSEVILLE       | Mobil Service Station                                   | 2 Boundary STREET                    | Service Station           | Regulation under CLM Act not required                                   | -33.78769177 | 151.1796011 |
|                 |                                                         |                                      |                           |                                                                         |              |             |
| ROSEVILLE CHASE | Coles Express Roseville Chase                           | 388 Eastern Valley WAY               | Service Station           | Regulation under CLM Act not required                                   | -33.78337722 | 151.1973901 |
| ROZELLE         | Caltex Service Station                                  | 121 Victoria ROAD                    | Service Station           | Regulation under CLM Act not required                                   | -33.86252996 | 151.168497  |
| ···-            | Carta Sci. Fice Station                                 |                                      | 5555 55.                  |                                                                         | 33.00232330  | 131.100437  |
| ROZELLE         | 7-Eleven (former Mobil) Service Station                 | 178-180 (176-184) Victoria ROAD      | Service Station           | Regulation under CLM Act not required                                   | -33.8630268  | 151.1680857 |
| ROZELLE         | Kennards Rozelle                                        | 15-39 Wellington STREET              | Other Petroleum           | Regulation under CLM Act not required                                   | -33.86176757 | 151.1686519 |
|                 |                                                         |                                      |                           |                                                                         |              |             |
| ROZELLE         | White Bay Power Station                                 | Robert STREET                        | Other Industry            | Regulation under CLM Act not required                                   | -33.86674636 | 151.1772204 |

| Suburb          | SiteName                                | Address                            | ContaminationActivityType | ManagementClass                        | Latitude     | Longitude   |
|-----------------|-----------------------------------------|------------------------------------|---------------------------|----------------------------------------|--------------|-------------|
|                 |                                         | Corner Darling Street and Thornton |                           |                                        |              |             |
| ROZELLE         | BP Service Station                      | STREET                             | Service Station           | Regulation under CLM Act not required  | -33.8591647  | 151.1716591 |
|                 |                                         |                                    |                           |                                        |              |             |
| RUFUS RIVER     | SA Water Depot - Rufus River            | Old Wentworth STREET               | Other Petroleum           | Regulation under CLM Act not required  | -34.04191512 | 141.2679475 |
|                 |                                         |                                    |                           | Contamination currently regulated      |              |             |
| RUSHCUTTERS BAY | d'Albora Marinas                        | 1b New Beach ROAD                  | Other Industry            | under POEO Act                         | -33.87351297 | 151.2345082 |
|                 |                                         |                                    |                           |                                        |              |             |
| RUTHERFORD      | Rutherford Transpacific                 | 11 Kyle STREET                     | Other Industry            | Regulation under CLM Act not required  | -32.71105203 | 151.500311  |
|                 | Shell Coles Express Service Station     |                                    |                           |                                        |              |             |
| RUTHERFORD      | Rutherford                              | 118 New England HIGHWAY            | Service Station           | Regulation under CLM Act not required  | -32.7208703  | 151.5394595 |
|                 |                                         |                                    |                           |                                        |              |             |
| RUTHERFORD      | Caltex Service Station                  | 134-138 New England HIGHWAY        | Service Station           | Regulation under CLM Act not required  | -32.7202589  | 151.5381526 |
|                 | Transpacific Industrial                 |                                    |                           |                                        |              |             |
| RUTHERFORD      | Services/Nationwide Oil Pty Ltd         | 99 Kyle STREET                     | Chemical Industry         | Regulation under CLM Act not required  | -32.71262159 | 151.5013865 |
|                 |                                         |                                    |                           |                                        |              |             |
| RYDALMERE       | Caltex Service Station                  | 309 Victoria ROAD                  | Service Station           | Regulation under CLM Act not required  | -33.81196193 | 151.0371185 |
|                 |                                         |                                    |                           | Contamination currently regulated      |              |             |
| RYDALMERE       | Mitsubishi Electric                     | 348 Victoria ROAD                  | Other Industry            | under CLM Act                          | -33.81040138 | 151.0392812 |
|                 |                                         |                                    |                           | Contamination formerly regulated under |              |             |
| RYDALMERE       | Rheem Australia                         | 1 Alan STREET                      | Other Industry            | the CLM Act                            | -33.81545013 | 151.0295476 |
|                 |                                         |                                    |                           |                                        |              |             |
| RYDALMERE       | BP Service Station                      | 265 Victoria ROAD                  | Service Station           | Regulation under CLM Act not required  | -33.8109483  | 151.0328101 |
|                 |                                         |                                    |                           |                                        |              |             |
| RYDALMERE       | Hunter Douglas                          | Victoria ROAD                      | Chemical Industry         | Regulation under CLM Act not required  | -33.81009112 | 151.0384732 |
|                 | United Petroleum (former 7-Eleven)      |                                    |                           |                                        |              |             |
| RYDALMERE       | Service Station Rydalmere               | 262-272 Victoria ROAD              | Service Station           | Regulation under CLM Act not required  | -33.81006724 | 151.032377  |
|                 |                                         |                                    |                           |                                        |              |             |
| RYDE            | Shell Coles Express Ryde                | 45 Lane Cove ROAD                  | Service Station           | Regulation under CLM Act not required  | -33.80726028 | 151.109981  |
|                 |                                         |                                    |                           |                                        |              |             |
| RYDE            | Caltex Service Station                  | 110 Lane Cove ROAD                 | Service Station           | Regulation under CLM Act not required  | -33.80142973 | 151.1137925 |
|                 |                                         |                                    |                           |                                        |              |             |
| RYDE            | 7-Eleven (former Mobil) Service Station | 326-328 Blaxland ROAD              | Service Station           | Regulation under CLM Act not required  | -33.80242183 | 151.1004278 |

| Suburb          | SiteName                                               | Address                              | ContaminationActivityType | ManagementClass                                                 | Latitude     | Longitude   |
|-----------------|--------------------------------------------------------|--------------------------------------|---------------------------|-----------------------------------------------------------------|--------------|-------------|
|                 |                                                        |                                      |                           |                                                                 |              |             |
| RYDE            | Ryde Bus Depot                                         | 51 - 75 Buffalo ROAD                 | Other Petroleum           | Regulation under CLM Act not required                           | -33.81679771 | 151.1225255 |
| SANCTUARY POINT | United Service Station, Sanctuary Point                | 147 Larmer AVENUE                    | Service Station           | Regulation under CLM Act not required                           | -35.09918861 | 150.6329537 |
| SANDGATE        | Caltex Service Station Sandgate                        | 162 Maitland ROAD                    | Service Station           | Regulation under CLM Act not required                           | -32.86501596 | 151.706161  |
| SANDGATE        | North Limited Storage Handling facility                | Maitland ROAD                        | Other Industry            | Contamination formerly regulated under the CLM Act              | -32.86598453 | 151.7012866 |
| SANS SOUCI      | 7-Eleven (Former Mobil) Service Station                | 474 Rocky Point ROAD                 | Service Station           | Regulation under CLM Act not required                           | -33.99088939 | 151.1333779 |
| SANS SOUCI      | BP Sans Souci                                          | 520 Rocky Point ROAD                 | Service Station           | Contamination currently regulated under CLM Act                 | -33.99246353 | 151.1323243 |
| SANS SOUCI      | Kendall Street Reserve                                 | Lawson Street and Kendall STREET     | Landfill                  | Under preliminary investigation order                           | -33.99966431 | 151.13005   |
| SANS SOUCI      | Former Service Station                                 | 542-544 Rocky Point ROAD             | Service Station           | Contamination was addressed via the planning process (EP&A Act) | -33.99376148 | 151.1316131 |
| SANS SOUCI      | Former 7-Eleven Ramsgate                               | 368 Rocky Point ROAD                 | Service Station           | Contamination formerly regulated under the CLM Act              | -33.98615125 | 151.1359961 |
| SCONE           | Shell Coles Express Service Station                    | 91- 93 Kelly STREET                  | Service Station           | Contamination currently regulated under CLM Act                 | -32.04715941 | 150.8676346 |
| SCONE           | Scone Works Depot                                      | 220 Susan STREET                     | Other Petroleum           | Regulation under CLM Act not required                           | -32.04444892 | 150.879152  |
| SCONE           | Mobil Scone Airport Elt                                | 8 Walter Pye AVENUE                  | Other Petroleum           | Regulation under CLM Act not required                           | -32.03596733 | 150.8323698 |
| SCONE           | BP - Former Depot                                      | Scone St, Guernsey St & Susan STREET | Service Station           | Contamination formerly regulated under the CLM Act              | -32.04599284 | 150.8662046 |
| SCONE           | BP Scone                                               | 26 Kelly STREET                      | Service Station           | Under assessment                                                | -32.04033034 | 150.86549   |
| SCONE           | BP Scone Service Station                               | 58 Kelly STREET                      | Service Station           | Regulation being finalised                                      | -32.043776   | 150.866236  |
| SEVEN HILLS     | 7-Eleven (Former Mobil) Service Station<br>Seven Hills | 151 Prospect HIGHWAY                 | Service Station           | Regulation under CLM Act not required                           | -33.76894646 | 150.9427004 |

| Suburb       | SiteName                                       | Address                           | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude    |
|--------------|------------------------------------------------|-----------------------------------|---------------------------|----------------------------------------------------|--------------|--------------|
|              |                                                |                                   |                           |                                                    |              |              |
| SEVEN HILLS  | Australia Post                                 | 3 Powers ROAD                     | Unclassified              | Regulation under CLM Act not required              | -33.77434009 | 150.9395495  |
|              | Car Park (Former Brickworks /                  |                                   |                           |                                                    |              |              |
| SEVEN HILLS  | Warehouse)                                     | 1 Powers ROAD                     | Other Industry            | Regulation under CLM Act not required              | -33.77387442 | 150.9379787  |
| CEVEN LIII C | BP-branded Jasbe Petroleum Service             | 156 Prospect HICHWAY              | Convice Station           | Pogulation under CLM Act not required              | 22.76006502  | 150 041 4921 |
| SEVEN HILLS  | Station                                        | 156 Prospect HIGHWAY              | Service Station           | Regulation under CLM Act not required              | -33.76906502 | 150.9414821  |
| SEVEN HILLS  | Caltex Service Station                         | 38 Abbott ROAD                    | Service Station           | Regulation under CLM Act not required              | -33.76692649 | 150.9548271  |
| SEVENTILES   | Curtex Service Station                         | 30 ABBOTT NOVE                    | Service station           | Regulation and C CENT Not not required             | 33.70032043  | 130.3340271  |
| SEVEN HILLS  | Caltex Service Station Seven Hills             | 105 Station ROAD                  | Service Station           | Regulation under CLM Act not required              | -33.77435881 | 150.9448733  |
| -            |                                                |                                   |                           |                                                    |              |              |
| SEVEN HILLS  | Former Australian Waste Oil Refineries<br>Site | 27 Powers ROAD                    | Other Industry            | Contamination formerly regulated under the CLM Act | -33.77536127 | 150.9511122  |
| 32721111223  | J.C.                                           | 27 TOWERS NOTES                   | Other mousery             | the centre                                         | 33.77330127  | 150.5511122  |
| SHELLY BEACH | Former Shelly Beach Landfill                   | Oaks AVENUE                       | Landfill                  | Regulation under CLM Act not required              | -33.36700551 | 151.4913631  |
|              |                                                |                                   |                           |                                                    |              |              |
| SHORTLAND    | Former Astra Street Landfill                   | 2 (part) & 28 (part) Astra STREET | Landfill                  | Contamination currently regulated under CLM Act    | -32.86716222 | 151.6966948  |
|              |                                                |                                   |                           |                                                    |              |              |
| SHORTLAND    | Tuxford Park landfill                          | 10 King STREET                    | Landfill                  | Regulation under CLM Act not required              | -32.87721139 | 151.6936837  |
|              |                                                |                                   |                           |                                                    |              |              |
| SHORTLAND    | Former Lorna St landfill                       | 8/475 Sandgate ROAD               | Landfill                  | Regulation under CLM Act not required              | -32.87888726 | 151.7023245  |
|              |                                                |                                   |                           |                                                    |              |              |
| SHORTLAND    | 7-Eleven (Former BP) Service Station           | 298-302 Sandgate ROAD             | Service Station           | Regulation under CLM Act not required              | -32.8861645  | 151.6953912  |
|              |                                                |                                   |                           |                                                    |              |              |
| SILVERWATER  | Former Silverwater Landfill                    | Carnarvon ROAD                    | Landfill                  | Contamination currently regulated under CLM Act    | -33.83506394 | 151.033214   |
|              |                                                |                                   |                           |                                                    |              |              |
| SILVERWATER  | Vacant property                                | 103-105 Silverwater ROAD          | Other Industry            | Regulation under CLM Act not required              | -33.83831374 | 151.0472576  |
|              |                                                |                                   |                           |                                                    |              |              |
| SILVERWATER  | Storage Facility                               | 54-58 Derby STREET                | Unclassified              | Under assessment                                   | -33.83855869 | 151.0478649  |
|              |                                                |                                   |                           |                                                    |              |              |
| SILVERWATER  | Former Printing Facility                       | 46-58 Derby STREET                | Unclassified              | Under assessment                                   | -33.83855869 | 151.0478649  |
|              |                                                |                                   |                           |                                                    |              |              |
| SILVERWATER  | Silverwater Correctional Complex               | Holker STREET                     | Landfill                  | Regulation under CLM Act not required              | -33.82944797 | 151.0567486  |

| Suburb          | SiteName                                        | Address                                          | ContaminationActivityType | ManagementClass                                                 | Latitude     | Longitude   |
|-----------------|-------------------------------------------------|--------------------------------------------------|---------------------------|-----------------------------------------------------------------|--------------|-------------|
| SINGLETON       | BP Service Station Singleton                    | 53 George (Cnr Macquarie St) STREET              | Other Petroleum           | Regulation under CLM Act not required                           | -32.56182325 | 151.1748054 |
|                 |                                                 | <u> </u>                                         |                           |                                                                 |              |             |
| SINGLETON       | Singleton Gasworks                              | 55-57 John STREET                                | Gasworks                  | Contamination formerly regulated under the CLM Act              | -32.56774715 | 151.1658188 |
| SINGLETON       | Shell Coles Express Service Station             | 69-73 George STREET                              | Service Station           | Regulation under CLM Act not required                           | -32.56297156 | 151.1755215 |
| SINGLETON       | Mobil Singleton Airport Elt                     | 74B Range ROAD                                   | Other Petroleum           | Regulation under CLM Act not required                           | -32.60270846 | 151.1944828 |
| SINGLETON       | Putty Saw Mill                                  | (via Singleton) Putty ROAD                       | Other Industry            | Contamination currently regulated under CLM Act                 | -32.99958725 | 150.7111684 |
| SINGLETON       | NSW Mines Rescue Services - Singleton           | 6 Lachlan AVENUE                                 | Other Industry            | Regulation under CLM Act not required                           | -32.54537821 | 151.156584  |
| SMITHFIELD      | Caltex Smithfield                               | 16-18 Tait STREET                                | Service Station           | Regulation under CLM Act not required                           | -33.84596441 | 150.9435497 |
| SMITHFIELD      | Freestones                                      | 1 Hume ROAD                                      | Other Petroleum           | Regulation under CLM Act not required                           | -33.83577694 | 150.9310112 |
| SMITHFIELD      | Liquip International                            | 13 Hume ROAD                                     | Other Industry            | Regulation under CLM Act not required                           | -33.83802635 | 150.9319034 |
| SMITHFIELD      | Coles Express (former Mobil) Service<br>Station | 678 The Horsley Drive, corner Smithfield<br>ROAD | Service Station           | Regulation under CLM Act not required                           | -33.85376154 | 150.9400104 |
| SMITHFIELD      | Former Landfill                                 | Little STREET                                    | Landfill                  | Contamination being managed via the planning process (EP&A Act) | -33.85025253 | 150.9411561 |
| SOUTH ALBURY    | BP Border Service Station                       | Corner Ebden Street and Wodonga<br>PLACE         | Service Station           | Contamination currently regulated under CLM Act                 | -36.08875942 | 146.9093882 |
| SOUTH BOWENFELS | Shell Coles Express Service Station             | Lot 1 Great Western HIGHWAY                      | Service Station           | Regulation under CLM Act not required                           | -33.50589001 | 150.1238487 |
| SOUTH COOGEE    | Caltex South Coogee Service Station             | 169-173 Malabar ROAD                             | Service Station           | Regulation under CLM Act not required                           | -33.93233184 | 151.2574377 |
| SOUTH GRAFTON   | Shell Coles Express Service Station             | 91 Bent STREET                                   | Service Station           | Regulation under CLM Act not required                           | -29.70605829 | 152.9400329 |
| SOUTH GRAFTON   | Former United (former Mobil) Service<br>Station | Corner Pacific Highway and Charles STREET        | Service Station           | Regulation under CLM Act not required                           | -29.70814828 | 152.9412928 |

| Suburb             | SiteName                                           | Address                                         | ContaminationActivityType | ManagementClass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latitude     | Longitude   |
|--------------------|----------------------------------------------------|-------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| SOUTH CRAFTON      |                                                    | 46.50.6   1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 744 40672 | 452.0452227 |
| SOUTH GRAFTON      | Former Caltex Service Station                      | 46-58 Schwinghammer STREET                      | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -29.71149672 | 152.9453337 |
| SOUTH GRAFTON      | Former Caltex Depot South Grafton                  | 72-82 Swallow ROAD                              | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -29.73168549 | 152.944024  |
| SOUTH GRAFTON      | Caltex Service Station                             | Pacific Hwy Cnr Gwyder HIGHWAY                  | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -29.70739015 | 152.9425508 |
| SOUTH GRANVILLE    | Enhance Service Station South Granville            | 2 Rawson ROAD                                   | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.86366193 | 151.0088768 |
| SOUTH KEMPSEY      | Caltex Service Station                             | 52 Lachlan STREET                               | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -31.09361084 | 152.8370796 |
| SOUTH LISMORE      | North Coast Petroleum (Former Mobil) Depot Lismore | 19-21 Elliot ROAD                               | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.81212046 | 153.2661935 |
| SOUTH LISMORE      | Former Mobil Service Station                       | 126 - 128 Union STREET                          | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.81242175 | 153.267541  |
| ooo m Eismone      | remen week seeme seemen                            | 120 TEO GINGII GINEEL                           | Schrice Station           | regulation ander service need and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.012 12273 | 233,2073 12 |
| SOUTH LISMORE      | Caltex Service Station                             | 237 Union STREET                                | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.82052708 | 153.2648111 |
| SOUTH LISMORE      | Former Mobil Depot                                 | 26-32 Phyllis STREET                            | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.81005206 | 153.2660073 |
| SOUTH MURWILLUMBAH | Former Caltex Depot                                | 39 Lundberg DRIVE                               | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.332622   | 153.4212884 |
| SOUTH MURWILLUMBAH | Caltex Service Station                             | 1-7 Buchanan (Cnr Tweed Valley Way)<br>STREET   | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.32687988 | 153.4093274 |
| SOUTH MURWILLUMBAH | Former Mobil Depot                                 | 45 Wardrop STREET                               | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -28.33421395 | 153.3993772 |
| SOUTH NOWRA        | Caltex South Nowra                                 | 100 Princes HIGHWAY                             | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -34.90516081 | 150.6029621 |
|                    | Cutter South Nowiu                                 | 200 TIMOUS TIMOTIVAT                            | SCITICE STATION           | TO SERVICE OF THE FIRST TH | 34.50310081  | 130.0023021 |
| SOUTH PENRITH      | 7-Eleven Service Station                           | 45 Aspen STREET                                 | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.77727694 | 150.7107228 |
| SOUTH TAMWORTH     | Coles Express Tamworth                             | 251 - 253 Goonoo Goonoo ROAD                    | Service Station           | Contamination currently regulated under CLM Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -31.1118945  | 150.9228523 |
| SOUTH TAMWORTH     | Caltex Service Station                             | 2 Kathleen Street, corner Kent STREET           | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -31.10361712 | 150.9186343 |

| Suburb               | SiteName                                                     | Address                                          | ContaminationActivityType | ManagementClass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Latitude     | Longitude   |
|----------------------|--------------------------------------------------------------|--------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|
| SOUTH WENTWORTHVILLE | Aldi Stores Development                                      | 331-339 Great Western HIGHWAY                    | Metal Industry            | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.81605854 | 150.9697429 |
|                      |                                                              |                                                  | ,                         | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |             |
| SOUTH WENTWORTHVILLE | Caltex Service Station                                       | 313 Great Western HIGHWAY                        | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.81643692 | 150.9718802 |
| SOUTH WEST ROCKS     | Former Trial Bay Caltex Depot                                | Phillip DRIVE                                    | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30.89190078 | 153.0573056 |
| SOUTH WEST ROCKS     | Former Shell Trial Bay Depot                                 | Phillip DRIVE                                    | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30.89273836 | 153.0612772 |
| SOUTH WEST ROCKS     | Residential area and Reserve opposite Former Caltex terminal | Phillip DRIVE                                    | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -30.89172594 | 153.0573164 |
| SPRINGVALE           | Springvale Colliery                                          | Castlereagh HIGHWAY                              | Other Industry            | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.40334736 | 150.1070462 |
|                      |                                                              |                                                  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |             |
| ST CLAIR             | 7-Eleven (former Mobil) Service Station                      | 4 Endeavour AVENUE                               | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.79430926 | 150.7885793 |
| ST IVES              | 7-Eleven (former Mobil) St Ives Service<br>Station           | 157-159 Mona Vale Road, corner Putarri<br>AVENUE | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.73265301 | 151.1563899 |
| ST IVES              | Caltex Service Station                                       | 452 Mona Vale ROAD                               | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.70752272 | 151.187545  |
| ST IVES              | Caltex Service Station                                       | 164 Mona Vale ROAD                               | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.7307595  | 151.1570462 |
| ST IVES              | Caltex Service Station St Ives                               | 363 Mona Vale ROAD                               | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.7168971  | 151.1735263 |
| ST IVES              | Shell Service Station                                        | 179-181 Mona Vale ROAD                           | Service Station           | Contamination formerly regulated under the CLM Act                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -33.73124859 | 151.1575827 |
| ST LEONARDS          | Telstra Data Centre                                          | 4A Herbert STREET                                | Other Petroleum           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.81873741 | 151.1914222 |
| ST MARYS             | Former Woolworths Service Station                            | 120-128 Forrester ROAD                           | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.75525115 | 150.7752897 |
|                      |                                                              |                                                  |                           | - Caratan and Cara | 33.73323113  | 130.7.32037 |
| ST MARYS             | 7-Eleven (former Mobil) Service Station                      | 2 Christie STREET                                | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.74790843 | 150.7767667 |
| ST MARYS             | 7-Eleven (former Mobil) Service Station                      | 2 Wilson STREET                                  | Service Station           | Regulation under CLM Act not required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -33.77790415 | 150.771689  |

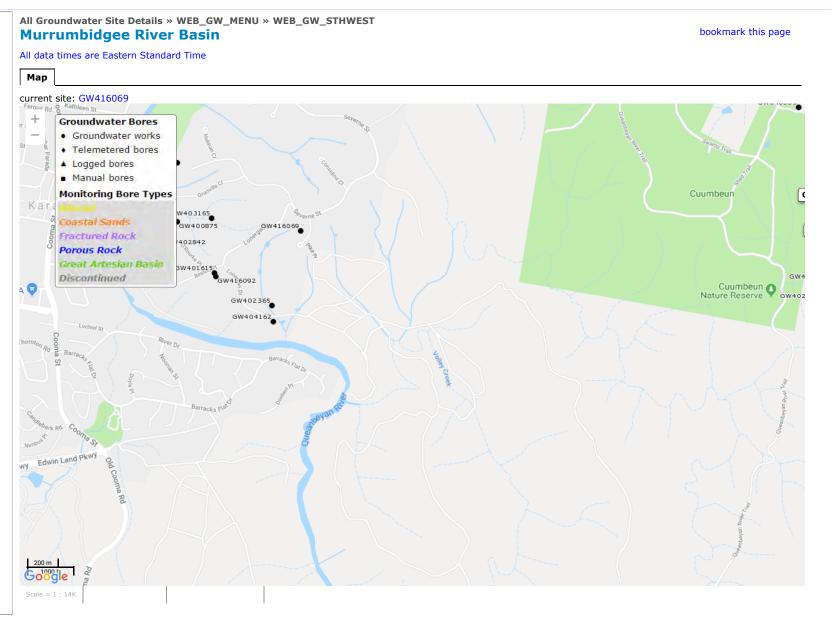
| Suburb            | SiteName                                 | Address                      | ContaminationActivityType | ManagementClass                        | Latitude     | Longitude   |
|-------------------|------------------------------------------|------------------------------|---------------------------|----------------------------------------|--------------|-------------|
|                   |                                          |                              |                           | Contamination currently regulated      |              |             |
| ST MARYS          | Solveco                                  | 38 LINKS ROAD                | Other Industry            | under CLM Act                          | -33.738673   | 150.771554  |
|                   | Integral Energy Mt Druitt Transmission   |                              |                           |                                        |              |             |
| ST MARYS          | Substation                               | 69 Kurrajong North ROAD      | Other Industry            | Regulation under CLM Act not required  | -33.76376093 | 150.7921691 |
|                   |                                          |                              |                           |                                        |              |             |
| ST MARYS          | Caltex St Marys Service Station          | Wordoo St Cnr Forrester ROAD | Service Station           | Regulation under CLM Act not required  | -33.75334263 | 150.7755489 |
| ST MARYS          | Chemcolour Industries                    | 19-25 Anne STREET            | Chemical Industry         | Regulation under CLM Act not required  | -33.75027071 | 150.7725397 |
|                   |                                          |                              |                           |                                        |              |             |
| ST MARYS          | Old Drycleaning location                 | 1-7 Queen STREET             | Other Industry            | Under assessment                       | -33.73873    | 150.771747  |
|                   |                                          |                              |                           |                                        |              |             |
| ST PETERS         | Cooks River Rail Terminal                | 20 Canal ROAD                | Unclassified              | Regulation under CLM Act not required  | -33.91943986 | 151.1726689 |
| ST PETERS         | Camdenville Park                         | May STREET                   | Other Industry            | Regulation under CLM Act not required  | -33.90911815 | 151.176951  |
| o <del>-</del>    |                                          |                              |                           | Contamination formerly regulated under | 22.042224    | 454 4000040 |
| ST PETERS         | Former Tidyburn Facility                 | 53 Barwon Park ROAD          | Chemical Industry         | the CLM Act                            | -33.9130091  | 151.1809912 |
| ST PETERS         | BP Express Service Station               | 2 Princes HIGHWAY            | Service Station           | Regulation under CLM Act not required  | -33.90982281 | 151.1809936 |
|                   | Former Industrial Manufacturing Facility |                              |                           |                                        |              |             |
| ST PETERS         | (Taubman's Paints)                       | 75 Mary STREET               | Other Industry            | Regulation under CLM Act not required  | -33.91307297 | 151.1731383 |
| ST PETERS         | Burrows Industrial Estate                | 1-3 Burrows ROAD             | Landfill                  | Under assessment                       | -33.920035   | 151.17854   |
|                   |                                          |                              |                           |                                        |              |             |
| STANMORE          | 125 Corunna Road                         | 125 Corunna ROAD             | Unclassified              | Regulation under CLM Act not required  | -33.88937382 | 151.1644589 |
|                   |                                          |                              |                           |                                        |              |             |
| STOCKTON          | Former Coroba Landfill                   | 310 Fullerton STREET         | Landfill                  | Regulation under CLM Act not required  | -32.89807537 | 151.7896891 |
| STRATHFIELD       | 7-Eleven (former Mobil) Service Station  | 577 Liverpool ROAD           | Service Station           | Regulation under CLM Act not required  | -33.88736091 | 151.0743474 |
|                   |                                          |                              |                           |                                        |              |             |
| STRATHFIELD SOUTH | Former Landfill Site                     | 7-9 Dunlop STREET            | Landfill                  | Regulation under CLM Act not required  | -33.89509698 | 151.0796751 |
| CTROUR            | Stroud Fuel Supplies (Former Caltex)     | 4.6                          | Coming Chatter            | Danidation and a CIMA and a second     | 22 2222-12   |             |
| TROUD             | Service Station                          | 1 Cowper STREET              | Service Station           | Regulation under CLM Act not required  | -32.39092749 | 151.956308  |

| Suburb              | SiteName                                           | Address                                       | ContaminationActivityType | ManagementClass                                    | Latitude     | Longitude   |
|---------------------|----------------------------------------------------|-----------------------------------------------|---------------------------|----------------------------------------------------|--------------|-------------|
|                     |                                                    |                                               |                           |                                                    |              |             |
| SUFFOLK PARK        | BP Service Station                                 | 207-209 Broken Head ROAD                      | Service Station           | Regulation under CLM Act not required              | -28.68800088 | 153.6083821 |
| SUFFOLK PARK        | Suffolk Park dip site                              | Cnr Broken Head Road & Beech DRIVE            | Cattle Dip                | Regulation under CLM Act not required              | -28.6874242  | 153.6072824 |
| SURRY HILLS         | Woolworths Petrol Surry Hills                      | 475 Cleveland STREET                          | Service Station           | Regulation under CLM Act not required              | -33.89223271 | 151.2161434 |
| SURRY HILLS         | Former Legion Cabs (Trading) Cooperative           | 81 & 81A (Formerly 69 - 81) Foveaux<br>STREET | Service Station           | Regulation under CLM Act not required              | -33.88470082 | 151.2107944 |
| SURRY HILLS         | Ausgrid Road Reserve                               | Mary STREET                                   | Other Industry            | Regulation under CLM Act not required              | -33.88292195 | 151.2095176 |
| SUTHERLAND          | United Service Station and Sutherland<br>Reservoir | 1 to 3 Oxford STREET                          | Service Station           | Contamination currently regulated under CLM Act    | -34.029532   | 151.0579906 |
| SUTHERLAND          | 7-Eleven Service Station                           | 693 Old Princes HIGHWAY                       | Service Station           | Regulation under CLM Act not required              | -34.02976735 | 151.0588789 |
| SUTTON FOREST       | Coles Express Sutton Forest West                   | Hume HIGHWAY                                  | Service Station           | Regulation under CLM Act not required              | -34.60808989 | 150.2250592 |
| SWANSEA             | Caltex Service Station                             | 126 Pacific HIGHWAY                           | Service Station           | Regulation under CLM Act not required              | -33.08811841 | 151.6381764 |
| SWANSEA             | Swansea 1 - Wastewater Pumping<br>Station          | 137 and 137a Northcote AVENUE                 | Other Industry            | Under assessment                                   | -33.09745672 | 151.6473257 |
| SYDENHAM            | SRA Land                                           | 117 Railway PARADE                            | Other Industry            | Regulation under CLM Act not required              | -33.91560723 | 151.1656846 |
| SYDENHAM            | Sydenham XPT Maintenance Facility                  | Way STREET                                    | Other Industry            | Regulation under CLM Act not required              | -33.91698468 | 151.1614089 |
| SYDNEY              | Interpro House (OSP 46581)                         | 447 Kent STREET                               | Other Petroleum           | Regulation under CLM Act not required              | -33.87225413 | 151.204761  |
| SYDNEY              | Eurostar Dry Cleaners                              | 100 Oxford STREET                             | Chemical Industry         | Regulation under CLM Act not required              | -33.879333   | 151.215668  |
| SYDNEY OLYMPIC PARK | RMS Western Precinct                               | 14A-14E and 16 Hill ROAD                      | Other Petroleum           | Regulation under CLM Act not required              | -33.82239777 | 151.0758664 |
| SYDNEY OLYMPIC PARK | Haslams Creek South Area 3                         | At Kronos Hill, Kevin Coombes AVENUE          | Landfill                  | Contamination formerly regulated under the CLM Act | -33.84113059 | 151.0602966 |

| Suburb                | SiteName                                    | Address                      | ContaminationActivityType | ManagementClass                                                         | Latitude     | Longitude   |
|-----------------------|---------------------------------------------|------------------------------|---------------------------|-------------------------------------------------------------------------|--------------|-------------|
|                       |                                             |                              |                           | Ongoing maintenance required to manage residual contamination (CLM      |              |             |
| SYDNEY OLYMPIC PARK   | Bicentennial Park                           | Bicentennial DRIVE           | Landfill                  | Act)                                                                    | -33.84456248 | 151.0788116 |
|                       |                                             |                              |                           | Ongoing maintenance required to manage residual contamination (CLM      |              |             |
| SYDNEY OLYMPIC PARK   | Former Golf Driving Range Landfill          | Sarah Durack AVENUE          | Landfill                  | Act)                                                                    | -33.85358517 | 151.0713987 |
|                       |                                             |                              |                           | Ongoing maintenance required to manage residual contamination (CLM      |              |             |
| SYDNEY OLYMPIC PARK   | Kronos Hill Landfill                        | Kevin Coombes AVENUE         | Landfill                  | Act)                                                                    | -33.84014442 | 151.0649521 |
| SYDNEY OLYMPIC PARK   | Wilson Park (Former oil gas plant site)     | Newington ROAD               | Gasworks                  | Ongoing maintenance required to manage residual contamination (CLM Act) | -33.82633586 | 151.0534322 |
|                       |                                             |                              |                           | Ongoing maintenance required to                                         |              |             |
|                       |                                             |                              |                           | manage residual contamination (CLM                                      |              |             |
| SYDNEY OLYMPIC PARK   | Woo-la-ra Landfill                          | Hill ROAD                    | Landfill                  | Act)                                                                    | -33.82695807 | 151.07282   |
| CVDNICY OLVMADIC DADV | Aquatia Cantra Carnark Landfill             | Shana Cauld AVENUE           | Landfill                  | Ongoing maintenance required to manage residual contamination (CLM      | 22.05002420  | 151 0656712 |
| SYDNEY OLYMPIC PARK   | Aquatic Centre Carpark Landfill             | Shane Gould AVENUE           | Landfill                  | Act)                                                                    | -33.85093439 | 151.0656713 |
| SYDNEY OLYMPIC PARK   | Blaxland Common Landfill                    | Jamieson STREET              | Landfill                  | Ongoing maintenance required to manage residual contamination (CLM Act) | -33.82638382 | 151.05972   |
| STUNET OF WILL ARK    | biaxiana Common Lanumi                      | Jamieson STREET              | Landini                   | (Act)                                                                   | -55.02050502 | 131.03372   |
| SYLVANIA              | Caltex Service Station                      | 61 Port Hacking ROAD         | Service Station           | Regulation under CLM Act not required                                   | -34.0140089  | 151.104212  |
|                       |                                             |                              |                           |                                                                         |              |             |
| SYLVANIA HEIGHTS      | Caltex Service Station - Sylvania Heights   | 414-416 Princes HIGHWAY      | Service Station           | Contamination currently regulated under CLM Act                         | -34.02361051 | 151.0895394 |
|                       |                                             |                              |                           |                                                                         |              |             |
| TALBINGO              | Old Town Landfill                           | Bridle STREET                | Landfill                  | Regulation under CLM Act not required                                   | -35.59018237 | 148.3041771 |
| TALBINGO              | T3 Spoil dump and adjoining river sediments | Off Snowy Mountains HIGHWAY  | Landfill                  | Contamination formerly regulated under the CLM Act                      | -35.6177268  | 148.2926158 |
| TALBINGO              | Scuments                                    | On Showy Wodittains Therrwar | Landini                   | the CLIVI Act                                                           | 35.0177200   | 140.2320130 |
| TALBINGO              | Former grit blasting site                   | Old Damsite ROAD             | Other Industry            | Regulation under CLM Act not required                                   | -35.60894551 | 148.3030165 |
|                       |                                             |                              | ,                         |                                                                         |              |             |
| TAMINDA               | Mobil Depot                                 | 9 Hinkler ROAD               | Other Petroleum           | Regulation under CLM Act not required                                   | -31.09584286 | 150.9040493 |
|                       |                                             |                              |                           |                                                                         |              |             |
| TAMWORTH              | Caltex Tamworth Service Station             | 109 Gunnedah ROAD            | Service Station           | Regulation under CLM Act not required                                   | -31.09723226 | 150.8955299 |
|                       |                                             |                              |                           |                                                                         |              |             |
| TAMWORTH              | Curlew Crescent                             | 19-29 Curlew CRESCENT        | Metal Industry            | Regulation under CLM Act not required                                   | -31.06963607 | 150.9069306 |
|                       | Former Service Station, Fitzpatrick Super   |                              |                           |                                                                         |              |             |
| TAMWORTH              | Fund, Tamworth                              | 210 Goonoo Goonoo ROAD       | Service Station           | Regulation under CLM Act not required                                   | -31.10613594 | 150.9234143 |

| Suburb   | SiteName                                       | Address                                      | ContaminationActivityType | ManagementClass                                 | Latitude     | Longitude   |
|----------|------------------------------------------------|----------------------------------------------|---------------------------|-------------------------------------------------|--------------|-------------|
|          |                                                |                                              |                           | Contamination formerly regulated under          |              |             |
| TAMWORTH | Gunnedah Road Site                             | 49 GUNNEDAH ROAD                             | Other Industry            | the CLM Act                                     | -31.09574904 | 150.9021583 |
| TAMWORTH | Elovera Former Sheep Dip                       | 730 Ascot Calala ROAD                        | Cattle Dip                | Regulation under CLM Act not required           | -31.1801846  | 150.962897  |
|          |                                                |                                              |                           |                                                 |              |             |
| TAMWORTH | Housing NSW                                    | 29 -33 White STREET                          | Other Petroleum           | Regulation under CLM Act not required           | -31.0915651  | 150.9357811 |
| TAMWORTH | BP Tamworth Service Station and Depot          | 27-29 Gunnedah ROAD                          | Other Petroleum           | Under assessment                                | -31.09642128 | 150.9058193 |
|          |                                                |                                              |                           |                                                 |              |             |
| TAMWORTH | Former Mobil Service Station                   | 373-375 Armidale ROAD                        | Service Station           | Regulation under CLM Act not required           | -31.10122679 | 150.9441341 |
| TAMWORTH | Kensell's Mitsubishi                           | 11-14 Kable AVENUE                           | Other Petroleum           | Regulation under CLM Act not required           | -31.08921565 | 150.9273063 |
|          |                                                |                                              |                           |                                                 |              |             |
| TAMWORTH | Caltex Star Tamworth                           | 21 White STREET                              | Service Station           | Regulation under CLM Act not required           | -31.09255137 | 150.9341709 |
| TAMWORTH |                                                | (Cnr Scott Rd) 254-256 Goonoo Goonoo<br>ROAD | Service Station           | Regulation under CLM Act not required           | -31.1118945  | 150.9228523 |
| TAMWORTH | Cleanaway Operations Pty Ltd                   | 31 Gunnedah ROAD                             | Other Industry            | Under assessment                                | -31.09621029 | 150.9051567 |
| TAMWORTH | Elgas Depot (former gasworks)                  | 115 Marius STREET                            | Gasworks                  | Under preliminary investigation order           | -31.08546191 | 150.926437  |
|          |                                                |                                              |                           |                                                 |              |             |
| TAMWORTH | Proposed ALDI Store Tamworth                   | 194-196 Peel STREET                          | Other Industry            | Under assessment                                | -31.08522053 | 150.9260054 |
| TARAGO   | Tarago Railway Siding                          | Goulburn STREET                              | Other Industry            | Contamination currently regulated under CLM Act | -35.0659976  | 149.6507068 |
|          |                                                |                                              |                           | Contamination formerly regulated under          |              |             |
| TARCUTTA | Mobil Service Station                          | (Hume Highway) 32 Sydney STREET              | Service Station           | the CLM Act                                     | -35.2772942  | 147.73574   |
| TAREE    | Caltex Taree                                   | 12 Pitt STREET                               | Service Station           | Regulation under CLM Act not required           | -31.90551738 | 152.4783334 |
| TAREE    | Former Caltex Depot                            | 44 Stevenson STREET                          | Other Petroleum           | Regulation under CLM Act not required           | -31.90563595 | 152.4640848 |
| TAREE    | Former BP Service Station (Reliance Petroleum) | 150 Manning River DRIVE                      | Service Station           | Regulation under CLM Act not required           | -31.93842026 | 152.4682056 |

| Suburb      | SiteName                                           | Address                                    | ContaminationActivityType | ManagementClass                                 | Latitude     | Longitude   |  |
|-------------|----------------------------------------------------|--------------------------------------------|---------------------------|-------------------------------------------------|--------------|-------------|--|
| TAREE       | Former Shell Depot                                 | 53-55 Stevenson STREET                     | Other Petroleum           | Regulation under CLM Act not required           | -31.90514622 | 152.4649706 |  |
|             |                                                    |                                            |                           | 30                                              |              |             |  |
| TAREE       | United Service Station and Former Mobil Depot      | 85 Muldoon Street, corner Grey Gum<br>ROAD | Service Station           | Regulation under CLM Act not required           | -31.89744109 | 152.4508569 |  |
|             |                                                    |                                            |                           |                                                 |              |             |  |
| TAREE       | Caltex Service Station                             | 104-106 Commerce STREET                    | Service Station           | Regulation under CLM Act not required           | -31.90720519 | 152.4500926 |  |
| TAREE       | Footpath in front of the former BP service station | 53-55 Victoria STREET                      | Service Station           | Regulation under CLM Act not required           | -31.91015653 | 152.4659073 |  |
|             |                                                    | Part 2R Alexander Avenue and part 98       |                           | Contamination was addressed via the             |              |             |  |
| TAREN POINT |                                                    | Woodlands ROAD                             | Other Industry            | planning process (EP&A Act)                     | -34.01714802 | 151.1252694 |  |
| TAREN POINT | Former Oyster Farmer                               | 1A Atkinson ROAD                           | Other Industry            | Regulation under CLM Act not required           | -34.02081803 | 151.1283282 |  |
|             |                                                    |                                            |                           |                                                 |              |             |  |
| TAREN POINT | Former manufacturing site                          | 46-50 Bay ROAD                             | Other Industry            | Regulation under CLM Act not required           | -34.0236184  | 151.1231649 |  |
| TAREN POINT | Mangrove Lane Cycle pathway                        | Mangrove LANE                              | Unclassified              | Regulation under CLM Act not required           | -34.02404025 | 151.1324783 |  |
| TAREN POINT | Caltex Service Station                             | 114 Taren Point ROAD                       | Service Station           | Regulation under CLM Act not required           | -34.02065958 | 151.1218938 |  |
| TAREN POINT | Shell Coles Express Service Station                | 99-103 Parraweena ROAD                     | Service Station           | Regulation under CLM Act not required           | -34.02630233 | 151.1200897 |  |
|             |                                                    |                                            |                           |                                                 |              |             |  |
| TAREN POINT | Redevelopment Site                                 | 25 Bay ROAD                                | Landfill                  | Regulation under CLM Act not required           | -34.02119591 | 151.1274727 |  |
| TELARAH     | Former Ausgrid Depot                               | Green STREET                               | Other Industry            | Regulation under CLM Act not required           | -32.7276446  | 151.5269745 |  |
| TELARAH     | ACIRL                                              | 5 Junction STREET                          | Other Industry            | Regulation under CLM Act not required           | -32.73457183 | 151.5400128 |  |
|             |                                                    |                                            |                           |                                                 |              |             |  |
| TEMORA      | Woolworths Caltex Temora                           | 98-100 Hoskins STREET                      | Service Station           | Regulation under CLM Act not required           | -34.44324584 | 147.5318667 |  |
| ТЕМРЕ       | Tempe Depot                                        | 1a Gannon STREET                           | Other Petroleum           | Regulation under CLM Act not required           | -33.92408255 | 151.1596469 |  |
| TEMPE       | Caltex Service Station                             | 775 Princes HIGHWAY                        | Service Station           | Contamination currently regulated under CLM Act | -33.9253681  | 151.1596532 |  |


| Suburb        | SiteName                                 | Address                                       | ContaminationActivityType | ManagementClass                                    | Latitude      | Longitude   |
|---------------|------------------------------------------|-----------------------------------------------|---------------------------|----------------------------------------------------|---------------|-------------|
|               |                                          |                                               |                           | Contamination currently regulated                  |               |             |
| ТЕМРЕ         | Former Tempe Tip                         | South STREET                                  | Landfill                  | under CLM Act                                      | -33.9255792   | 151.1668117 |
| TEMPE         | Railcorp Site Renwick Street             | Renwick STREET                                | Other Industry            | Regulation under CLM Act not required              | -33.91997709  | 151.1576058 |
|               | ·                                        |                                               | ,                         |                                                    |               |             |
| TENTERFIELD   | United Tenterfield Service Station       | 94 Rouse STREET                               | Service Station           | Under assessment                                   | -29.062753    | 152.016724  |
| TERALBA       | Lake Macquarie Teralba Sanitary Depot    | Griffen ROAD                                  | Landfill                  | Regulation under CLM Act not required              | -32.9372059   | 151.6214528 |
|               | , , ,                                    |                                               |                           |                                                    |               |             |
| TERALBA       | Lucky's Scrap Metal Yard                 | 21 Racecourse ROAD                            | Metal Industry            | Contamination currently regulated under CLM Act    | -32.946805    | 151.61698   |
| TERANIA CREEK | Former Issands Cattle Tick Din           | Wallace ROAD                                  | Cattle Die                | Contamination formerly regulated under             | 29 65 425 776 | 152 2767420 |
| TERANIA CREEK | Former Izzards Cattle Tick Dip           | Wallace ROAD                                  | Cattle Dip                | the CLM Act                                        | -28.65425776  | 153.2767438 |
| THE ROCKS     | Dawes Point Park                         | Hickson ROAD                                  | Other Industry            | Under assessment                                   | -33.855041    | 151.209547  |
| THIRLMERE     | Thirlmere Rail Heritage Museum           | 10 Barbour ROAD                               | Other Industry            | Regulation under CLM Act not required              | -34.20689245  | 150.5693902 |
| THORNLEIGH    | Caltex Thornleigh Service Station        | 192-198 Pennant Hills (Cnr Duffy Ave)<br>ROAD | Service Station           | Regulation under CLM Act not required              | -33.72660793  | 151.08364   |
|               |                                          |                                               |                           |                                                    |               |             |
| THORNLEIGH    | Coles Express Service Station Thornleigh | 188 - 190 Pennant Hills ROAD                  | Service Station           | Regulation under CLM Act not required              | -33.72502184  | 151.0850569 |
| THORNTON      | Energy Australia Thornton Pole Yard      | 55 Weakleys DRIVE                             | Other Industry            | Regulation under CLM Act not required              | -32.79973875  | 151.6374998 |
| TIGHES HILL   | Holcim Australia Cement Batching Plant   | 340 Industrial DRIVE                          | Other Industry            | Regulation under CLM Act not required              | -32.90532418  | 151.7574857 |
|               |                                          |                                               |                           |                                                    |               |             |
| TIGHES HILL   | SRA Land                                 | 73 Elizabeth STREET                           | Unclassified              | Regulation under CLM Act not required              | -32.90795794  | 151.754631  |
| TIGHES HILL   | Former Ampol Depot                       | 94 Elizabeth STREET                           | Other Petroleum           | Regulation under CLM Act not required              | -32.90658137  | 151.757239  |
| TIGHES HILL   | Former Mobil Terminal                    | 110 Elizabeth STREET                          | Other Petroleum           | Contamination formerly regulated under the CLM Act | -32.90600406  | 151.7586907 |
|               |                                          |                                               |                           |                                                    | 3=3000.00     |             |
| TOCUMWAL      | Former Mobil Depot                       | 250 Murray STREET                             | Other Petroleum           | Regulation under CLM Act not required              | -35.79180653  | 145.5648214 |

| Suburb     | SiteName                                           | Address                               | ContaminationActivityType | ManagementClass                       | Latitude     | Longitude   |
|------------|----------------------------------------------------|---------------------------------------|---------------------------|---------------------------------------|--------------|-------------|
|            |                                                    |                                       |                           |                                       |              |             |
| TOCUMWAL   | Former Mobil Depot                                 | 79-83 Deniliquin ROAD                 | Other Petroleum           | Regulation under CLM Act not required | -35.80914914 | 145.5585528 |
| TOMAGO     | Balcombe Sweat Furnace                             | 26 Laverick AVENUE                    | Metal Industry            | Regulation under CLM Act not required | -32.82557395 | 151.7056416 |
| T0144.00   | 5                                                  | 25.6                                  |                           |                                       | 22 2204552   | 454 7200502 |
| TOMAGO     | Former Hydromet Site                               | 25 School DRIVE                       | Metal Industry            | Under assessment                      | -32.8301553  | 151.7300603 |
| TOMAGO     | RZM Site - Tomago                                  | 1877 Pacific HIGHWAY                  | Other Industry            | Regulation under CLM Act not required | -32.81419433 | 151.6985159 |
| TOMERONG   | Log Cabin Service Station (United Petroleum)       | D1300 Princes HIGHWAY                 | Service Station           | Regulation under CLM Act not required | -35.01820959 | 150.5779687 |
|            | 7-Eleven (Former Mobil) Service Station            |                                       |                           |                                       |              |             |
| TOONGABBIE | Toongabbie                                         | 3 Metella ROAD                        | Service Station           | Regulation under CLM Act not required | -33.78692357 | 150.9462837 |
| TOORMINA   | Caltex Service Station                             | 2 Minorca PLACE                       | Service Station           | Regulation under CLM Act not required | -30.35229568 | 153.0906606 |
| TORONTO    | Coles XP (Former Mobil) Toronto Service<br>Station | 133 - 137 Cary (Cnr Thorne St) STREET | Service Station           | Regulation under CLM Act not required | -33.01187681 | 151.5930879 |
|            |                                                    | , ,                                   |                           |                                       |              |             |
| TORONTO    | BP Toronto Service Station                         | 132 Cary (Cnr Donnelly Ave) STREET    | Service Station           | Regulation under CLM Act not required | -33.01144673 | 151.5937863 |
| TORONTO    | Toronto Hotel                                      | 74 Victory PARADE                     | Unclassified              | Regulation under CLM Act not required | -33.01214835 | 151.5958127 |
| TORONTO    | Caltex Service Station                             | 147 Cary STREET                       | Service Station           | Regulation under CLM Act not required | -33.01288007 | 151.5928388 |
|            | 155B Brighton Avenue, Toronto NSW                  |                                       |                           |                                       |              |             |
| TORONTO    | 2283                                               | 155B Brighton AVENUE                  | Other Industry            | Under assessment                      | -33.014887   | 151.599757  |
| TOUKLEY    | Former Shell Toukley Autoport                      | 211 Main ROAD                         | Service Station           | Regulation under CLM Act not required | -33.26383791 | 151.5386268 |
| TOUKLEY    | 7-Eleven Australia                                 | 287 Main ROAD                         | Service Station           | Regulation under CLM Act not required | -33.26469166 | 151.5462414 |
|            |                                                    |                                       |                           |                                       |              |             |
| TRANGIE    | Caltex Service Station                             | (Mitchell Hwy) 76 Narromine STREET    | Service Station           | Regulation under CLM Act not required | -32.03234676 | 147.985164  |
| TUGGERAH   | BP Tuggerah                                        | 100 Pacific HIGHWAY                   | Service Station           | Regulation under CLM Act not required | -33.30578167 | 151.4198083 |

03/08/2018 Real-time water data



help · contact · customise **State Overview** State Overview **Rivers and Streams** favourites · search · download sites · find a site ■ Real Time Data - Rivers And Streams **Daily River Reports .** Daily River Reports Dams favourites search download sites find a site ■ Real Time Data - Major Dams Groundwater (Telemetered data) favourites - search - download sites find a site ■ Real Time Data - Bores All Groundwater Site details search download sites find a site □-All Groundwater Map **⊞** North Coast Region Hunter Region Greater Sydney Region **⊞** South Coast Region • Northwest Region ■ Central West Region Southwest Region --Upper Murray River Basin --Murray River Basin -Murrumbidgee River Basin ---Lake George Basin Benanee River Basin **⊕** Far West Region **⊞** Great Artesian Basin Meteorology favourites search download sites find a site ■ Real Time Data - Weather Stations **Hunter Integrated Telemetry** System Hunter Integrated Telemetry System bandwidth 
high low



contact WaterNSW

glossary and metadata

03/08/2018 Real-time water data

#### GW400875

Licence: 40BL186654 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC

Work Type: Bore Work Status: Construct.Method:

Owner Type:

Final Depth: 36.60 m Commenced Date: Completion Date: 30/07/1997 Drilled Depth: 36.60 m

Contractor Name: Bungendore Water Bores

Driller: Assistant Driller:

> Property: N/A GWMA: -GW Zone:

Standing Water Level: 16.000 Salinity:

#### **Site Details**

Site Chosen By:

Area/District:

Elevation Source: Unknown

County Parish Form A: MURRA MURRA.042

Cadastre LT 155 DP 713859 QUEANBEYAN Whole Lot 155//713859

Scale:

Region: 40 - Murrumbidgee CMA Map: River Basin: - Unknown

Grid Zone:

Northing: 6083900.0

Latitude: 35°22'02.9"S Longitude: 149°14'27.4"E

Easting: 703588.0 GS Map: -MGA Zone: 0 Coordinate Source: GIS - Geographic Information System

Licensed: MURRAY

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

Cemented; S-Sump; CE-Centralisers

Elevation: 0.00 m (A.H.D.)

| Hole | Pipe | Component | Туре        | From<br>(m) | To<br>(m) | Diameter | Interval | Details |
|------|------|-----------|-------------|-------------|-----------|----------|----------|---------|
| 1    |      | Hole      | Hole        | 0.00        | 36.60     | 200      |          | Unknown |
| 1    | 1    | Casing    | Pvc Class 9 | 0.00        | 36.60     | 150      |          |         |

**Water Bearing Zones** 

| Froi | m     | То    | Thickness | WBZ Type |       | D.D.L. | Yield |       | Duration | Salinity |
|------|-------|-------|-----------|----------|-------|--------|-------|-------|----------|----------|
| (m)  |       | (m)   | (m)       |          | (m)   | (m)    | (L/s) |       | (hr)     | (mg/L)   |
|      |       |       |           |          |       |        |       | (m)   |          |          |
|      | 24.39 | 25.91 | 1.52      | Unknown  | 16.00 |        | 0.25  |       |          |          |
|      | 32.01 | 33.53 | 1.52      | Unknown  | 16.00 |        | 1.01  | 33.53 |          |          |

#### **Geologists Log Drillers Loa**

| From<br>(m) |      | Thickness<br>(m) | Drillers Description    | Geological Material | Comments |
|-------------|------|------------------|-------------------------|---------------------|----------|
| 0.00        | 1.00 | 1.00             | Fill loose shale        | Fill                |          |
| 1.00        | 9.00 | 8.00             | Decomposed yellow shale | Invalid Code        |          |
|             |      |                  |                         |                     |          |

| I   | 9.00  | 21.00 | 12.00 | Soft fractured shale | Invalid Code |  |
|-----|-------|-------|-------|----------------------|--------------|--|
| - [ | 21.00 | 36.00 | 15.00 | Black shale          | Invalid Code |  |

#### Remarks

\*\*\* End of GW400875 \*\*\*

#### GW401615

Licence: 40BL188080 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC

Work Type: Bore Work Status:

Construct.Method: Rotary Air

Owner Type:

 Commenced Date:
 Final Depth: 73.00 m

 Completion Date:
 06/12/2000

 Drilled Depth:
 73.00 m

Contractor Name: J & L Drilling Pty Ltd

Driller: Leon Thomas Sharp

Assistant Driller:

Property: LOT 139 8 BESTON PLACE

GREENLEIGH ESTATE QUEANBEYAN

2620

GWMA: -GW Zone: - Standing Water Level: 41.000

Salinity: Yield: 0.200

#### **Site Details**

Site Chosen By:

 County
 Parish
 Cadastre

 Form A: MURRA
 MURRA.042
 LOT139 DP713859

 Licensed: MURRAY
 QUEANBEYAN
 Whole Lot 139/713859

Scale:

Region: 40 - Murrumbidgee CMA Map:

River Basin: - Unknown Grid Zone:

Area/District:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6083609.0
 Latitude:
 35°22'12.2"S

 Elevation Source:
 Unknown
 Easting:
 703788.0
 Longitude:
 149°14'35.5"E

GS Map: - MGA Zone: 0 Coordinate Source: Map Interpretation

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

| Celliel | nented, 3-3ump, oc-centralisers |           |                  |             |              |      |                    |          |                                     |  |  |  |
|---------|---------------------------------|-----------|------------------|-------------|--------------|------|--------------------|----------|-------------------------------------|--|--|--|
| Hole    | Pipe                            | Component | Туре             | From<br>(m) | To<br>(m)    |      | Inside<br>Diameter | Interval | Details                             |  |  |  |
| 1       |                                 |           |                  | (''')       | (111)        | (mm) | (mm)               |          |                                     |  |  |  |
| _       | _                               |           |                  |             |              |      |                    |          |                                     |  |  |  |
| 1       |                                 | Hole      | Hole             | 0.00        | 73.00        | 203  |                    |          | Rotary Air                          |  |  |  |
| 1       | 1                               | Casing    | Pvc Class 9      | -1.00       | 00 73.00 139 |      | 125                |          | Glued                               |  |  |  |
| 1       | 1                               | Opening   | Slots - Vertical | 55.00       | 61.00        | 139  |                    | 1        | PVC Class 9, SL: 200.0mm, A: 3.00mm |  |  |  |
| 1       | 1                               | Opening   | Slots - Vertical | 67.00       | 73.00        | 139  |                    | 1        | PVC Class 9, SL: 200.0mm, A: 3.00mm |  |  |  |

**Water Bearing Zones** 

| Ì |       |       | Thickness | WBZ Type | -     |     | Yield | Hole  |          | Salinity |
|---|-------|-------|-----------|----------|-------|-----|-------|-------|----------|----------|
|   | (m)   | (m)   | (m)       |          | (m)   | (m) | (L/s) |       | (hr)     | (mg/L)   |
|   |       |       |           |          |       |     |       | (m)   |          |          |
|   | 55.00 | 55.20 | 0.20      | Unknown  | 41.00 |     |       | 56.00 | 02:00:00 |          |
|   | 68.00 | 68.50 | 0.50      | Unknown  |       |     | 0.20  | 71.00 | 02:00:00 |          |

## Geologists Log

| _ = | ,,,,, |    | 79        |                      |                     |          |
|-----|-------|----|-----------|----------------------|---------------------|----------|
| Γ   | From  | То | Thickness | Drillers Description | Geological Material | Comments |

| (r | n)   | (m)   | (m)   |               |       |  |
|----|------|-------|-------|---------------|-------|--|
|    | 0.00 | 13.00 | 13.00 | SHALE, YELLOW | Shale |  |
| 1  | 3.00 | 73.00 | 60.00 | SHALE, GREY   | Shale |  |

#### Remarks

\*\*\* End of GW401615 \*\*\*

#### GW402365

Licence: 40BL189463 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore Work Status:

Construct.Method: Rotary - Percussion (Down Hole Hammer)

Owner Type:

Commenced Date: Final Depth: 79.00 m Completion Date: 21/05/2003 Drilled Depth: 79.00 m

Contractor Name: Central West Water Drillers

Driller: Michael Patrick O'neill

Assistant Driller:

Property: N/A 22 LONERGAN DRIVE Standing Water Level: 18.000

QUEANBEYAN 2620 GWMA:

Salinity: Yield: 2.750 GW Zone:

#### **Site Details**

Site Chosen By:

Cadastre County Parish LT127 DP709217 Form A: MURRA MURRA.042 Licensed: MURRAY QUEANBEYAN Whole Lot 127//709217

CMA Map: 8727-3N Region: 40 - Murrumbidgee

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Northing: 6083419.0 Elevation: 0.00 m (A.H.D.) Latitude: 35°22'18.1"S Elevation Source: (Unknown) Easting: 704101.0 Longitude: 149°14'48.1"E

GS Map: -MGA Zone: 0 Coordinate Source: Map Interpretation

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

Cemented; S-Sump; CE-Centralisers

| Hole | Pipe | Component | Туре             | From<br>(m) | To<br>(m) |     | Inside<br>Diameter<br>(mm) | Interval | Details                                                      |
|------|------|-----------|------------------|-------------|-----------|-----|----------------------------|----------|--------------------------------------------------------------|
| 1    |      | Hole      | Hole             | 0.00        | 79.00     | 175 |                            |          | Rotary - Percussion (Down Hole Hammer)                       |
| 1    | 1    | Casing    | Pvc Class 9      | -0.30       | 79.00     | 139 | 125                        |          | Driven into Hole, Riveted                                    |
| 1    | 1    | Opening   | Slots - Vertical | 30.00       | 42.00     | 139 |                            | 1        | Casing - Hand Sawn Slot, PVC Class 9, SL: 200.0mm, A: 2.00mm |
| 1    | 1    | Opening   | Slots - Vertical | 54.00       | 72.00     | 139 |                            | 1        | Casing - Hand Sawn Slot, PVC Class 9, SL: 200.0mm, A: 2.00mm |

**Water Bearing Zones** 

| From<br>(m) |       | Thickness<br>(m) | WBZ Type |       | Yield<br>(L/s) | Hole<br>Depth<br>(m) | Salinity<br>(mg/L) |
|-------------|-------|------------------|----------|-------|----------------|----------------------|--------------------|
| 34.00       | 35.00 | 1.00             | Unknown  | 18.00 | 0.25           |                      |                    |
| 55.00       | 56.00 | 1.00             | Unknown  | 18.00 | 0.50           |                      |                    |
| 66.00       | 70.00 | 4.00             | Unknown  | 18.00 | 2.00           |                      |                    |

#### **Geologists Log**

**Drillers Log** 

| From<br>(m) |       | Thickness<br>(m) | Drillers Description | Geological Material | Comments |
|-------------|-------|------------------|----------------------|---------------------|----------|
| 0.00        | 6.00  | 6.00             | Shale, yellow        | Shale               |          |
| 6.00        | 20.00 | 14.00            | Shale, grey          | Shale               |          |
| 20.00       | 44.00 | 24.00            | Shale, black         | Shale               |          |
| 44.00       | 60.00 | 16.00            | Shale, green         | Shale               |          |
| 60.00       | 79.00 | 19.00            | Shale, black         | Shale               |          |

#### Remarks

21/05/2003: Form A Remarks: Sump installed from 70 metres to 79 metres.

\*\*\* End of GW402365 \*\*\*

#### GW402771

Licence: 40BL189608 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC

Intended Purpose(s):

Work Type: Bore Work Status: Construct.Method: Owner Type:

Final Depth: 66.00 m Commenced Date: Completion Date: 03/10/2003 Drilled Depth: 66.00 m

Contractor Name: Bungendore Water Bores

Driller: Daniel Robert Hill

Assistant Driller:

Property: N/A 9 O ROURKE PLACE QUEANBEYAN Standing Water Level: 22.000

GWMA: -Salinity: Yield: 1.063 GW Zone:

#### **Site Details**

Site Chosen By:

County Parish Cadastre LT153 DP713859 Form A: MURRA MURRA.42 Licensed: MURRAY QUEANBEYAN Whole Lot 153//713859

CMA Map: 8727-3N Region: 40 - Murrumbidgee

River Basin: - Unknown Grid Zone: Scale:

Area/District:

Northing: 6083848.0 Elevation: 0.00 m (A.H.D.) Latitude: 35°22'04.6"S Elevation Source: (Unknown) Easting: 703503.0 Longitude: 149°14'24.0"E

GS Map: -MGA Zone: 0 Coordinate Source: Unidentified Location

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

Cemented; S-Sump; CE-Centralisers

| Hole | Pipe | Component | Туре              |       | To<br>(m) | Outside<br>Diameter<br>(mm) |     | Interval | Details                                   |
|------|------|-----------|-------------------|-------|-----------|-----------------------------|-----|----------|-------------------------------------------|
| 1    |      | Hole      | Hole              | 0.00  | 66.00     | 200                         |     |          | Rotary - Air/Foam                         |
| 1    |      | Annulus   | Waterworn/Rounded | 0.00  | 66.00     |                             |     |          | Q:1.500m3                                 |
| 1    | 1    | Casing    | Pvc Class 9       | 0.00  | 66.00     | 160                         | 152 |          | Glued                                     |
| 1    | 1    | Opening   | Slots             | 30.00 | 66.00     | 160                         |     | 1        | Slotted In Hole, , SL: 150.0mm, A: 2.00mm |

**Water Bearing Zones** 

| From<br>(m) |       | Thickness<br>(m) | WBZ Type |       | Yield<br>(L/s) | Hole<br>Depth<br>(m) | Salinity<br>(mg/L) |
|-------------|-------|------------------|----------|-------|----------------|----------------------|--------------------|
| 22.00       | 22.00 | 0.00             | Unknown  | 22.00 |                |                      |                    |
| 45.00       | 48.00 | 3.00             | Unknown  | 22.00 |                |                      |                    |
| 58.00       | 60.00 | 2.00             | Unknown  | 22.00 |                |                      |                    |

#### **Geologists Log Drillers Log**

From To Thickness Drillers Description Geological Material Comments

| (m)   | (m)   | (m)   |                       |       |  |
|-------|-------|-------|-----------------------|-------|--|
| 0.00  | 0.30  | 0.30  | soil                  | Soil  |  |
| 0.30  | 15.00 | 14.70 | Shale, soft weathered | Shale |  |
| 15.00 | 66.00 | 51.00 | Shale, blacky grey    | Shale |  |

#### Remarks

12/11/2009: Nat Carling, Updated coordinates (as existing were entered as a negative value, which is invalid), based in the centre of the authorised land.

\*\*\* End of GW402771 \*\*\*

#### GW402778

Licence: 40BL189490 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC

Work Type: Bore Work Status:

Construct.Method: Rotary - Air/Foam

Owner Type:

Final Depth: 36.00 m Commenced Date: Completion Date: 02/10/2003 Drilled Depth: 36.00 m

Contractor Name: Bungendore Water Bores

Driller: Daniel Robert Hill

Assistant Driller:

Property: N/A 11 O ROURKE PLACE Standing Water Level: 19.000

QUEANBEYAN 2620 GWMA:

Salinity: Yield: 3.375 GW Zone:

#### **Site Details**

Site Chosen By:

County Parish Cadastre LT154 DP713859 Form A: MURRA MURRA.42 Licensed: MURRAY QUEANBEYAN Whole Lot 154//713859

CMA Map: 8727-3N Region: 40 - Murrumbidgee

River Basin: - Unknown

Area/District:

Grid Zone: Scale:

Northing: 6083900.0 Elevation: 0.00 m (A.H.D.) Latitude: 35°22'02.9"S Elevation Source: (Unknown) Easting: 703497.0 Longitude: 149°14'23.8"E

GS Map: -MGA Zone: 0 Coordinate Source: GPS - Global Positioning System

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

| Hole | Pipe | Component | Туре              | From<br>(m) |       | Outside<br>Diameter<br>(mm) |     | Interval | Details                                               |
|------|------|-----------|-------------------|-------------|-------|-----------------------------|-----|----------|-------------------------------------------------------|
| 1    |      | Hole      | Hole              | 0.00        | 36.00 | 200                         | ()  |          | Rotary - Air/Foam                                     |
| 1    |      | Annulus   | Waterworn/Rounded | 0.00        | 36.00 |                             |     |          | Graded, Q:1.200m3                                     |
| 1    | 1    | Casing    | Pvc Class 9       | -0.50       | 36.00 | 160                         | 152 |          | Seated on Bottom, Driven into Hole, Screwed and Glued |
| 1    | 1    | Opening   | Slots - Vertical  | 23.00       | 36.00 | 160                         |     | 1        | Casing - Hand Sawn Slot, PVC Class 9, SL: 150.0mm, A: |
| 1    |      |           |                   |             |       |                             |     |          | 2.00mm                                                |

#### Water Bearing Zones

| From  | То    | Thickness | WBZ Type | S.W.L. | D.D.L. | Yield | Hole |          | Salinity |
|-------|-------|-----------|----------|--------|--------|-------|------|----------|----------|
| (m)   | (m)   | (m)       |          | (m)    | (m)    | (L/s) |      | (hr)     | (mg/L)   |
|       |       |           |          |        |        |       | (m)  |          |          |
| 23.00 | 24.00 | 1.00      | Unknown  | 19.00  |        | 0.13  |      |          |          |
| 26.00 | 28.00 | 2.00      | Unknown  | 19.00  |        | 2.00  |      |          |          |
| 32 00 | 34 00 | 2.00      | Unknown  | 19.00  |        | 1 25  |      | 01:00:00 |          |

#### **Geologists Log**

**Drillers Log** 

| From<br>(m) | To<br>(m) | Thickness<br>(m) | Drillers Description  | Geological Material | Comments |
|-------------|-----------|------------------|-----------------------|---------------------|----------|
| 0.00        | 0.30      | 0.30             | SOIL                  | Soil                |          |
| 0.30        | 16.00     | 15.70            | SHALE, SOFT WEATHERED | Shale               |          |
| 16.00       | 36.00     | 20.00            | SHALE, HARD GREY      | Shale               |          |

#### Remarks

\*\*\* End of GW402778 \*\*\*

#### GW402842

Licence: 40BL189772 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC

Work Type: Bore Work Status:

Construct.Method: Rotary - Air/Foam

Owner Type:

Contractor Name: Bungendore Water Bores

Driller: Daniel Robert Hill

Assistant Driller:

Property: N A 7 O' ROURKE PL QUEANBEYAN

Standing Water Level: 24.000 Salinity:

GWMA: -

GW Zone:

Yield: 2.250

#### **Site Details**

Site Chosen By:

County Parish Cadastre

 Form A: MURRA
 MURRA.42

 Licensed: MURRAY
 QUEANBEYAN
 Whole Lot 152//713859

Scale:

Region: 40 - Murrumbidgee CMA Map: 8727-3N

River Basin: - Unknown

Area/District:

Grid Zone:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6083811.0
 Latitude:
 35°22'05.8"S

 Elevation Source:
 (Unknown)
 Easting:
 703514.0
 Longitude:
 149°14'24.5"E

GS Map: - MGA Zone: 0 Coordinate Source: GPS - Global Positioning System

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S-Sump; CE-Centralisers

| Hole | Pipe | Component | Туре              | From<br>(m) |       | Outside<br>Diameter<br>(mm) |     | Interval | Details                                               |
|------|------|-----------|-------------------|-------------|-------|-----------------------------|-----|----------|-------------------------------------------------------|
| 1    |      | Hole      | Hole              | 0.00        | 60.00 | 200                         | ` ′ |          | Rotary - Air/Foam                                     |
| 1    |      | Annulus   | Waterworn/Rounded | 0.00        | 60.00 |                             |     |          | Graded, Q:1.500m3                                     |
| 1    | 1    | Casing    | Pvc Class 9       | -0.50       | 60.00 | 160                         | 152 |          | Screwed and Glued                                     |
| 1    | 1    | Opening   | Slots - Vertical  | 30.00       | 60.00 | 160                         |     | 1        | Casing - Hand Sawn Slot, PVC Class 9, SL: 120.0mm, A: |
| 1    |      |           |                   |             |       |                             |     |          | 2.00mm                                                |

**Water Bearing Zones** 

| From<br>(m) | To<br>(m) | Thickness<br>(m) | WBZ Type |       | D.D.L.<br>(m) | Yield<br>(L/s) |          | Salinity<br>(mg/L) |
|-------------|-----------|------------------|----------|-------|---------------|----------------|----------|--------------------|
| 36          | 00 38.00  | 2.00             | Unknown  | 24.00 |               | 1.00           |          |                    |
| 53          | 00 55.00  | 2.00             | Unknown  | 24.00 |               | 1.25           | 01:00:00 |                    |

#### Geologists Log Drillers Log

| From  | То    | Thickness | Drillers Description      | Geological Material | Comments |
|-------|-------|-----------|---------------------------|---------------------|----------|
| (m)   | (m)   | (m)       |                           | -                   |          |
| 0.00  | 1.00  | 1.00      | SHALE, SURFACE ROCKS      | Shale               |          |
| 1.00  | 6.00  | 5.00      | SHALE, SOFT BROWN         | Shale               |          |
| 6.00  | 17.00 | 11.00     | SHALE, LIGHT BROWN        | Shale               |          |
| 17.00 | 60.00 | 43.00     | SHALES, BLUE/BLACK DACITE | Shale               |          |

#### Remarks

\*\*\* End of GW402842 \*\*\*

#### GW403165

Licence: 40BL190601 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore
Work Status:
Construct.Method:
Owner Type:

 Commenced Date:
 Final Depth: 78.00 m

 Completion Date:
 13/07/2005

 Drilled Depth:
 78.00 m

Contractor Name:

Driller: Michael Patrick O'neill

Assistant Driller:

Property: N/A 6 GRANVILLE CLOSE Standing Water Level: 29.000 QUEANBEYAN 2620

GWMA: - Salinity: GW Zone: - Yield: 3.250

**Site Details** 

Site Chosen By:

 County
 Parish
 Cadastre

 Form A: MURRA
 MURRA.42
 LT109 DP705742

 Licensed: MURRAY
 QUEANBEYAN
 Whole Lot 109//705742

Region: 40 - Murrumbidgee CMA Map: 8727-3N

River Basin: - Unknown

Area/District:

Grid Zone: Scale:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6083916.0
 Latitude:
 35°22'02.2"S

 Elevation Source:
 (Unknown)
 Easting:
 703778.0
 Longitude:
 149°14'34.9"E

GS Map: - MGA Zone: 0 Coordinate Source: Map Interpretation

Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

Cemented; S-Sump; CE-Centralisers

| Hole | Pipe | Component | Туре             | From<br>(m) | To<br>(m) |     | Inside<br>Diameter<br>(mm) | Interval | Details                                |
|------|------|-----------|------------------|-------------|-----------|-----|----------------------------|----------|----------------------------------------|
| 1    |      | Hole      | Hole             | 0.00        | 78.00     | 200 |                            |          | Rotary - Percussion (Down Hole Hammer) |
| 1    | 1    | Casing    | Pvc Class 9      | 10.30       | 72.00     | 140 | 128                        |          | Glued                                  |
| 1    | 1    | Opening   | Slots - Vertical | 66.00       | 74.00     | 140 |                            | 1        | PVC Class 9, SL: 200.0mm, A: 2.00mm    |

**Water Bearing Zones** 

| 1 | From | То  | Thickness | WBZ Type | S.W.L. | D.D.L. | Yield | Hole  | Duration | Salinity |
|---|------|-----|-----------|----------|--------|--------|-------|-------|----------|----------|
|   | (m)  | (m) | (m)       |          | (m)    | (m)    | (L/s) | Depth | (hr)     | (mg/L)   |
|   |      |     |           |          |        |        |       | (m)   |          |          |

Geologists Log Drillers Log

| From<br>(m) |       | Thickness<br>(m) | Drillers Description | Geological Material | Comments |
|-------------|-------|------------------|----------------------|---------------------|----------|
| 0.00        | 1.00  | 1.00             | Clay, red            | Clay                |          |
| 1.00        | 7.00  | 6.00             | Clay, yellow         | Clay                |          |
| 7.00        | 20.00 | 13.00            | Shale, yellow        | Shale               |          |
|             |       |                  |                      |                     |          |

23/08/2018

58.00 Shale, black Shale

| 20.00 | 78.00 | Remarks

\*\*\* End of GW403165 \*\*\*

#### GW404162

Licence: 40BL189243 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC

Work Type: Bore

Work Status: Supply Obtained
Construct.Method: Rotary Air
Owner Type: Private

 Commenced Date:
 Final Depth: 100.00 m

 Completion Date:
 23/05/2005
 Drilled Depth: 100.00 m

Contractor Name: Central West Water Drillers

Driller: Michael Patrick O'neill

Assistant Driller:

Property: N/A 35 LONERGAN DRIVE Standing Water Level: 22.000

QUEANBEYAN 2620

 GWMA:
 Salinity: Good

 GW Zone:
 Yield: 4.500

#### **Site Details**

Site Chosen By:

 County
 Parish
 Cadastre

 Form A: MURRA
 MURRA.42
 130//709217

Scale:

CMA Map: 8727-3N

Region: 40 - Murrumbidgee
River Basin: 410 - MURRUMBIDGEE RIVER

Area/District:

Grid Zone:

 Elevation:
 0.00 m (A.H.D.)
 Northing:
 6083333.0
 Latitude:
 35°22'20.9"S

 Elevation Source:
 Unknown
 Easting:
 704109.0
 Longitude:
 149°14'48.5"E

GS Map: - MGA Zone: 0 Coordinate Source: GIS - Geographic Information System

### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented; S.Sumn; CF-Centralisers

| Cemer | itea; S-S | sump; CE-Centra | lisers      |          |        |          |          |          |                          |
|-------|-----------|-----------------|-------------|----------|--------|----------|----------|----------|--------------------------|
| Hole  | Pipe      | Component       | Туре        | From     | To     | Outside  | Inside   | Interval | Details                  |
|       | 1 '       | l .             | **          | (m)      | (m)    | Diameter | Diameter |          |                          |
|       |           |                 |             | <u> </u> | ` ′    | (mm)     | (mm)     |          |                          |
| 1     |           | Hole            | Hole        | 0.00     | 100.00 | 125      |          |          | Rotary Air               |
| 1     | 1         | Casing          | Pvc Class 9 | -0.30    | 90.00  | 125      |          |          | Seated on Bottom,        |
| 1     | 1         | Opening         | Slote       | 90.00    | 100.00 | 125      |          | 1        | PVC Class 9 Inline Glued |

#### Water Bearing Zones

| - 0 |             |           |                  |          |       |               |                |  |                    |   |
|-----|-------------|-----------|------------------|----------|-------|---------------|----------------|--|--------------------|---|
|     | From<br>(m) | To<br>(m) | Thickness<br>(m) | WBZ Type | 1.7   | D.D.L.<br>(m) | Yield<br>(L/s) |  | Salinity<br>(mg/L) |   |
|     | 96.00       | 97.00     | 1.00             | Unknown  | 22.00 |               | 4 50           |  |                    | ı |

## Geologists Log

| - | ,,,,,, | 13 20 | 9         |                      |                     |          |
|---|--------|-------|-----------|----------------------|---------------------|----------|
|   | rom    |       | Thickness | Drillers Description | Geological Material | Comments |
| Ŀ | m)     | (m)   | (m)       |                      |                     |          |
| Г | 0.00   | 7.00  | 7.00      | SHALE - YELLOW       | Shale               |          |
| Г |        |       |           |                      |                     |          |

| 7.00  | 18.00  | 11.00 | SHALE - GREY     | Shale     |  |
|-------|--------|-------|------------------|-----------|--|
| 18.00 | 90.00  | 72.00 | SHALE - RED/GREY | Shale     |  |
| 90.00 | 100.00 | 10.00 | LIMESTONE        | Limestone |  |

#### Remarks

23/05/2005: Form A Remarks:

ENTERED BY PATRICIA EWERS ON 5TH FEBRUARY 2008. FORM AG - VERY FEW DETAILS PROVIDED.

INFORMATION NOT PROVIDED ON FORM:

NO INFORMATION ON SALINITY NO INFORMATION ON PUMPING TESTS ON BORE COMPLETION

NO DETAILS ON CASING ATTACHMENT METHOD

NO DETAILS ON SLOT OPENING TYPE, ATTACHMENT METHOD AND APERTURE SIZE

NO DETAILS ON GRAVEL PACK

NO DETAILS ON BORE DEVELOPMENT

NO INFORMATION ON WHO CHOSE BORE LOCATION

\*\*\* End of GW404162 \*\*\*

#### GW416069

Licence: 40BL190091 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC

Work Type: Bore

Work Status: Supply Obtained

Construct.Method:

Owner Type: Private

Final Depth: 113.00 m Commenced Date: Completion Date: 19/07/2004 Drilled Depth: 113.00 m

Contractor Name: Central West Water Drillers

Driller: Assistant Driller:

Property: N/A 4 WOODMAN PLACE Standing Water Level: 74.000

QUEANBEYAN 2620 GWMA:

Salinity: Good GW Zone: Yield:

#### **Site Details**

Site Chosen By:

Cadastre County Parish Form A: MURRA MURRA.42 162//733091

CMA Map: 8727-3N

River Basin: 410 - MURRUMBIDGEE RIVER

Region: 40 - Murrumbidgee

Elevation: 0.00 m (A.H.D.)

Area/District:

Elevation Source: Unknown

Grid Zone: Scale:

Northing: 6083831.0 Latitude: 35°22'04.6"S

Easting: 704272.0 GS Map: MGA Zone: 0 Coordinate Source: GPS - Global Positioning

System

Longitude: 149°14'54.5"E

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

| Hole | Pipe | Component | Туре        | From  | То     | Outside  | Inside | Interval | Details     |
|------|------|-----------|-------------|-------|--------|----------|--------|----------|-------------|
|      | l    |           |             | (m)   | (m)    | Diameter |        |          |             |
|      |      |           |             |       |        | (mm)     | (mm)   |          |             |
| 1    |      | Hole      | Hole        | 0.00  | 113.00 | 125      |        |          | Unknown     |
| 1    | 1    | Casing    | Pvc Class 9 | 0.00  | 113.00 | 125      |        |          |             |
| 1    | 1    | Opening   | Slots       | 72.00 | 78.00  | 125      |        | 1        | PVC Class 9 |
| 1    | 1    | Opening   | Slots       | 96.00 | 107.00 | 125      |        | 1        | PVC Class 9 |

**Water Bearing Zones** 

| From<br>(m) |        | Thickness<br>(m) | WBZ Type | - | Yield<br>(L/s) |     | Salinity<br>(mg/L) |
|-------------|--------|------------------|----------|---|----------------|-----|--------------------|
| 72.00       | 78.00  | 6.00             | Unknown  |   |                | (m) |                    |
| 96.00       | 107.00 |                  | Unknown  |   |                |     |                    |

### **Geologists Log Drillers Log**

Thickness Drillers Description From To Geological Material Comments

| 03/08/2018  | https://realtimedata.waternsw.com.au/wgen/user | rs/e285930cb5e84c64b362e61dea0d67fa/gw416069.agagpf_org.wsr.htm?1533265552211 |
|-------------|------------------------------------------------|-------------------------------------------------------------------------------|
| (m) (m) (m) |                                                |                                                                               |

#### Remarks

19/07/2004: Form A Remarks: Helen Lester: Coordinates are taken from charted licence location. Bore/Excavation Form.

No other details were provided.

\*\*\* End of GW416069 \*\*\*

#### GW416092

Licence: 40WA411028 Licence Status: CURRENT

Authorised Purpose(s): DOMESTIC Intended Purpose(s): STOCK, DOMESTIC

Work Type: Bore

Work Status: Supply Obtained

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: 102.00 m

Completion Date: 31/10/2007 Drilled Depth:

Contractor Name: Central West Water Drillers

Driller: Michael Patrick O'neill

Assistant Driller:

Property: N/A 4 BESTON PLACE QUEANBEYAN Standing Water Level: 32.000

GWMA:

Salinity: Yield: 0.630 GW Zone:

#### **Site Details**

Site Chosen By:

Cadastre County Parish Form A: MURRA MURRA.42 137//713859

CMA Map: 8727-3N Region: 40 - Murrumbidgee

River Basin: 410 - MURRUMBIDGEE RIVER

Area/District:

Grid Zone: Scale:

Northing: 6083590.0 Elevation: 0.00 m (A.H.D.) Latitude: 35°22'12.8"S Elevation Source: Unknown Easting: 703793.0 Longitude: 149°14'35.8"E

GS Map: MGA Zone: 0 Coordinate Source: GPS - Global Positioning

System

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure Cemented: S-Sump: CE-Centralisers

|      | otherica, o dump, de dominations |           |             |             |           |          |  |          |             |
|------|----------------------------------|-----------|-------------|-------------|-----------|----------|--|----------|-------------|
| Hole | Pipe                             | Component | Туре        | From<br>(m) | To<br>(m) | Diameter |  | Interval | Details     |
| 1    |                                  | Hole      | Hole        | 0.00        | 102.00    | 0        |  |          | (Unknown)   |
| 1    | 1                                | Casing    | Pvc Class 9 | -1.00       | 102.00    | 132      |  |          |             |
| 1    | 1                                | Opening   | Screen      | 72.00       | 78.00     |          |  | 1        | PVC Class 9 |
| 1    | 1                                | Opening   | Screen      | 90.00       | 96.00     |          |  | 1        | PVC Class 9 |

Water Bearing Zones

| From | То  | Thickness | WBZ Type | S.W.L. | D.D.L. | Yield | Hole  | Duration | Salinity |
|------|-----|-----------|----------|--------|--------|-------|-------|----------|----------|
| (m)  | (m) | (m)       |          | (m)    |        | (L/s) | Depth | (hr)     | (mg/L)   |
| 1    | l   | l         |          |        |        |       | (m)   |          |          |

#### **Geologists Log Drillers Log**

| From | То  | Thickness | Drillers Description | Geological Material | Comments |
|------|-----|-----------|----------------------|---------------------|----------|
| (m)  | (m) | (m)       | ·                    | -                   |          |

#### Remarks

31/10/2007: Form A Remarks: Helen Lester: Coordinates are taken from charted licence location. Bore/Excavation Form No other details were provided.

\*\*\* End of GW416092 \*\*\*

#### GW416490

Licence: 40BL189614 Licence Status: CONVERTED

Authorised Purpose(s): DOMESTIC Intended Purpose(s): DOMESTIC, IRRIGATION

Work Type: Bore

Work Status: Supply Obtained

Construct.Method:

Owner Type: Private

Commenced Date: Final Depth: 66.00 m

Completion Date: 04/01/2012 Drilled Depth:

Contractor Name:

Driller: Unkown Unknown

Assistant Driller:

Property: N/A 5 O ROURKE PLACE QUEANBEYAN Standing Water Level:

GWMA: Salinity: GW Zone: Yield: 1.000

#### **Site Details**

Site Chosen By:

Parish Cadastre County Form A: MURRA MURRA.42 151//713859

CMA Map: 8727-3N

River Basin: 410 - MURRUMBIDGEE RIVER

Region: 40 - Murrumbidgee

Area/District:

Grid Zone: Scale:

Elevation: 0.00 m (A.H.D.) Northing: 6083708.0 Latitude: 35°22'09.2"S Elevation Source: Unknown Easting: 703496.0 Longitude: 149°14'23.9"E

GS Map: -MGA Zone: 0 Coordinate Source: Unknown

#### Construction

Negative depths indicate Above Ground Level; C-Cemented; SL-Slot Length; A-Aperture; GS-Grain Size; Q-Quantity; PL-Placement of Gravel Pack; PC-Pressure

Cemented: S-Sump: CF-Centralisers

| Hole | Pipe | Component | Туре |      |       | Outside<br>Diameter<br>(mm) |    | Interval | Details |
|------|------|-----------|------|------|-------|-----------------------------|----|----------|---------|
| 1    |      | Hole      | Hole | 0.00 | 66.00 | 150                         | (, |          | Unknown |

#### **Water Bearing Zones**

| 1 | From | То  | Thickness | WBZ Type | S.W.L. | D.D.L. | Yield | Hole  | Duration | Salinity |
|---|------|-----|-----------|----------|--------|--------|-------|-------|----------|----------|
|   | (m)  | (m) | (m)       |          | (m)    | (m)    | (L/s) | Depth | (hr)     | (mg/L)   |
|   |      |     |           |          |        |        |       | (m)   |          |          |

### **Geologists Log**

**Drillers Log** 

| From | То  | Thickness | Drillers Description | Geological Material | Comments |
|------|-----|-----------|----------------------|---------------------|----------|
| (m)  | (m) | (m)       |                      | -                   |          |

#### Remarks

04/01/2012: Form A Remarks:

Helen Lester: Coordinates are taken from charted licence location. Form AG

Completion Date entered as per signage of form.

PVC casing 150mm

No other details were provided.

\*\*\* End of GW416490 \*\*\*



## FINAL DRAFT

## STAGE 3 CONTAMINATION ASSESSMENT, JUMPING CREEK QUEANBEYAN, NSW

Prepared for:

Canberra Investment Corporation Pty Ltd PO BOX 1000 Civic Square ACT 2608

Report Date: 16 June 2010 Project Ref: ENVICANB00233AA

Written/Submitted by:

Written/Submitted by:

Reviewed/Approved by:

Charles Lucas Environmental Scientist Julian Howard Project Manager Gary Bagwell Principal





16 June 2010

Canberra Investment Corporation Pty Ltd PO BOX 1000 Civic Square ACT 2608

**Attention: Michael Nolan** 

Dear Michael

RE: Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

Coffey Environments Pty. Ltd. (Coffey) is pleased to provide our Stage 3 Contamination Assessment report for the above site.

We draw your attention to the enclosed sheet entitled "Important Information about Your Coffey Environmental Report" which should be read in conjunction with the report.

We trust that this document meets with your requirements. If you require any further information regarding this document, please do not hesitate to contact the undersigned.

For and on behalf of Coffey Environments Pty Ltd

Adrian Powell Project Manager

## **RECORD OF DISTRIBUTION**

# FINAL DRAFT

| No. of copies | Report File Name         | Report<br>Status | Date         | Prepared for:                   | Initials |
|---------------|--------------------------|------------------|--------------|---------------------------------|----------|
| 1             | ENVICANB00233AA-R01b.pdf | Final Draft      | 16 June 2010 | Canberra Investment Corporation | MB.      |
| 1             | ENVICANB00233AA-R01b.pdf | Final Draft      | 16 June 2010 | Coffey Environments Pty Ltd     |          |

## **CONTENTS**

# FINAL DRAFT

| 1     | INTRODUCTION                                                               | 1  |
|-------|----------------------------------------------------------------------------|----|
| 1.1   | Background                                                                 | 1  |
| 1.2   | Objectives                                                                 | 2  |
| 1.3   | Scope of Works                                                             | 2  |
| 2     | SITE IDENTIFICATION AND DESCRIPTION                                        | 4  |
| 3     | SITE CONDITION AND ENVIRONMENT                                             | 5  |
| 3.1   | General Site Condition                                                     | 5  |
| 3.2   | Topography                                                                 | 6  |
| 3.3   | Geology                                                                    | 6  |
| 3.4   | Hydrology and Hydrogeology                                                 | 6  |
| 3.5   | Local Environmental Receptors                                              | 7  |
| 4     | SITE HISTORY                                                               | 8  |
| 4.1   | Historical Land Use                                                        | 8  |
| 4.2   | Zoning                                                                     | 8  |
| 5     | SUMMARY OF PREVIOUS ASSESSMENTS                                            | 9  |
| 5.1   | Summary of Previous Assessments                                            | 9  |
| 5.1.1 | IT Environmental Stage 2 Environmental Investigation (1999)                | 9  |
| 5.1.2 | EGIS Consulting Summary Audit Report (2001)                                | 10 |
| 5.1.3 | Parsons Brinckerhoff Supplementary Contamination Assessment (2007)         | 11 |
| 5.1.4 | New South Wales Archaeology Aboriginal Archaeological Assessment (2009)    | 12 |
| 5.1.5 | Integrity Assessment of Previous Investigations and Historical Information | 12 |
| 5.2   | Contaminants of Potential Concern and Areas of Environmental Concern       | 13 |
| 6     | SAMPLING ANALYSIS AND QUALITY PLAN                                         | 0  |
| 6.1   | Data Quality Objectives                                                    | 0  |
| 6.1.1 | Step 1 – State the Problem                                                 | 0  |

## **CONTENTS**

|       | FINAL D R A                                     | FΙ |
|-------|-------------------------------------------------|----|
| 6.1.2 | Step 2 – Identify the Decisions                 | 1  |
| 6.1.3 | Step 3 – Identify Inputs to the Decision        | 1  |
| 6.1.4 | Step 4 – Define the Study Boundaries            | 1  |
| 6.1.5 | Step 5 – Develop a Decision Rule                | 1  |
| 6.1.6 | Step 6 – Specify Limits on Decision Errors      | 3  |
| 6.1.7 | Step 7 – Optimise the Design for Obtaining Data | 3  |
| 6.2   | Proposed Sampling Approach                      | 3  |
| 6.2.1 | Sample Strategy 1                               | 3  |
| 6.2.2 | Sample Strategy 2                               | 4  |
| 6.2.3 | Surface and Groundwater Sampling                | 4  |
| 6.2.4 | Domains of Interest                             | 4  |
| 6.3   | Field and Laboratory QA/QC                      | 4  |
| 7     | FIELD INVESTIGATION AND SAMPLING METHODOLOGY    | 5  |
| 7.1   | Field Investigation Overview                    | 5  |
| 7.2   | Sample Strategy 1                               | 5  |
| 7.2.1 | Residential Areas                               | 5  |
| 7.2.2 | Open Space Areas                                | 6  |
| 7.2.3 | Drainage Channel Sediment Samples               | 6  |
| 7.3   | Sample Strategy 2                               | 6  |
| 7.3.1 | Mine Site 1                                     | 6  |
| 7.3.2 | Former Kiln Site                                | 7  |
| 7.3.3 | Mine Site 3                                     | 7  |
| 7.3.4 | Mine Site 4                                     | 7  |
| 7.3.5 | Mineral Processing Area                         | 7  |
| 7.3.6 | Sheep Dip                                       | 8  |
| 7.3.7 | Surface Water                                   | 8  |
| 7.3.8 | Groundwater                                     | 8  |
| 8     | REGULATORY BACKGROUND AND APPLICABLE            |    |
|       | GUIDELINES                                      | 10 |
| 8.1   | Soil Assessment Criteria                        | 10 |
| 8.2   | Surface and Groundwater Assessment Criteria     | 10 |
| 8.3   | Waste Classification                            | 13 |

## **CONTENTS**

|        | FINAL D R A                                                    | FΤ |
|--------|----------------------------------------------------------------|----|
| 9      | LABORATORY ANALYSIS                                            | 15 |
| 9.1    | 9.1 Domain of Interest 1 (DOI 1)                               | 15 |
| 9.2    | 9.2 Domain of Interest 2 (DOI 2)                               | 15 |
| 9.3    | 9.3 Domain of Interest 3 (DOI 3)                               | 16 |
| 9.4    | 9.4 Domain of Interest 4 (DOI 4)                               | 17 |
| 9.5    | 9.5 Domain of Interest 5 (DOI 5)                               | 17 |
| 9.6    | 9.6 Drainage Channels                                          | 18 |
| 9.7    | 9.7 Surface Water and Ground Water                             | 18 |
| 9.8    | 9.8 Toxicity Characteristic Leaching Procedure (TCLP) Analysis | 18 |
| 10     | QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT               | 20 |
| 10.1.1 | Field QA / QC Samples                                          | 20 |
| 10.2   | Laboratory Quality Assurance and Quality Control               | 22 |
| 10.2.1 | Laboratory QA / QC Results                                     | 22 |
| 10.2.2 | Data Quality Assessment                                        | 23 |
| 11     | ASSESSMENT RESULTS                                             | 25 |
| 11.1   | Field Observations                                             | 25 |
| 11.2   | Groundwater – Field Measurements                               | 26 |
| 11.3   | Laboratory Results - Soils                                     | 26 |
| 11.3.1 | DOI 1                                                          | 26 |
| 11.3.2 | DOI 2                                                          | 27 |
| 11.3.3 | DOI 3                                                          | 30 |
| 11.3.4 | DOI 4                                                          | 31 |
| 11.3.5 | DOI 5                                                          | 31 |
| 11.3.6 | Drainage Channels                                              | 31 |
| 11.4   | Laboratory Results - Waters                                    | 32 |
| 11.4.1 | Groundwater and Surface Water                                  | 32 |
| 11.5   | TCLP Analysis                                                  | 33 |

# **CONTENTS**

# FINAL DRAFT

| 12     | RESULTS DISCUSSION                                       | 34 |
|--------|----------------------------------------------------------|----|
| 12.1   | Soils and Sediments                                      | 34 |
| 12.1.1 | DOI 1                                                    | 34 |
| 12.1.2 | DOI 2                                                    | 36 |
| 12.1.3 | DOI 3                                                    | 39 |
| 12.1.4 | DOI 4                                                    | 40 |
| 12.1.5 | DOI 5                                                    | 40 |
| 12.1.6 | Drainage Channels                                        | 40 |
| 12.1.7 | Statistical Analysis of Residential and Open Space Areas | 41 |
| 12.2   | Groundwater and Surface Water                            | 41 |
| 12.2.1 | Groundwater                                              | 41 |
| 13     | CONCEPTUAL SITE MODEL                                    | 44 |
| 13.1   | Site Summary                                             | 44 |
| 13.2   | Source Characterisation                                  | 45 |
| 13.2.1 | Contaminants of Concern                                  | 45 |
| 13.2.2 | Soils and Sediments: Source Areas                        | 46 |
| 13.2.3 | Soils: Background                                        | 47 |
| 13.2.4 | Surface waters                                           | 48 |
| 13.2.5 | Groundwater                                              | 48 |
| 13.3   | Potential Migration Pathways                             | 48 |
| 13.4   | Potential Receptors                                      | 48 |
| 13.5   | Conceptual Site Model                                    | 49 |
| 14     | REMEDIATION AND MANAGEMENT OPTIONS                       | 51 |
| 15     | CONCLUSIONS AND RECOMMENDATIONS                          | 53 |
| 15.1   | Conclusions                                              | 53 |
| 15.2   | Recommendations                                          | 55 |
| 16     | REFERENCES                                               | 57 |

# LIST OF ATTACHMENTS

# FINAL DRAFT

#### **Tables**

Table LR1: DOI 1Results

Table LR2: DOI 2 Results

Table LR3: DOI 3 Results

Table LR4: DOI 4 Results

Table LR5: DOI 5 Results

Table LR6: Drainage Channels Results

Table LR7: Groundwater and Surface Water Results

Table LR8: TCLP Results

Table LR9: pH, sulphur, NAGP and NAG Results

Table LR10: QA/QC Results

#### **Figures**

Figure 1: Site Location Plan

Figure 2: Site Layout Plan

Figure 3: Residential, Open Space and Drainage Channel Sampling Plan

Figure 4: Mine Site 1 and Kiln Area Sampling Plan

Figure 5: Mine Site 3 Sampling Plan

Figure 6: Mine Site 4 Sampling Plan

Figure 7: Mineral Processing Sampling Plan

Figure 8: Groundwater Well and Surface Water Plan

Figure 9 Groundwater Gradient Plan

Figure 10 Conceptual Site Model

### **Appendices**

Appendix A: Sampling Analysis and Quality Plan

Appendix B: Laboratory Certificates

Appendix C: Groundwater Well Construction Details, Hand Auger Logs and Field PID Results

Appendix D: Photograph Log

Appendix E: Well Survey Report

Appendix F: Groundwater Field Parameters

Coffey Environments ENVICANB00233AA-R01b 16 June 2010

# **LIST OF ATTACHMENTS**



Appendix G: 95% UCL Outputs

# **ABBREVIATIONS**

# FINAL DRAFT

| C6-C36 | Hydrocarbon chainlength fraction                          |
|--------|-----------------------------------------------------------|
| bgl    | below ground level                                        |
| втех   | Benzene, Toluene, Ethylbenzene and Xylenes                |
| CA     | Contamination Assessment                                  |
| сос    | Chain of Custody                                          |
| COPC   | Contaminants of Potential Concern                         |
| DECCW  | Department of Environment, Climate Change and Water (NSW) |
| EIL    | Ecological Investigation Level                            |
| HIL    | Health Investigation Level                                |
| LOR    | Limit of Reporting                                        |
| mg/kg  | milligrams per kilogram                                   |
| mg/L   | milligrams per litre                                      |
| NATA   | National Association of Testing Authorities               |
| NEPM   | National Environment Protection Measure                   |
| ОСР    | Organochlorine Pesticide                                  |
| OPP    | Organophosphorous Pesticide                               |
| PAH    | Polycyclic Aromatic Hydrocarbon                           |
| РСВ    | Polychlorinated Biphenyl                                  |
| PID    | Photoionisation Detector                                  |
| ppm    | parts per million                                         |
| РО     | Purchase Order                                            |
| QA     | Quality Assurance                                         |
| QC     | Quality Control                                           |

# **ABBREVIATIONS**

# FINAL DRAFT

| RPD  | Relative Percent Difference                |
|------|--------------------------------------------|
| scc  | Specific Contaminant Concentration         |
| SOP  | Standard Operating Procedures              |
| TCLP | Toxicity Characteristic Leaching Procedure |
| ТРН  | Total Petroleum Hydrocarbon                |
| VHC  | Volatile Halogenated Compound              |

# FINAL DRAFT

Coffey Environments Pty Ltd (Coffey) were commissioned by Canberra Investment Corporation Ltd (CIC) to conduct a Stage 3 Contamination Assessment (CA) of the proposed Jumping Creek residential estate (Lot 1 DP 711905) located at the end of Lonergan Drive, Queanbeyan, NSW. The total area of the site is approximately 109 hectares (ha). This report describes the soil, surface water and groundwater assessment undertaken at the site.

The purpose of the Stage 3 CA is to undertake supplementary contamination assessment, to inform remediation and management planning for the proposed site use. This CA has been prepared in accordance with Coffey proposal ENVICANB00233-P02, dated 13 February 2009 as a supplementary assessment to previous assessments. The proposed land use is for 'standard' residential use, including some areas for public open space.

Based on the site history provided in the previous assessment (IT, 1999) and on previous investigations (IT, 1999 and PB, 2007), the site has been used for a variety of potentially contaminating activities including:

- Mining of lead, copper, zinc and possibly gold;
- · Possible minerals processing activities;
- · Limestone quarry and lime kiln; and
- · Pastoral activities, including one sheep dip complex.

It is believed that use of the site dates back to the 1840's when the land was first used for pastoral activities, while mining activities are believed to have occurred between the 1850's and early 1900's.

The above historical uses of the site provide a number of Areas of Environmental Concern (AECs), as described in this report. The site has been the subject of several environmental assessments which identified elevated concentrations of metals mainly associated with the mining activities.

The scope of work included the development of a Sampling Analysis and Quality Plan (SAQP) for all sampling to be carried out as part of these works. The SAQP was agreed to by the site auditor as part of this phase of works;

The site is currently used for recreational activities including trail bike riding, four wheel driving and bushwalking. Based on anecdotal evidence from the site owner, no particular land use has occurred onsite site since the 1960s.

To facilitate the assessment, the site was divided geographically into 5 generally discrete areas defined by ridges and gullies of Jumping Creek and its tributaries. Contamination sources located in any one of the discrete areas and separated by the site geography are considered to be mutually exclusive from any other area on the site, with transport of any contamination present to be down gradient into Jumping Creek and its tributaries.

Inspections carried out as part of this assessment provided observations regarding site condition and location of evidence of former land uses. The following was concluded from the observations:

- No evidence of plant stress was observed;
- No odours associated with contamination were observed;
- General wastes resulting from unauthorised disposal in small volumes were observed across the site.

# FINAL DRAFT

Following removal of weeds where practicable and further site walkovers conducted by Coffey in 2009, no further AECs were observed across the site, with the exception of a previously unidentified mine shaft at Mine Site 4. Following from this, the AEC's confirmed in this assessment were:

- Mine Site 1 (within DOI 3);
- Mine Site 3 (within DOI 1);
- Mine Site 4 (within DOI 2);
- Former Minerals Processing Area (within DOI 2);
- Former Lime Kiln (within DOI 3); and
- Former Sheep Dip (within DOI 4).
- Mine sites were generally observed to consist of a mine shaft and waste rock/soil stockpile/s. Mine Site 4 also had an adit, open cut mine area and an adjacent clay quarry.
- The mineral processing area and sheep dip area were observed to generally consist of remnant infrastructure.
- A remnant kiln constructed from Bricks was observed at the lime kiln area.

In accordance with the SAQP prepared for this project, sampling of soils was conducted across each of the Domains of Interest in order to:

- 1. Provide confidence that there has been no anthropogenic impact to areas outside of the identified AECs Sampling Strategy 1; and
- 2. To confirm the lateral and vertical extent of contamination within the AEC areas, where potentially contaminating activities were identified Sampling Strategy 2.

Sampling of sediments in watercourses on the site was also carried out to assess the potential for migration of contamination via erosion from the AECs via sediment movement to the watercourse.

Groundwater and surface water sampling was carried out to assess the potential for offsite migration of identified contamination, and potential health and environmental risk.

The Sheep Dip Area was not assessed as part of this investigation. Coffey understands that assessment and remediation of the Sheep Dip Area will be completed as part of the validation works to be conducted as per the Remediation Action Plan dated 29 October 2009 (reference ENVICANB00233AA-R02).

### **Conclusions**

Following this assessment it was concluded that:

1. The primary source of elevated metals concentrations on the site is attributable to natural mineralisation within local geological formations. Based on analytical results from samples of rock fragments and samples from weathered rock at the surface, which were collected from up gradient locations of the mine sites, mining activities are considered to in general not have concentrated the contamination in the identified AEC areas. As such, the mine sites are considered to be identifiers of areas where natural mineralisation in locally higher concentrations is present within the local geology. However, disturbance of the AEC areas is evident, and so the distribution of elevated

# FINAL DRAFT

metals concentrations cannot be concluded to be completely dissociated with historical mining activity.

- 2. An area of elevated metals concentrations exists within soil and rock at the Mine Site 3 area, which has been adequately delineated in this assessment. Metals concentrations exceeded the adopted HIL-A criteria for arsenic, cadmium and lead, and the EIL criteria for copper and zinc.
- 3. An area of elevated metals concentrations exists within soil and rock at the Mine Site 4 area, which has been adequately delineated in this assessment. Metals concentrations exceeded the adopted HIL-A criteria for cadmium, lead and zinc, and the EIL criteria for arsenic and copper.
- 4. Coffey considers that the Mine Site 3 and Mine Site 4 areas are unsuitable for standard residential use, due to the significantly elevated metals concentrations in soil and rock in these areas, the difficulty and cost of removing soil and rock containing elevated metals concentrations from the site, and evidence suggesting that the concentrations are due to natural mineralisation of the area. Further, capping of soils, with an appropriate management plan, is generally considered unsuitable for residential areas. Therefore, it would be prudent to avoid residential development of these areas, or alternatively conduct a site specific health risk assessment to confirm the risk for residential development of these areas.
- 5. Inspection of the Minerals Processing Area identified remnant infrastructure including wooden posts and concrete slab as well as 2 sumps. It is concluded that metals concentrations in the Minerals Processing Area meet the adopted HIL-A and EIL criteria on a statistical basis. However, metals concentrations exceeding the EIL (arsenic, cadmium and zinc) and HIL-A criteria (zinc only) was identified associated with 2 sump structures, and it is recommended that this contamination is removed to offsite landfill with the demolition of these structures.
- 6. Samples collected from within the drainage channels of Jumping Creek and its tributaries returned metal concentrations generally above the laboratory Limit of Reporting (LOR) but below the adopted EIL and HIL A criteria, the drainage channel results indicate that significant migration of contaminants via sediment transport in the watercourse has not occurred.
- 7. Based on the sampling and analytical results, Coffey conclude that DOI 3 and DOI 5 are suitable for the proposed development with no further assessment or remedial works required. It is noted that the Sheep Dip Area was not assessed as part of this investigation. Coffey considers that the Sheep Dip Area may be made suitable for future residential use after implementation of relevant works and validation of the sheep dip area, as described in the Sheep Dip Area RAP (reference ENVICANB00233AA-R02).
- 8. All other assessed areas of the site, outside of the delineated Mine Site 3 and Mine Site 4 areas, and the sumps in the Mineral processing Area, are suitable for either:
- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

Groundwater across the site was identified to have elevated concentrations of copper, lead and zinc. Samples collected from wells located up gradient of AECs also displayed concentrations of these metals exceeding the adopted criteria and generally within a similar range to concentrations detected in down gradient wells. An exception to this was lead detected in MW2 (down gradient of Mine Site 1), which was approximately 30 times higher than the up gradient well. Lead concentrations in both wells

# FINAL DRAFT

exceeded the adopted criteria and it is likely that the increase in lead concentrations in the down gradient well is due to the presence of natural mineralisation and not due to mining activities in the area. Coffey therefore concludes that the groundwater across the site has elevated metal concentrations exceeding the adopted criteria. Based on the soil analytical results and results from water samples collected up gradient of AECs, Coffey concludes that the elevated concentrations of metals in groundwater are likely due to natural mineralisation and not due to historical mining activities. However, impact to groundwater from the source areas on site cannot be excluded,.

Evaluation of the Conceptual Site Model suggests that risk of exposure of site users to elevated metals levels in groundwater is low, considering the depth to groundwater under the site, and the low likelihood of groundwater extraction and use on the site. However, a potentially complete exposure pathway exists to groundwater contamination for offsite users of groundwater, via groundwater extraction. Assuming that areas of contamination at the surface are contributing to groundwater metals impact, levels of these metals would be expected to dissipate due to dispersion with movement of groundwater down-gradient of the site. Therefore, risk for the most likely use down-gradient of the site (stock watering) is expected to be low with regard to relevant levels. Further, metals levels in groundwater would be unaffected by the proposed site development, given that mineralisation in the local geology is the likely dominant source of metals in groundwater.

OCPs and OPPs were not detected in soil samples nor groundwater samples collected across the site. The laboratories did not report to ANZECC guidelines for analysis of groundwater, however due to the depth of groundwater across the site, OCP and OPPs affinity to bind to soil and the time period (minimum of 50 years) since any potentially contaminating activities involving these contaminants has occurred, the risk of OCPs and/or OPPs to be present in the groundwater is considered to be low.

Coffey considers that the metals concentrations in surface water do not represent a risk to human health for the proposed site development, due to evidence suggesting that these concentrations are due to regional mineralisation, and also being well below guidelines for recreational water quality and aesthetics published in ANZECC & ARMCANZ 2000.

Generally concentrations of metals in surface water samples, and considering low concentrations in sediment samples collected from the waterways, indicate that surface water flow are not a major transport route for metals at the site.

#### Recommendations

The following recommendations were made from this assessment:

- 1. Mine Site 3 and Mine Site 4 areas are considered unsuitable for standard residential use, due to elevated metals concentrations naturally present in soil and rock in these areas. Therefore, it would be prudent to avoid residential development of these areas by revising the development plan for the site.
- 2. Restriction of access to the Mine Site 3 and Mine Site 4 areas in the short term to avoid unhealthy exposures to metals concentrations in these areas, as well as unsafe conditions associated with mine shafts, adits and other structures;
- The elimination or management of physical hazards (such as mine shafts or other structures)
  associated with these areas. However, it is noted that the identification and management of
  physical hazards on the site were outside the scope of this assessment;

# FINAL DRAFT

- 4. Removal and landfill disposal (or on-site management) of stockpiles of rock and soils and other loose potentially contaminated materials in the Mine Site areas; and
- 5. Implementation of a landscape cap and vegetation in Mine Site 3 and Mine Site 4, so that these areas may be incorporated into the development as open space areas with adequate stabilisation and barrier to direct contact with rock and soils.

It is recommended that these portions of the site are remediated under a RAP and managed under a Site Environmental Management Plan (SEMP). The RAP should include environmental management procedures to manage potential migration or exposure of contamination during remedial works. Additionally, contamination associated with the sumps identified at the Minerals Processing Area is recommended to be removed to offsite licensed landfill (or managed on-site), along with the demolition of these structures.

Coffey understand that assessment and remediation of the Sheep Dip Area will be completed as part of the validation works to be conducted as per the Remediation Action Plan dated (reference ENVICANB00233AA-R02).

## 1 INTRODUCTION

# 1.1 Background

Coffey Environments Pty Ltd (Coffey) was commissioned by Canberra Investment Corporation Ltd (CIC) to conduct a Stage 3 Contamination Assessment (CA) of the proposed Jumping Creek residential estate (Lot 1 DP 711905) located at the end of Lonegran Drive, Queanbeyan, NSW. The area of the site is approximately 109 hectares (ha). This report describes the supplementary soil, surface water and groundwater assessment undertaken at the site.

The following previous assessments conducted on the site have been reviewed for this assessment:

- I T Environmental Australia Pty Ltd, November 1999. <u>Stage 2 Environmental Investigation Jumping</u> Creek Queanbeyan NSW 2620. Report J109217-R01 (IT, 1999).
- II EGIS Consulting Australia, September 2001. <u>Jumping Creek Site Queanbeyan NSW Summary Site Audit Report</u>. Report VA0420.001 (EGIS, 2001)
- III Parsons Brinckerhoff Australia Pty Ltd, September 2007. <u>Jumping Creek Supplementary Contamination Assessment</u>, Report 2111525A/PR\_6551 (PB, 2007)
- IV NSW Archaeology Pty Ltd, 2009. <u>Draft Proposed Jumping Creek Rezoning Queanbeyan, NSW Aboriginal Archaeological Study.</u>

A Stage 1 Environmental Investigation was also conducted on the site by ADI in 1996; however this report was not available for review in this assessment.

This CA has been prepared in accordance with Coffey proposal ENVICANB00233-P02, dated 13 February 2009 as a supplementary assessment to previous assessments. The CA has been prepared for review by the contaminated land auditor in accordance with relevant guidelines made or approved by the NSW DECCW under the Contaminated Land Management Act 1997 (CLM Act), as referenced in this CA. In particular, these guidelines include, but are not limited to:

- NSW DECC (2006), Guidelines for the NSW Site Auditor Scheme (2<sup>nd</sup> edition); and
- NSW DECC (2000), Guidelines for Consultants Reporting on Contaminated Sites

Based upon information provided by CIC, it is understood that the planned future site use is for low density residential land use with areas of open space for recreational use, which may include the development of a wetlands area.

Based on the detailed site history provided in a previous assessment (IT, 1999) and on information included in previous investigations (IT, 1999 and PB, 2007), the site has been used for a variety of potentially contaminating activities including:

- Mining of lead, copper, zinc and possibly gold;
- Possible minerals processing activities;
- Limestone quarry and processing kiln; and
- Pastoral activities, including operation of one sheep dip complex.

It is believed that the first use of the site was for pastoral activities in the 1840s, while mining activities are believed to have occurred between the 1850s and early 1900s. The limestone quarry and associated kiln was believed to be operating between the 1860s and 1880 and again between 1920 and 1940 before being permanently decommissioned.

The above historical uses of the site provide a number of Areas of Environmental Concern (AECs), as described in this report. The site has been the subject of several environmental assessments which identified elevated concentrations of metals mainly associated with locations of mining activities.

The site location is shown in Figure 1. For the purposes of this assessment the site has been divided into 5 Domains of Interest (DOI) based on proposed residential development parcels, AECs and topography. A detailed site plan showing the site boundary, the DOIs, AECs and proposed residential development is shown in Figure 2. Proposed open space areas are those areas outside of the marked residential allotments shown in Figure 2.

# 1.2 Objectives

The purpose of this CA is to undertake supplementary contamination assessment, to inform remediation and management planning for the proposed site use. The objectives of the CA include:

- Identify potential areas of contamination that were not detected during previous investigations. Areas
  requiring further investigation include former Mine Sites 1, 3 and 4; the Lime Kiln Area; proposed
  Residential Areas; the proposed Open Space areas; Drainage Channels, the former Mineral
  Processing Area, groundwater, surface water and sediment within Jumping Creek and its tributaries;
- Conduct site inspections, in order to confirm the known AEC's, identify any further potentially contaminated areas or sources;
- Provide information regarding the suitability of the site for its intended uses, in accordance with the State Environmental Planning Policy 55 (SEPP 55) and Queanbeyan City Council's Development Control Plan No. 55 – Contaminated Land Management;
- Provide sufficient information for remediation and management planning to address any areas where the contamination status of soil, surface water, groundwater or sediment present an unacceptable risk for the proposed development;
- Provide supplementary information for qualitative risk assessment to be carried out with regard to the proposed land uses; and
- Meet the requirements of the auditor (contaminated land), in carrying out a site audit under the CLM Act;

### 1.3 Scope of Works

The scope of works conducted to achieve the above objectives for the site included:

- Health and Site Safety (HSS) planning, including a Site Safety Plan (SSP) for all works carried out on site;
- Development of a Sampling Analysis and Quality Plan (SAQP) for all sampling to be carried out as part of these works. The SAQP was agreed to by the site auditor as part of this phase of works;
- · Consultation with the site auditor, with regards to the planned works onsite;

- 15 locations were sampled within the former Mine Site 1 area. Investigations were progressed to a maximum depth of 1.0 m bgl or until refusal;
- 2 samples were collected from a stockpile at Mine Site 1;
- 15 locations were sampled within the former Mine Site 3 area. Investigations were progressed to a
  maximum depth of 0.6 m bgl or until refusal. An additional 11 samples were collected in the vicinity
  of Mine Site 3 and submitted for laboratory analysis to further delineate metal impacts encountered
  in this area;
- 2 samples were collected from a stockpile at Mine Site 3;
- 30 locations were sampled within the former Mine Site 4 area. Investigations were progressed to a maximum depth of 0.6 m bgl or until refusal. An additional 11 samples were collected in the vicinity of Mine Site 3 and submitted for laboratory analysis to further delineate metal impacts encountered in this area;
- 5 samples were collected from a stockpile at Mine Site 4;
- A total of 6 samples were collected from the kiln area with 2 samples collected at each kiln location to maximum depth of 0.6 m bgl.
- 41 locations were sampled within proposed residential areas. Investigations were progressed using a hand auger to a maximum depth of 0.6 m bgl or until refusal;
- 20 locations were sampled within proposed open space areas. Investigations were progressed using a hand auger to a maximum depth of 0.2 m bgl;
- Surface samples were collected at 13 locations from within the drainage channels across the site;
- Surface water samples were collected at three locations across the site;
- 13 sediment samples were collected from within Jumping Creek and its tributaries across the site;
- 8 groundwater monitoring wells were installed across the site using a solid flight auger and a rotary percussion hammer drill. Wells were drilled to depths ranging from 17.0 m bgl and 37.2 m bgl;
- Groundwater monitoring wells were established within 24 hrs of construction and samples were collected following establishment;
- QAQC samples were collected for all soil and water samples at a rate of 1 duplicate per 10 samples and 1 triplicate per 20 samples.

Safety with regards to sampling in the vicinity of open mine shafts was addressed in our SSP, however addressing measures to make the mine shafts safe for future site works is outside of our scope of works.

# 2 SITE IDENTIFICATION AND DESCRIPTION

For the purposes of this assessment the site has been divided into 5 geographical sub-areas defined by the ridges and gullies of Jumping Creek and its tributaries. These areas have been described as Domains of Interest (DOI1 to DOI5).

**Table 1: Site Identification** 

| Site Address:                 | Closest road: Lonergan Drive, Greenleigh NSW  |
|-------------------------------|-----------------------------------------------|
| Coordinates:                  | E 704742 S 6083175                            |
| Site Area:                    | Approximately 109 hectares                    |
| DOI1                          | Approximately 9.7 hectares                    |
| DOI2                          | Approximately 24.5 hectares                   |
| DOI3                          | Approximately 32.7 hectares                   |
| DOI4                          | Approximately 15.8 hectares                   |
| DOI5                          | Approximately 26.3 hectares                   |
| Title Identification Details: | Lot 1 on DP 711905                            |
| Current and Proposed          | Current: 1 Rural A Zone                       |
| Zoning:                       | Proposed: 2 (a) Residential A                 |
| Current Land Use:             | Recreational                                  |
| Proposed Land Use:            | Low Density Residential and public open space |
| Adjoining Site Uses:          | North: 1(c1) Residential "C1" Zone            |
|                               | East: 6(a) SP Open Space A-Scenic Protection  |
|                               | South: 1(a) Rural A                           |
|                               | South West: 7(a) Environmental Protection     |
|                               | West: 6(b) Open Space                         |

#### 3 SITE CONDITION AND ENVIRONMENT

#### 3.1 General Site Condition

The following information is summarised from previous assessment reports, as well as Coffey inspections and investigations.

Generally, the site currently presents evidence of historical land uses, including grazing and mining. Current unauthorised land uses include bushwalking, four wheel driving and motorbike riding. The site is secured by a fence at the end of Lonergan Drive however site users were observed on site during investigations, suggesting that there are other access points utilised by site users.

Observation regarding site condition and location of evidence of former land uses were made during inspections carried out between the 22 April 2009 and 8 October 2009 and during fieldwork onsite. The following general observations were made:

- · No evidence of plant stress was observed;
- No odours associated with contamination were observed;
- General waste resulting from unauthorised fly tipping was observed across the site in small volumes.
- Following removal of weeds where practicable and further site walkovers conducted by Coffey in 2009, no further AECs were observed across the site, with the exception of a previously unidentified mine shaft at Mine Site 4. However, it is noted that a possible Mine Site 2 was also previously reported by IT Environmental (1999), but could not be identified by either PB (2007) or Coffey (2010), and only low concentrations of metals were reported in this area in PB (2007).
- Following from this, the following AEC's were confirmed on the site:
- Mine Site 1 (within DOI 3);
- Mine Site 3 (within DOI 1);
- Mine Site 4 (within DOI 2);
- Former Minerals Processing Area (within DOI 2);
- Former Kiln (within DOI 3); and
- Former Sheep Dip (within DOI 4).
- Mine sites were generally observed to consist of a mine shaft and waste rock/soil stockpile/s. Mine Site 4 also had an adit, open cut mine area and an adjacent clay quarry.
- The mineral processing area and sheep dip area were observed to generally consist of remnant infrastructure.
- A remnant kiln constructed from Bricks was observed at the kiln area.

# 3.2 Topography

The site lies within an enclosed valley within the Queanbeyan River Corridor with the Queanbeyan River to the west and high country to the east. The three dominant landforms within this valley are:

- Ridgeline running parallel to the Queanbeyan River (RL 615 metres);
- Gentle to moderate slopes east of the central flood plain (slope 10-20 percent); and
- Incised gorge and creek line (slope 33-50 percent).

The total relief of the site is approximately 115 metres rising from the Queanbeyan River (RL 575 metres) to RL 690 metres. A narrow, poorly drained floodplain exists on the western side of Jumping Creek. It is noted that the alluvial terrace steps up 1 to 2 metres in height from the stream channels.

The nearest permanent surface water feature is the Queanbeyan River which borders the western boundary of the site.

# 3.3 Geology

The Geology of Canberra, Queanbeyan, and Environs 1:50,000 map and previous reports (IT, 1999) and (PB, 2007) indicate:

- The site is underlain by the Pitman Formation, which is described as Ordovician sediments and includes sandstone, feldspathic sandstone, greywacke, micaceous siltstone and shale, chert and phyllite.
- Skeletal soils to a maximum depth of 0.5 m bgl overlying bedrock are generally encountered across the entire site. The soil profile across the site is generally silty sands and clayey soil with some gravel, underlain by hard sandy clay and gravelly clay, underlain by bedrock consisting of mainly highly to moderately weathered foliated tuff, siltstone or shale.
- Alluvial and slope wash deposits to a depth of up to 2 m bgl are present within the gullies of Jumping Creek and its tributaries.

A detailed description of the site geology is provided in the IT (1999) report.

## 3.4 Hydrology and Hydrogeology

The IT (1999) report provides a detailed description of the site hydrogeology, which is as follows:

The 1:100,000 scale map 'Hydrogeology of the Australian Capital Territory and Environs' (1984) indicates that deep (greater than 20 metres) moderate to high yielding fractured aquifers of medium quality may occur in the eastern half of the site. In the western half of the site, deep fractured aquifers may be present with low to medium yields and variable quality. Shallow (less than 10 metres) alluvial aquifers in the Jumping Creek area are likely to be discontinuous with highly variable quality.

Jumping Creek is ephemeral and was visually dry at the time of the investigation, with the exception of small stagnant pools located in the lower reaches of the creek system. Jumping Creek meanders through the middle of the site and discharges to the Queanbeyan River at the western site boundary. The Queanbeyan River runs along the western boundary of the site and flows into Molonglo River. Various smaller inlet creeks and drainage channels intercept Jumping Creek within the site. Queanbeyan River, Jumping Creek and its tributaries are shown on Figure 2.

A search of the NSW Groundwater Works database for bore holes indicated that 14 registered groundwater bores are located within 1 km of the site boundary. All of the bores were identified to be for domestic use and no water quality parameters were recorded.

No site specific permeability assessments of the underlying shale have been made, however based on Fetter, 1980, it is known that sedimentary rock have primary permeability similar to unconsolidated material. Therefore the estimated intrinsic porosity of the Shale is estimated to be between 10<sup>-3</sup> and 10<sup>-1</sup> (darcys). In addition, secondary permeability can developed through fracturing which, in turn increases porosity. The general range of porosity for shale may be expected to be between 10 and 35%.

No site specific hydraulic conductivity assessments of the underlying shale have been undertaken. However, the hydraulic conductivity of the geology underlying the site would be expected to be represented by weathered sandstone to shale. Based on Freeze and Cherry (1979) hydraulic conductivity would then be expected to be in the range of approximately 8.64 x 10<sup>-2</sup> to 8.64 x 10<sup>-5</sup>. This may be considered to be a maximum range, considering the local geology.

## 3.5 Local Environmental Receptors

Based on the above review, the local environmental receptors for surface and groundwater from the Site include:

- Jumping Creek;
- Queanbeyan River/Molonglo River; and
- · Local domestic bores.

### 4 SITE HISTORY

#### 4.1 Historical Land Use

Previous land uses are adequately documented in IT (1999) and PB (2007). These references indicate that proposed Jumping Creek residential estate area has been previously used for a variety of land uses including:

- Mining of lead, copper, zinc and possibly gold;
- Possible minerals processing activities;
- · Limestone quarry and processing kiln; and
- Pastoral activities, including one known remnant sheep dip.

It is believed that use of the site dates back to the 1840's when the site was first used for pastoral activities. Mining activities are believed to have occurred between the 1850's and early 1900's. The limestone quarry and processing was believed to be operating between the 1860's and 1880 and again between 1920 and 1940 before being permanently decommissioned.

The site has been the subject of several environmental assessments carried out by others which have identified elevated concentrations of metals mainly associated with areas where mining activities have been conducted. Assessment of the remnant sheep deep identified the minor concentrations of arsenic and organochlorine pesticides.

Uncontrolled and unauthorised dumping of general waste (fly tipping) has occurred across the site, with numerous car bodies and other minor waste piles located across the site. Fly tipping activities on the site were not concentrated in any locations across the site and were generally considered to represent minor volumes of waste not warranting investigation as part of this assessment. Recommendations for general clean up of any residual waste present across the site may be included as part of the site management plan and/or remediation action plan.

There are no known services located onsite nor was any evidence of such services observed around any remnant infrastructure.

The site is currently used for recreational activities including trail bike riding, four wheel driving and bushwalking. Based on anecdotal evidence from the site owner, no particular land use has occurred onsite site since the 1960s.

During site walkovers conducted by Coffey during the recent phase works, evidence of the known historical land uses were observed on site. No evidence of any other land uses was observed during the recent phase of works. These observations support the site histories presented in reference I (1999) and reference II (2007).

### 4.2 Zoning

Currently the site is zoned in the Queanbeyan City Council (2007) LEP zoning plans as 1(a) Rural "A" Zone. A review of council records (Queanbeyan, 2007) indicates that the site has not been previously zoned for any other land uses.



### 5 SUMMARY OF PREVIOUS ASSESSMENTS

## 5.1 Summary of Previous Assessments

Several environmental assessments have been undertaken on the site and were available to Coffey for review. These reports were reviewed as a part of the preparation of this assessment and findings are summarised in the following sections.

#### 5.1.1 IT Environmental Stage 2 Environmental Investigation (1999)

IT Environmental (Australia) Pty Ltd (IT) undertook a Phase 2 environmental site assessment of the Jumping Creek site in 1999 which involved the collection of soil samples from most key locations on the site. The results of the assessment indicated the following:

- "Minor metal and OCP impacts detected at the sheep dip and kiln sites do not represent any risk to the environment or human health.
- Past mining, processing and agricultural activities at the site do not appear to have created any
  ongoing impact to Jumping Creek.
- The presence of elevated arsenic and lead, and the presence of some sulphides in background soil samples are consistent with the local geological setting and historical mining around the site for copper, lead, zinc, gold and silver. Natural geological deformation of the rocks underlying the site has caused minerals in the rocks to be concentrated and subsequently targeted by early miners. The metals and sulphides detected in the background samples, and samples from the mine sites and the ore processing area, are commonly associated with mineralisation containing the base and precious metals mined at the site. All background samples were collected upslope from visible mining and processing areas.
- Although some of the elevated metal concentrations detected at the mine sites, ore processing area and in background samples exceed some of the site investigation criteria, the detected concentrations are considered a natural occurrence in keeping with the local geological setting. No impact to Jumping Creek was detected down gradient of these areas. Subsequently, metal concentrations in these locations are not considered a risk to the environment. Zinc concentrations are also not considered a risk to human health, as zinc concentrations did not exceed human health-based criteria. Due to a lack of soil and significant vegetation at most sampling sites, particularly the mine sites and ore processing area, exceedances of phytotoxicity criteria is not considered an issue at the site.
- However, isolated lead and arsenic concentrations, although natural, do exceed human health-based investigation levels for both residential and open space settings (lead at mine sites MS3 and MS4 and background location BSS6 near MS4, and arsenic concentration at mine site MS3 and background location BSS5 near MS3). These locations are in parts of the site occupied by steep and rocky slopes, and are unlikely to be developed for residential purposes. Information from the Queanbeyan City Council indicates that the future zoning of the area is 1(c1) 'C1' Rural Development, and the potential risk to human health is considered to be minimal.
- Offsite disposal of metal impacted soil from mine site MS4 is not considered practical, as the only facilities in NSW that are currently permitted to receive industrial material are located in western

Sydney, and transport costs would be significant. Management of this area by restricting access is considered a more suitable alternative"

- Based on the findings of the assessment, IT concluded that the Jumping Creek site was suitable for the proposed land uses. This finding was dependent upon the following recommendations:
- "There are possible geotechnical and safety issues associated with the historical mining activities that may need consideration prior to development around mine sites. The historical value of mining, processing and kiln areas at the site may need to be considered prior to development, and may influence future use in some areas of the site.
- To minimise potential environmental and human health impacts, consideration should be given to
  restricting public access to mine sites 3 and 4, and to avoid disturbing the soil around these two
  sites. Restricting public access to all mine sites in the area would also help reduce potential safety
  hazards from open shafts and adits during and after development of the area."

### 5.1.2 EGIS Consulting Summary Audit Report (2001)

Egis Consulting (Egis) prepared Summary Audit Report in 2001as a part of an independent audit of the assessment by IT. The Auditor made the following conclusions with regards to the Stage 2 Environmental Investigation conducted by IT:

- "The investigations represent an adequate and appropriate initial assessment of the contaminant conditions at the site, but do not provide sufficient information to define the location and extent of all areas of contamination, or the requirements for management or remediation;
- The investigations indicate that contamination is present in some areas of the site which has potential to adversely affect the proposed use of the land and ecosystems of Jumping Creek."

From the review of the investigation conducted by IT, the Auditor made the several recommendations for future work. The following presents a summary of the recommendations. The recommendations are summarised as follows:

- Develop a clear concept for treating contamination that will ensure the site is suitable for the
  proposed use and complies with regulatory requirements and is acceptable to the site owner;
- Confirm that arsenic and/or lead are the only contaminants of concern across the site;
- Consider whether concentrations of heavy metals present in the mine waste stockpiles are in a form which will not adversely affect human health or plants;
- Assess whether the mining activities and waste rock generated from these activities have the
  potential to generate an acid sulphate problem;
- Identify the locations where contamination may be present;
- Undertake further assessment of the possible ore processing area;
- · Remove the sheep dip and validate the area;
- Ensure that Quality Assurance / Quality Control (QA/QC) sampling is done in accordance with the National Environment Protection (Assessment of Site Contamination) Measure (NEPM) NEPC (1999) and AS4482.1; and

Develop a remediation and management strategy for the contaminated areas.

#### 5.1.3 Parsons Brinckerhoff Supplementary Contamination Assessment (2007)

Parsons Brinckerhoff (PB) undertook a supplementary assessment of the potential surface contamination particularly in the areas of mine site 4 and the ore processing area due to previous mining activities carried out at the site. The report also examined the various safety aspects of the past mining.

The objectives of the supplementary contamination investigation were to assess whether the mining and process areas were impacted, to further assess the nature of any shafts, adits and open cuts and comment on the land suitability and safety aspects of the proposed redevelopment. The works included detailed inspection of the mining areas following removal of some blackberries, the collection of surface samples at 23 locations across the sites, laboratory analysis of selected samples for heavy metals and selected samples for cyanide and sulphide, and reporting.

The results of the assessment in relation to contamination on the site indicated the following:

#### Geology

- "Underlying geology of the site is Silurian age rocks of the Colinton Volcanics and Cappanan Beds and Ordovician rocks of the Pitman Formation. The rocks comprise interbedded siltstones and limestones. Mineralisation was observed at several of the areas comprising arseno-pyrite, galena and sphalerite;
- The soils over the mineralised areas were generally skeletal and vegetation was sparse. Some spoil
  from the various shafts, open cut and adit were observed in the immediate proximity to the workings;
  and
- No seepage or impacts of acid mine drainage were observed near any of the former mining areas.

#### Contamination

- The main impacts observed in the mining areas were from lead and to a lesser extent zinc, cadmium and arsenic. These are naturally occurring minerals. High concentrations were detected in the mineralised samples from the spoil material surrounding the shafts or adits particularly in mine sites 3 and 4. Only low concentrations of metals were detected at the mine site 1 and 2;
- The heavy metals are widespread in surface soils in the vicinity of the workings at MSS4 and are
  likely to be attributable to the historic mine workings with high concentration also being detected in
  the surficial soils immediately down gradient from the workings. This may be due to minor spoil or
  erosion from the worked area;
- Arsenic, copper, lead, mercury and zinc concentrations exceeded the provisional phytotoxicity investigation levels in numerous samples;
- The heavy metals (lead, zinc and to a lesser extent arsenic and cadmium) in MSS3 and MSS4 are at concentrations greater than the "Residential with gardens and accessible soils Column 1" criteria and sometimes also greater than the "Residential and Open Space" criteria;
- Only low concentration of metals, mercury, cyanide and sulphide were detected in the samples
  collected from the processing area. These low concentrations do not support the supposed use of
  the area for mineral processing; and

Sustainable remediation of the mineralised areas would be through risk minimisation and
management (including possible covering with topsoil and revegetation) due to the nature of the
deposits and location rather than active treatment, excavation or disposal.

PB concluded that the naturally occurring mineralisation has been previously mined with visible shafts, open cuts, and adit and various small stockpiles or spoil materials. They observed that mineralisation was visible at the surface in several locations and has resulted in selected heavy metals being in excess of acceptable residential and open space criteria. PB also concluded that areas of high mineralisation were likely to be localised around the mined areas, which are unlikely to be developed (MSS1 and MSS4) for residential use due to sloping terrain, however they may present a risk to human and environmental health through transient use or erosion to Jumping Creek. PB concluded that the areas including MSS1, MSS2 and the processing area appeared to have a low risk of impact which would preclude their development for contamination reasons.

PB considered that while the areas around the past mining have been naturally impacted with heavy metals, these areas can be managed and would not preclude further development of the Jumping Creek land. The safety hazards can also be managed with minor backfilling and targeted earthworks.

#### 5.1.4 New South Wales Archaeology Aboriginal Archaeological Assessment (2009)

New South Wales Archaeology Pty Ltd undertook an Aboriginal Archaeological Assessment of the proposed Jumping Creek development area. The Aboriginal Archaeological Assessment concluded that the proposed development site does not contain areas of Indigenous significance requiring conservation or impact mitigation and therefore there are no Aboriginal heritage constraints that would act to preclude rezoning and subdivision of the site. A recommendation was made that s90 Consent (under the *NSW National Parks and Wildlife Act 1974*) be sought from the Director General NSW DECC prior to construction.

Similarly there are no areas of non-indigenous significance that would act to preclude rezoning and subdivision of the site. A recommendation was made that if future developments will impact remnant infrastructure associated with historical mining and grazing, further archaeological assessments be carried out.

## 5.1.5 Integrity Assessment of Previous Investigations and Historical Information

The site histories provided in the previous assessments are considered to adequately describe the historical activities for the purposes of this assessment, and are confirmed by the findings of the New South Wales Archaeology Aboriginal Assessment. However, gaps in the site history have been identified relating to the detail of the mining related activities that occurred onsite, particularly with regard to the extent of mineral processing which may have occurred onsite.

The presence of infrastructure in the area of the mineral processing area suggests that some secondary and/or tertiary mineral processing may have occurred onsite, however evidence of a crushing facility is absent as part of the remnant infrastructure. Minor concentrations of cyanide detected in the current assessment in the Mineral Processing Area indicate that some degree of tertiary processing for extraction of precious metals may have occurred.

Based on supporting evidence of site walkovers and exercises to remove vegetation to investigate areas where potential mining activities may have occurred, the site histories presented in the previous reports are considered correlate well with the physical evidence for historical potentially contaminating

activities. Therefore, Coffey considers the integrity of the historical information contained in the previous investigations to be high.

### 5.2 Contaminants of Potential Concern and Areas of Environmental Concern

Based on the review of previous assessments, Coffey site inspections and the known site history, the Contaminants of Potential Concern were detailed in an SAQP previously prepared for this project, and presented in Appendix A. As per the SAQP, the COPCs for the Site are shown in Figure 1 and listed in Table 2 below:

Table 2: Potential Contaminants of Concern Identified at Jumping Creek

| Location                                     | COPCs                                                                                                                                                                |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proposed Residential and Open<br>Space Areas | lead, copper, zinc, arsenic, chromium, cadmium, nickel, mercury, organochlorine and organophosphorus pesticides, acid generating potential and pH                    |
| Mine Sites                                   | lead, copper, zinc, arsenic, chromium, cadmium, nickel, mercury, sulphate, acid generating potential, pH                                                             |
| Sheep Dip                                    | Potential contaminants as per residential areas, and specifically arsenic and organochlorine pesticides from sheep dip operations                                    |
| Former Ore Processing Area                   | lead, copper, zinc, arsenic, chromium, cadmium, nickel, mercury, sulphate, acid generating potential, pH, organochlorine and organophosphorus pesticides and cyanide |
| Kiln                                         | Potential contaminants as per residential areas, plus polycyclic aromatic hydrocarbons from kiln furnace wastes                                                      |
| Drainage Sediment Samples                    | lead, copper, zinc, arsenic, chromium, cadmium, nickel, mercury, organochlorine and organophosphorus pesticides                                                      |
| Surface Water Samples                        | lead, copper, zinc, arsenic, chromium, cadmium, nickel, mercury, organochlorine and organophosphorus pesticides,pH and sulphate                                      |

The analytical plan for assessing the potential distribution and concentration of COPCs is presented in Section 9 (Laboratory Analysis).

The Areas of Environmental Concern (AECs), or the primary source areas as identified by previous assessment and site history, are identified as follows:

- Mine Site 1 (within DOI 3);
- Mine Site 3 (within DOI 1);
- Mine Site 4 (within DOI 2);
- Former Minerals Processing Area (within DOI 2);

- Former Kiln (within DOI 3); and
- Former Sheep Dip (within DOI 4).

These AECs are shown within the DOI areas in Figure 2.

The former mine sites were identified as a primary source of metal contamination (predominantly arsenic, lead and zinc) to surface soils in close proximity to mine shafts, adits and waste rock stockpiles. It is inferred that the mining activities, including the excavation and storage of sub surface mineral bearing rock material, has introduced elevated concentrations of metals to the surface soils. It is considered that the metal concentrations around the mine site areas are likely to be elevated when compared to the background concentrations of metals at areas with no mining activities. Therefore, an objective of this assessment is to consider the distribution of metal concentrations in the vicinity of the mining areas and assess whether these may affect the proposed uses of the site.

#### 6 SAMPLING ANALYSIS AND QUALITY PLAN

The SAQP was approved by the site auditor following responses to auditor comments provided in the interim advice (reference, 9014-IA2-Interim Advice 2), and is included at Appendix A. The purpose of the SAQP was to identify the Contaminants of Potential Concern (COPC) in relation to the Areas of Environmental Concern (AECs), as well as outline the step by step decision making process followed to define the data quality objectives in accordance with DECCW Guidelines.

This section provides a summary of the SAQP implemented for this assessment.

### 6.1 Data Quality Objectives

The following Data Quality Objectives (DQOs) have been defined for this assessment:

#### 6.1.1 Step 1 – State the Problem

The objectives of this contamination assessment are presented in Section 1.2 of this report. These objectives have been developed in consideration of the following 'problems':

The concentration and distribution of all potential COPCs in the primary source areas have not been
adequately assessed, allowing for land use, remediation and management planning requirements
for these areas in accordance with applicable regulatory guidelines. The identified AECs are listed
as follows:

Mine Site 1;
Mine Site 3;
Mine Site 4;
Former Minerals Processing Area;
Former Kiln; and
Former Sheep Dip

- Based on previous assessment of the proposed residential areas outside of the above AECs, as well
  as information gathered during site walkover, it is considered that the potential for elevated areas of
  the COPCs in the proposed residential areas exceeding natural background levels is low. However,
  this is not known to an acceptable degree of certainty with regard to the proposed land use
  (residential).
- There is not sufficient information regarding elevated concentrations of COPCs in drainage channel sediments. Elevated concentrations of COPCs in drainage channel sediments may indicate continuing migration of contaminants, and/ or may provide a health and/ or environmental risk with regard to the proposed land uses;
- There is not sufficient information regarding elevated concentrations of COPCs in surface waters (Jumping Creek). Elevated concentrations of COPCs in surface waters may indicate continuing migration of contaminants, and/ or may provide a health and/ or environmental with regard to the proposed land uses; and

### 6.1.2 Step 2 – Identify the Decisions

The decisions that are required to be made are:

- What are the concentrations and distribution of all potential COPCs in the identified AEC areas, allowing for land use, remediation and management planning requirements for these areas in accordance with applicable regulatory guidelines, and with regard to the proposed land uses?
- To confirm the assumption that there is a low potential for elevated areas of the COPCs in the
  proposed residential areas (i.e. outside of the identified AEC areas), exceeding natural background
  levels. Should this assumption not be confirmed, these areas should also be considered as AEC,
  and additional assessment may be required to adequately characterise the distribution of all
  potential COPCs in accordance with NSW DECCW Guidelines, and with regard to the proposed
  land uses;
- Are elevated levels of COPCs present in drainage channel sediments which may indicate the migration of contaminants, or health and/ or environmental risk?
- Are elevated levels of COPCs present in surface waters (Jumping Creek) which may indicate the migration of contaminants, or health and/ or environmental risk?
- Is a groundwater investigation required for the site? This may be answered following adequate characterisation of soil, sediment and surface water contamination on the site, which may indicate the potential for groundwater to be impacted.

#### 6.1.3 Step 3 – Identify Inputs to the Decision

The primary inputs to the decisions described in Step 2 are:

- Previous analytical results from IT Environmental (1999) and Parsons Brickerhoff (2007);
- Information obtained by Coffey Environments from site walkover and inspection;
- Field measurements and observations to be made by Coffey Environments field staff;
- Information regarding natural background concentrations of the identified COPC's in the area of the site;
- Analytical results of the soil samples to be collected by Coffey Environments field staff across the site:
- Investigation criteria to be used for assessment (discussed in Section 8).

#### 6.1.4 Step 4 – Define the Study Boundaries

The boundaries of the site are shown on Figure 1. However, offsite migration will be assessed based on available data collected from within the site.

### 6.1.5 Step 5 - Develop a Decision Rule

The decision rule for the investigation and validation of the areas will be as follows:

- Following a QA/QC data validation, if the results of the analytical data are considered usable for the
  purposes of this investigation, proceed further into the following decision making steps. Otherwise,
  address the data or QA/QC gap prior to proceeding further. Criteria for evaluating QA/ QC data are
  provided in Section 10;
- For each the identified AEC areas, has sufficient data been obtained in order to fully delineate the extent of the contaminated areas for remediation and/ or management planning? Has the distribution and boundary of the contamination been identified?
- Have aesthetic issues been assessed for all areas of the site? Are there any areas of plant stress, soil discolouration, odour, or wastes and have these been recorded sufficiently for remediation and/ or management planning?
- For areas of the site outside of the identified AECs, the 95% Upper Confidence Limit (95 UCL) of the
  arithmetic mean and Standard Deviation (SD) of each data set will be calculated for comparison with
  the following:
- For the areas where no residential development is proposed, it is assumed that the area may be used for recreation open space areas. Where this is the case, Health Based Soil Investigation Levels Column E: Parks, Recreational open space and playing fields: includes secondary schools referenced in Table 5A of the National Environment Protection Measure (1999) 'Assessment of Site Contamination' Schedule B(1) 'Guideline on the Investigation Levels for Soil and Groundwater' will define the adopted assessment criteria.
- For areas designated for residential purposes, the Health-based Soil Investigation Levels (HILs)
   Column A: Standard residential land use with garden / accessible soil (includes children's day-care
   centres, pre-schools, primary schools), referenced in Table 5A of the National Environment
   Protection Measure (1999) 'Assessment of Site Contamination' Schedule B(1) 'Guideline on the
   Investigation Levels for Soil and Groundwater' will define the adopted assessment criteria.
- If the concentration in soil exceeds the designated assessment criteria for a targeted contaminant, a check will be made against the known natural background distribution of that anolyte to determine whether the concentrations are due to anthropogenic or natural processes;
- Where anthropogenic causes cannot be ruled out, then:
- If the concentration in soil exceeds the designated assessment criteria for a targeted contaminant
  and there could be current or future exposure to the contaminant (e.g. if the contamination may
  migrate offsite or there are onsite potential human or ecological receptors for the contaminant), the
  contamination may be considered to pose a threat to human or ecological health. Further
  assessment/management may be undertaken.
- If concentrations in soils exceed the designated assessment criteria for the COPCs, and there is
  evidence to suggest that contamination may be mobile (based on pH, leachate assessment, or
  other), then a decision will be made as to the potential for ground water impact, and the requirement
  for groundwater assessment.
- If all concentrations of soil samples collected are below the investigation levels and comparable with background concentrations, then no further assessment/management will be required with respect to that contaminant.

### 6.1.6 Step 6 - Specify Limits on Decision Errors

There are two types of decision errors:

- Sampling errors, which occur when the samples collected are not representative of the conditions within the investigation area; and
- Measurement errors, which occur during sample collection, handling, preparation, analysis and data reduction.

These errors may lead the decision maker to make the following errors:

- · Deciding that the soil and/or surface water is impacted when it is actually not; and
- Deciding that the soil and/or surface water is not impacted when it actually is.

An assessment will be made as to the likelihood of a decision error being made based on the results of a QA/QC assessment and the closeness of the data to validation criteria. Additionally, statistical methods may be utilised, where applicable.

### 6.1.7 Step 7 – Optimise the Design for Obtaining Data

Based on the previous steps 1 to 6 of the DQO process, the field and laboratory programs proposed are presented in the following sections.

## 6.2 Proposed Sampling Approach

From consideration of the site history, potential contamination is focussed within areas of historical activities such as the former mine sites, sheep dip and minerals processing facility. Based on the results of the previous assessments, it is evident that concentrations of COPCs exceed the guidelines that were adopted for the previous studies. However, vertical and lateral delineation of contamination was not achieved. Further to this, the results of background samples collected by IT returned concentrations of COPCs well below the adopted threshold criteria.

Therefore, it is anticipated that the majority of the site contains COPCs below the adopted criteria and that the areas of concern are restricted to the sites of historical mining, processing and livestock uses. As such two sampling strategies are proposed for this assessment:

#### 6.2.1 Sample Strategy 1

Sampling strategy 1 intends to be a confirmatory sampling program which targets the residential areas which do not have any obvious indications of previous activities. These areas generally consist of ridges and slopes with thin skeletal soils and weathered rock exposures and previous sampling of these areas indicated that COPCs were well below the adopted threshold criteria. As such, a broad sample spacing is proposed to increase confidence in the natural background concentration of COPCs at locations unlikely to have been influenced by previous activities.

Sediment samples from within drainage channels were also proposed to determine the potential for migration of contamination via erosion from the AECs via sediment movement to the watercourse.

## 6.2.2 Sample Strategy 2

Sampling strategy 2 is proposed for the areas of environmental concern where potentially contaminating activities were identified. These areas may contain rock stockpiles or thicker alluvial sediments in creeks or drainage channels. The sample spacing and number of proposed samples is increased in these areas to increase the confidence in potential contaminant concentrations and to determine distribution both laterally and vertically.

The rationale for location of samples in these areas was both targeted, for identified wastes and disturbed soils, and systematic, to increase the grid density in these areas and provide lateral delineation.

The AECs targeted with this strategy included all of the AECs identified and discussed by this report, except for the remnant sheep dip area. Some minor metals and OCP impacts were previously recorded at the sheep dip, which were below relevant health-based investigation criteria (residential use). Therefore, it is considered to be more effective to conduct validation sampling of this area following removal of sheep dip structures and potentially contaminated associated soils. Remediation and validation works to be carried out in this area are described in the Coffey Remediation Action Plan dated 15<sup>th</sup> December 2009 (reference ENVICANB00233AA-R02).

## 6.2.3 Surface and Groundwater Sampling

Surface water sampling is proposed to assess the potential impact of contamination on site surface water. However, during the sampling program the region experienced a prolonged drought and the presence of surface water was limited. Surface water was collected from 3 locations where standing water was present within Jumping Creek, which were all downgradient of the identified AECs.

Groundwater assessment was carried out from bores installed to target the identified AECs, being either within or hydraulically downgradient of these areas. However, some locations were inhibited by access limitations.

The implementation of the sampling strategy is discussed in Section 7.

#### 6.2.4 Domains of Interest

The site is divided geographically into 5 generally discrete areas defined by ridges and gullies of Jumping Creek and its tributaries. Contamination sources located in any one of the discrete areas and separated by the site geography are considered to be mutually exclusive from any other area on the site, with transport of any contamination present to be down gradient into Jumping Creek and its tributaries. Thus, it is not considered likely that contamination located in one geographical area could traverse gullies to impact other areas on the site. Therefore, for the purposes of developing the field and analytical plan and for assessing contamination across the site, the site has been divided into 5 Domains of Interest (DOI1 to DOI5) based on the 5 geographical areas. A Site Layout Plan showing the DOIs is presented in Figure 2.

## 6.3 Field and Laboratory QA/QC

The field and laboratory QA/ QC Plan implemented for this assessment is provided in the SAQP (Appendix A). The assessment of the QA/ QC with regard to the achievement of the DQOs defined for the assessment is provided in Section 10.

## 7 FIELD INVESTIGATION AND SAMPLING METHODOLOGY

# 7.1 Field Investigation Overview

Fieldwork for the soil, sediment, surface water and groundwater assessment was undertaken by a Coffey environmental scientist between 23 July and 25 November 2009, and in April 2010.

Soil, surface water and groundwater sampling was carried out in general accordance with the procedures outlined in Coffey's Standard Operating Procedures (SOPs), which are based on industry accepted protocols for environmental sampling and are consistent with the National Environment Protection Measure (NEPM) 'Guideline on Data Collection, Sample Design and Reporting'. The protocols specify sampling procedures, number and type of samples per sample location, sample preservation methods, approved holding times, sample identification codes, QA/QC sample requirements and Chain of Custody (COC) procedures.

Hand augers and other sampling equipment were washed between each borehole using a phosphate free detergent (Decon 90) and rinsed with potable water prior to a final rinse using deionised water to reduce the potential for cross contamination between sampling locations. A new pair of disposable nitrile gloves was used in the collection of each sample. The soil samples were placed into clean 250ml glass jars with Teflon caps and placed directly into an iced insulated container for transportation to the analytical laboratory under standard Coffey COC conditions. The COC forms are presented in Appendix B.

The sampling locations for residential and open space areas, groundwater well locations, as well as with previous sample locations (IT, 1999), are shown in Figure 3. Sample locations for AECs are shown in Figures 4 to 7.

The sub-surface conditions encountered in the boreholes were logged by a Coffey Environmental Scientist and the logs are presented in Appendix C. Groundwater well construction logs are also presented in Appendix C.

Photographs of site features taken during the field works are presented in Appendix D.

A summary of the site activities undertaken at each area of investigation is presented below.

### 7.2 Sample Strategy 1

#### 7.2.1 Residential Areas

Samples were collected at 41 sample locations (RE01 – RE41) across the residential investigation area, defined as the areas outside of the delineated AECs where residential allotments are proposed. The samples were collected between 23 July 2009 and 28 July 2009. Surface samples were collected from a depth range of 0.0-0.2 m bgl at each location and subsurface samples were collected from a depth range of 0.5-0.6 m bgl at 18 locations. Sample locations were located on a systematic grid basis, supplementing the previous sampling locations. Additional sampling was undertaken at RE34 and OS20, to investigate elevated arsenic concentrations at these locations.

Soil samples were collected from boreholes drilled using a hand auger to an approximate depth of 0.5-0.6 m bgl unless refusal was encountered (refusal was considered to have occurred when the hand auger could no longer penetrate the subsurface material).

Residential sample locations are presented in Figure 3.

### 7.2.2 Open Space Areas

Surface and subsurface samples were collected at 20 sample locations (OS01 – OS20) across the Open Space investigation area. The samples were collected between 23 July 2009 and 28 July 2009. Additional sampling was undertaken at OS20 (OS20-a to OS20-d) in April 2010, to investigate marginally elevated arsenic at this location. Surface samples were collected from a depth range of 0.0-0.2 m bgl at each location. Sample locations were located on a systematic grid basis, supplementing previous sample locations.

Open Space sample locations are presented in Figure 3.

Soil samples were collected from boreholes drilled using a hand auger to an approximate depth of 0.2 m bgl unless refusal was encountered.

#### 7.2.3 Drainage Channel Sediment Samples

Sediment samples from within drainage channels were collected and analysed to determine the potential for migration of contamination via erosion from the AECs sediment movement to the watercourse.

Surface sediment samples were collected at 13 sample locations (DC1 – DC10, DC12 to DC14) across the Drainage Channel areas. Samples were collected on 7 and 10 August 2009 using a stainless steel hand trowel from the surface at 0.0m – 0.2 m bgl at each location. All drainage channel sample locations were downgradient of the AECs. Further sampling was conducted in the region of DC12, downgradient of DC13, to investigate elevated arsenic concentration in this region.

The drainage channel sampling locations are presented on Figure 3

## 7.3 Sample Strategy 2

#### 7.3.1 Mine Site 1

Surface and subsurface samples were collected at 16 sample locations (MS1-1 to MS1-16) across the Mine Site 1 investigation area. Sample locations were generally located on a targeted basis where disturbed soils were identified, in order to provide delineation of contamination.

Samples were collected on 30 July 2009 from a depth range of 0.0-0.2 m bgl at each location. Subsurface samples were collected from a depth range of 0.5-0.6 m bgl. Samples were also collected at 0.9-1.0 m bgl at MS1-11 and at 1.4-1.5 m bgl at MS1-7.

Four stockpiles of material were located adjacent to the Mine Site 1 investigation area. Each stockpile had an estimated volume of approximately  $5\text{m}^3$ . One sample was collected from each stockpile on 13 August 2009. The samples (MS1SP1 – MS1SP4) were collected using a stainless steel hand trowel from the surface at 0.0m - 0.2 m bgl at each location.

The Mine Site 1 Area, stockpiles and sampling locations are presented on Figure 4.

#### 7.3.2 Former Kiln Site

Surface and subsurface samples were collected at 3 sample locations (K1 - K3) across the Former Kiln Site investigation area. Samples were collected on 28 July 2009 from boreholes drilled using a hand auger from a depth range of 0.0-0.2 m bgl to 0.9-1.0 m bgl at each location.

The Former Kiln Area and sampling locations are presented on Figure 4.

#### 7.3.3 Mine Site 3

Surface and subsurface samples were collected at 15 sample locations (MS3-1 – MS3-15) across the Mine Site 3 investigation area. The samples were collected on 28 July 2009. Samples were located on an approximate grid basis to provide delineation of contamination. Surface samples were collected from a depth range of 0.0-0.2 m bgl at each location and subsurface samples were collected from a depth range of 0.5-0.6 m bgl at 3 locations.

Three stockpiles of material were located adjacent to the Mine Site 3 investigation area. Each stockpile had an estimated volume of approximately  $5\text{m}^3$ . One sample was collected from each stockpile on 13 August 2009. The samples (MS3SP1 – MS3SP3) were collected using a stainless steel hand trowel from the surface at 0.0m - 0.2 m bgl at each location.

A second round of sampling was conducted in the vicinity of Mine Site 3 on 25 November 2009, to provide delineation to locations which had returned elevated results in the previous sampling round. This included the collection of 20 surface samples at locations MS3-16 to MS3-35.

The Mine Site 3 Area, stockpiles and sampling locations are presented on Figure 5.

#### 7.3.4 Mine Site 4

Surface and subsurface samples were collected at 40 sample locations (MS4-1 – MS4-39 and MS4-26A) across the Mine Site 4 investigation area. Samples were located on a general grid basis to provide delineation of contamination. The samples were collected on 6 and 7 August 2009. Surface samples were collected from a depth range of 0.0-0.2 m bgl at each location and subsurface samples were collected from a depth range of 0.5-0.6 m bgl at 16 locations.

Ten stockpiles of material located adjacent to the Mine Site 4 investigation area. Each stockpile had estimated volumes ranging from 5m³ to 10m³ were sampled on 13 August 2009. The samples (MS4SP1 – MS4SP10) were collected using a stainless steel hand trowel from the surface at 0.0m – 0.2 m bgl at each location.

A second round of sampling was conducted in the vicinity of Mine Site 4 on 25 November 2009, to provide delineation adjacent to locations which had returned elevated results in the previous sampling round. This included the collection of 12 surface samples at locations (MS4-40 to MS4-51).

The Mine Site 4 Area, stockpiles and sampling locations are presented on Figure 6.

### 7.3.5 Mineral Processing Area

Surface and subsurface samples were collected at 16 sample locations (MP1 – MP16) across the Mineral Processing Area, on a generally targeted basis. The samples were collected on 4 and 5 August 2009. Surface samples were collected from a depth range of 0.0-0.2 m bgl at each location and subsurface samples were collected from a depth range of 0.5-0.6 m bgl. Two samples (MPSUMP-1 and

MPSUMP-2) were collected in the vicinity of a sump associated with remnant mineral processing infrastructure.

Sampling locations within the Mineral Processing Area are presented in Figure 7.

#### 7.3.6 Sheep Dip

As discussed in Section 6, no sampling was carried out for the remnant sheep dip area as part of this assessment. Validation of this area is to be reported separately following removal of sheep dip structures and remediation of associated potentially contaminated soils, as described in the RAP prepared for this area (Coffey, 2009).

#### 7.3.7 Surface Water

Surface water samples were collected on the 13 August 2009 from 3 locations within the Jumping Creek watercourse. Surface water sampling locations are presented on Figure 8. All surface water samples were collected at locations generally down gradient of the AECs. However, due to dry conditions, samples were taken of standing water.

#### 7.3.8 Groundwater

#### **Monitoring Well Installation**

The installation of eight monitoring wells (identified as MW1 – MW8) was undertaken between 28 September to 1 October 2009 using a truck mounted rig fitted with solid flight augers to a depth of between 0.8 m bgl and 1 m bgl at which depth a rotary percussion hammer was then required. The Hydrapower truck mounted drill rig was supplied by Terratest Drilling. The drilling and installation was undertaken in the full time presence of an environmental scientist from the Canberra Office.

Monitoring well locations were chosen to be upgradient, down gradient, or within, selected AEC areas, subject to access limitations. Locations were also agreed with the auditor prior to the drilling program via email, dated 23 September 2009.

The depths of the wells ranged from 17 m bgl (MW7) to 37.2 m bgl (MW1). The wells were constructed using 50mm diameter Class 18 PVC machine slotted screen and casing, washed sand annulus to 0.5m above the top of the screen, a 0.5m bentonite seal and backfilled to the surface with soil cuttings derived from the drilling. At the base of each casing string was a 6m length of machine slotted screen with slot width of 0.5mm. The remainder of the casing screen comprised unslotted well casing. Borehole and well construction logs are provided in Appendix C.

4D Surveying Pty Ltd surveyed the eight monitoring wells on 22 October 2009. Elevations of the top of the well casing (TOC) and adjacent surrounding ground level were recorded relative to Australian Height Datum (AHD). 4D well survey plan is provided in Appendix E.

Groundwater monitoring locations are presented on Figure 8.

### Well Development

The eight wells installed by Coffey Environments as part of this assessment (MW1 - MW8) were developed following installation. Development of wells was conducted between 28 September and 1 October 2009 by an environmental scientist using a hand bailer to remove water from the wells until the

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

water quality parameters readings became consistent (within +/- 10% between three consecutive readings).

#### **Groundwater Sampling**

The eight monitoring wells on the site were purged and sampled on 8 October 2009 by a Coffey Environmental Scientist. Sampling of the groundwater was undertaken in general accordance with the procedures outlined in Coffey Environments Standard Operating Procedures (SOPs).

During purging of wells field parameters were taken using a calibrated water quality meter. Field readings indicated that groundwater across the site was generally fresh and neutral to slightly alkaline. Prior to sampling, an interface probe (IP) was used to assess if phase separated hydrocarbons (PSH) was present within the well and to measure the static water level. Each well was purged prior to sampling by removing water from the well until the water quality parameters readings became consistent (within +/- 10% between three consecutive readings). A new bailer was used to purge and sample each well. The water quality parameters measured using the water quality meter included pH, electrical conductivity (EC), redox potential (Eh), dissolved oxygen (DO) and temperature (°C). A summary of the well purging data is presented in Appendix F.

Upon completion of the purging activities a representative groundwater sample was collected from each well and transferred into clean laboratory prepared containers with an appropriate preservative for the sample, and then placed directly into an ice filled insulated container for transportation to the analytical laboratories under COC conditions. Samples to be submitted for analysis of metals were field filtered prior to being transferred into a laboratory prepared container.

#### 8 REGULATORY BACKGROUND AND APPLICABLE GUIDELINES

#### 8.1 Soil Assessment Criteria

The site is proposed to be developed for low density residential allotments with open space areas which may be utilized as recreation areas and/or wetlands. In accordance with this land use objective, the soil assessment criteria adopted for this investigation are those referenced by the National Environment Protection (Assessment of Site Contamination) Measure (1999) 'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater' (NEPM), in particular:

- Health-based Soil Investigation Levels (HILs) Column A (HIL-A): Standard residential land use with garden / accessible soil (includes children's day-care centres, pre-schools, primary schools), referenced in Table 5A of the National Environment Protection Measure (1999) 'Assessment of Site Contamination' Schedule B(1) 'Guideline on the Investigation Levels for Soil and Groundwater'; and
- Ecological Investigation Levels (EILs) referenced in Table 5A (interim urban) of the National Environment Protection Measure (1999) 'Assessment of Site Contamination' Schedule B(1) 'Guideline on the Investigation Levels for Soil and Groundwater'.

The above HILs are also referenced by the NSW DECC (2006) Guidelines for the NSW Site Auditor Scheme (2<sup>nd</sup> Edition): Appendix II – Soil investigation levels for urban development sites in NSW. The above EIL's for the COPC's are also identical to the 'provisional phytotoxicity-based investigation levels' from NSW DECC (2006).

It is noted that the SAQP for this project also listed the Health Based Soil Investigation Levels - Column E (HIL-E) from the NEPM, which are applicable to parks, recreational open space and playing fields, including secondary schools. These have not been applied as assessment criteria in this report, as all data have been assessed against the HIL-A criteria, which is lower than the HIL-E criteria for all analytes. This is consistent with NSW DECC (2006), which requires that soils are to be assessed against the lower of the appropriate health based investigation levels.

Due to known mineralization of some heavy metals in the surface and subsurface geology across the site, the above criteria for heavy metals will need to be applied with regard to known or measured background concentrations across the site.

Should TPH or BTEX analyses be required, the proposed soil assessment criteria would be based upon Table 3 of the NSW EPA (1994) 'Guidelines for Assessing Service Station Sites' for sensitive (residential) land use. However, TPH and BTEX have not been identified as COPCs for the site.

Based on the above guidelines, the soil assessment criteria applied for this assessment are presented in Table 3 below, as well as along with the laboratory results in Tables LR1 to LR6.

## 8.2 Surface and Groundwater Assessment Criteria

The groundwater investigation levels were established based on the following NSW DECC made and approved guidelines:

- ANZECC & ARMCANZ 2000, Australian and New Zealand guidelines for fresh and marine water quality, National Water Quality Management Strategy, Paper No. 4, Commonwealth of Australia;
- NSW DECC 2007, Guidelines for the Assessment and Management of Groundwater Contamination.

- NEPC 1999a, National Environment Protection (Assessment of Site Contamination) Measure 1999,
   'Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater' and
- NEPC 1999b, National Environment Protection (Assessment of Site Contamination) Measure 1999, 'Schedule B(6) Guideline on Risk Based Assessment of Groundwater Contamination'.

Jumping Creek, which is located within the site boundary while the Queanbeyan River is located adjacent to the western boundary of the proposed Jumping Creek residential estate. Jumping Creek is also supplied by a number of smaller ephemeral creeks and tributaries within the boundary of the estate. All of these are fresh water systems that may be recharged by site groundwater, and which may have existing and well developed aquatic ecosystems. As a result, 'common' criteria are considered for both surface waters and groundwater at the site.

ANZECC & ARMCANZ 2000 refer to the identification of the relevant 'environmental values' for a water body, so that the level of environmental quality or water quality necessary to maintain each environmental value can be determined. 'Environmental values' are defined by ANZECC & ARMCANZ 2000 as:

'particular uses of the environment that are important for a healthy ecosystem or for public benefit, welfare, safety or health which require protection from the effects of pollution, waste discharges and deposits.'

ANZECC & ARMCANZ 2000, NEPC 1999b and NSW DECC 2007 present sets of similar environmental values. Further, NSW DECC 2007 defines the following 'default' environmental values:

- Drinking water; and
- Aquatic ecosystems.

NSW DECC 2007 identifies three steps in determining whether drinking water supply is a relevant environmental value at a site:

- Checking whether the site is located above one of the major aquifers of drinking water quality, as listed by the NSW Department of Environment, Climate Change and Water (DECCW);
- Identifying actual groundwater users in the vicinity of the site; and
- Referring to Total Dissolved Solids (TDS) as an indicator parameter.

The Jumping Creek residential estate is not located above any of the major aquifers of drinking water quality listed by the DECCW. Of the 14 registered bores located within 1km of the site, none were identified as being used for potable water supply, although it is possible that they may be used for stock watering or recreational water use. It is also considered unlikely that any of the surface water systems are used for potable water supply. Therefore, while TDS values are unavailable for the aquifer at this stage, drinking water is not considered a relevant environmental value for the site.

It is considered that recreational water use may be an applicable environmental value for the site. In particular, this considers that one the options available for development on the site is for a wetlands area in the vicinity of Jumping Creek. This would also encourage the development of both aquatic flora and fauna, also requiring protection from potential contaminants migrating into the water system. However, guidelines applicable to protection of aquatic ecosystems are considered to be protective of this environmental value, with respect to the contaminants of concern evaluated in this assessment.

Therefore based on the above analysis, for the purposes of this investigation surface waters and groundwater at the site has been assessed against the following criteria:

 ANZECC & ARMCANZ (2000) Australia and New Zealand Guidelines for Fresh and Marine Water Quality. Protection of aquatic ecosystems. Fresh water trigger values for protection of 95% of species.

It is considered that the fresh water trigger values are applicable for investigating chemical concentrations in water at the investigation area.

It is understood that the DECC policy is that the trigger values for the protection of 95% of aquatic ecosystems should be used except where contaminants are potentially bioaccumulative in which case the trigger values for protection of 99% of species should be used. Therefore, we have selected trigger values for protection of 95% of fresh water species for the majority of contaminants, and 99% of fresh water species for bioaccumulative contaminants for initial comparison purposes, where applicable.

ANZECC (2000) states that there is currently insufficient data to derive high reliability trigger values for various heavy metal contaminants. For these contaminants, low reliability trigger values have been adopted.

While the SAQP proposed assessment criteria for TPH and BTEX, these are not considered further here as TPH and BTEX have not been confirmed as a COPC for surface or groundwater.

Due to the absence of a guideline for the protection of aquatic ecosystems for sulfate, the ANZECC & ARMCANZ guideline for recreational water quality of 400 mg/L has been adopted for this parameter.

The assessment criteria adopted for COPCs in surface and groundwater are presented in Table 3.

Table 3: Adopted Soil and Water Criteria.

|           |                          | Adopted Soil Assessment Criteria |                   | Water Criteria <sup>4</sup> |                        |
|-----------|--------------------------|----------------------------------|-------------------|-----------------------------|------------------------|
| Analyte   |                          | HIL A                            | NSW EPA<br>(1994) | EIL                         |                        |
|           |                          | mg/kg                            | mg/kg             | mg/kg                       | μg/L                   |
| Metals    |                          |                                  |                   |                             |                        |
|           | Arsenic                  | 100                              |                   | 20                          | 13 <sup>1</sup>        |
|           | Cadmium                  | 20                               |                   | 3                           | 0.2                    |
|           | Chromium                 | 12%                              |                   | 400                         | 1.0 <sup>2</sup>       |
|           | Copper                   | 1000                             |                   | 100                         | 1.4                    |
|           | Lead                     | 300                              |                   | 600                         | 3.4                    |
|           | Mercury                  | 15                               |                   | 1                           | 0.6                    |
|           | Nickel<br>Zinc           | 600<br>7000                      |                   | 60<br>200                   | 11<br>8.0 <sup>3</sup> |
| Inorganic | Cyanide                  | 500                              |                   |                             | 7                      |
|           | Sulfate                  |                                  |                   |                             | 400,0005               |
| PAH       | Benzo(a)pyrene           | 1                                | 1                 |                             | 200                    |
|           | Total PAH                | 20                               | 20                |                             | 0.2                    |
| OCP       | Aldrin                   |                                  |                   |                             | 3                      |
|           | Dieldrin                 |                                  |                   |                             |                        |
|           | Aldrin + Dieldrin        | 10                               |                   |                             |                        |
|           | Chlordane<br>DDT + DDD + | 50                               |                   |                             |                        |
|           | DDE                      | 200                              |                   |                             |                        |
|           | Heptachlor               | 10                               |                   |                             |                        |

Notes to Table:

- Value for As(V) adopted, as conservatively protective of As(III) and As(V) states 1. 2.
- Value for Cr(VI) adopted, as conservatively protective of total Cr (III and VI) and Cr(VI) states
- Conservative value applied, assuming low hardness of water.
- ANZECC & BARMCANZ (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality
   ANZECC 1992: Guideline for Recreational Water Quality

#### 8.3 **Waste Classification**

Soils required to be disposed to licensed landfill are required to be characterised in accordance with the NSW DECC (2008) Classification Guidelines Part 1: Classifying Waste. NSW DECC (2008) requires that wastes be classified in a step wise manner as outlined below.

It is noted that under NSW DECC (2008), the steps for waste classification below must be applied in the order stated below. Once a waste classification has been established under a particular step, the next step must not be continued. However classification using Specific Contaminant Concentration (SCC) may also be applicable, as defined in Step 5.

Step 1 - Is it special waste?

Step 2 - Is it liquid waste?

Step 3 - Is waste pre-classified?

· Hazardous waste

- Restricted Solid Waste
- General Solid Waste (Putrescible)
- General Solid Waste (Non-Putrescible)

## Step 4 - Does waste possess hazardous characteristics?

### Step 5 - Waste Classification if waste not classified in steps 1-4.

### A - Classification using specific contaminant concentration (SCC) only.

Material requiring disposal is classified by comparing analytical results from the material to threshold criteria provided in NSW DECC (2008). NSW DECC (2008) provides threshold concentrations for two different waste categories, namely general solid waste and restricted solid waste. The wastes which fail to meet the criteria for restricted solid waste classify as hazardous waste. Based on the SCC alone (without leachability testing), the test value for each contaminant must be less than or equal to the contaminant threshold (CT) specified for that contaminant in Table 1 of NSW DECC (2008). These threshold concentrations are significantly higher than would apply when leachability testing is undertaken.

- General Solid Waste≤ CT1
- Restricted Solid Waste ≤ CT2

Where CT2 is exceeded, a TCLP test will be necessary to determine leachable concentrations and class of waste.

## **B – Classifying using both the SCC test and TCLP (Toxicity Characteristic Leaching Procedure).**

For those wastes that are not classified into a waste category, NSW DECC (2008) provides threshold values for total concentrations and leachable concentrations based on TCLP test. These threshold levels are given for about 50 contaminants and groups of contaminants. For a waste to be classified under a given category, both total and leachable concentrations of the waste should meet the respective threshold concentrations.

- General Solid Waste≤ CT1 and ≤ TCLP1
- Restricted Solid Waste ≤ CT2 and ≤ TCLP2
- Hazardous Waste> CT2 or >TCLP2

Step 6 - Is the waste putrescible or non-putrescible?

## 9 LABORATORY ANALYSIS

Samples collected across the Jumping Creek Site were submitted for analysis at a NATA accredited laboratories. Primary and duplicate samples were sent to SGS Pty Ltd (SGS), triplicate samples were sent to MGT Environmental Consulting Pty Ltd (MGT). Laboratory certificates and COCs are presented in Appendix B. The analytical program is presented below in terms of the Domain of Interest (DOI) areas, and was developed in accordance with the SAQP and consideration of the COPCs and AECs. The implemented analytical program is presented as follows:

## 9.1 9.1Domain of Interest 1 (DOI 1)

#### **Residential Area**

- 10 surface samples from locations RE34 (including RE34-a to RE34-d) to RE40 were collected from within the proposed residential development area and submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 1 surface sample collected from location RE39 was also submitted for OCP and OPP analysis.
- 1 surface sample collected from location RE34 was submitted for TCLP analysis for arsenic to assess the leach ability of this material under oxidising conditions.

#### Mine Site 3

- A total of 26 surface samples collected from locations MS3-1 to MS3-16, MS3-18, MS3-21, MS3-23, MS3-25, MS3-27, MS3-28, MS3-30, MS3-32, MS3-34 and MS3-35 were submitted for metals(arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis;
- A total of 5 sub surface samples were collected from locations MS3-3, MS3-13 and MS3-15, were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis;
- 1 surface sample collected from location MS3-8 was submitted for TCLP analysis for arsenic, cadmium and lead to assess the potential leachability of metal impacted materials within Mine Site 3 under oxidising conditions.

### Mine Site 3 Stockpile

- 2 samples (MS3SP1, MS3SP3) collected from a stockpile of mine cuttings were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 3 samples (MS3SP1 to MS3SP3) collected from the above stockpile were submitted for Net Acid Generation Potential (NAGP) and Net Acid Generation (NAG) analysis.

## 9.2 9.2Domain of Interest 2 (DOI 2)

#### **Residential Area**

- 6 surface samples collected from locations RE24 and RE30 to RE35, from within the proposed residential development area, were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 3 surface samples collected from locations RE24, RE30 and RE35 were submitted for OCP and OPP analysis.

## **Open Space Area**

- 12 surface samples collected from locations OS13 to OS20 (including OS20-a to OS20-d) from
  within areas proposed to be developed for open space and/or recreational use, were submitted for
  metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 3 surface samples collected from locations OS15, OS16 and OS19 were submitted for OCP and OPP analysis.

#### Mine Site 4

- A total of 45 surface samples collected from locations MS4-1 to MS4-39, MS4-26A, MS4-41, MS4-43, MS4-45, MS4-47, MS4-49 and MS4-51, were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis;
- A total of 16 subsurface samples collected from locations MS4-1 to MS4-6, MS4-12 to MS4-13, MS4-18, MS4-24, MS4-25, MS4-26A, MS4-30, MS4-33 and MS4-34, were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.

### Mine Site 4 Stockpile

- 5 samples (MS4SP1, MS4SP3, MS4SP5, MS4SP7, and MS4SP9) collected from a stockpile of mine cuttings were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 10 samples (MS4SP1 to MS4SP10) collected from the above stockpile were submitted for Net Acid Generation Potential (NAGP) and Net Acid Generation (NAG) analysis.

### **Mineral Processing Area**

- A total of 32 samples were collected from 16 locations (MP1 to MP16) and comprised a surface sample and subsurface sample at each location. Samples were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 8 surface samples collected from locations MP1, MP2, MP4, MP9 to MP11, MP13 and MP14 were submitted for OCP, OPP and cyanide analysis.
- 2 samples (MPSUMP-1 and MPSUMP-2) were collected from sumps located within the Minerals Processing Area and submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), OCPs and OPPs, and cyanide analysis

## 9.3 9.3Domain of Interest 3 (DOI 3)

### **Residential Area**

15 surface samples collected from locations RE02, RE05, RE06, RE10, RE13 to RE15, RE19, RE20, RE22, RE25, RE26, RE28, RE29 and RE41 and 5 subsurface samples collected from locations RE14, RE19, RE20, RE26 and RE28 from within the proposed residential development area and were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.

 7 surface samples collected from locations RE02, RE10, RE15, RE20, RE25, RE28 and RE41 were also analysed for OCP and OPP.

#### **Open Space Area**

- 4 surface samples collected from locations OS05, OS07, OS08 and OS10, from within areas
  proposed to be developed for open space and/or recreational use, were submitted for metals
  (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 2 samples from locations OS05 and OS10 were also analysed for OCPs and OPPs.

#### Mine Site 1

A total of 35 samples were collected from 16 locations MS1-1 to MS1-16 and comprised a surface sample and subsurface sample at each location. 2 Deeper samples were collected at location MS1-7 (0.9-1.0 m and 1.4-1.5 m) and 1 deeper sample was collected at location MS1-11 (0.9-1.0 m). Samples were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.

### Mine Site 1 Stockpile

- 2 samples (MS1SP1 and MS1SP3) collected from a stockpile of mine cuttings were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 4 samples (MS1SP1 to MS1SP4) collected from the above stockpile were submitted for Net Acid Generation Potential (NAGP) and Net Acid Generation (NAG) analysis.

#### Kiln Area

• A total of 6 samples were collected from 3 locations K1 to K3 and comprised a surface sample and subsurface sample at each location. All samples were submitted for PAH analysis.

## 9.4 9.4Domain of Interest 4 (DOI 4)

#### **Residential Area**

- 5 surface samples were collected from locations RE01, RE03, RE04, RE09 and RE12 from within the proposed residential development area. All samples were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 1 sample collected at location RE12 was also submitted for analysis of OCPs and OPPs.

### **Open Space Area**

- 4 surface samples collected from locations OS02 to OS04 and OS06, from within areas proposed to be developed for open space and/or recreational use, were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 1 sample from location OS06 was also analysed for OCPs and OPPs.

## 9.5 9.5Domain of Interest 5 (DOI 5)

### **Residential Area**

- 9 surface samples were collected from locations RE07, RE08, RE11, RE16 to RE18, RE21, RE23
  and RE27 from within the proposed residential development area. All samples were submitted for
  metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 3 samples collected at locations RE16, RE17 and RE27 was also submitted for analysis of OCPs and OPPs.

### **Open Space Area**

- 4 surface samples collected from locations OS01, OS09, OS11 and OS12, from within areas proposed to be developed for open space and/or recreational use, were submitted for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) analysis.
- 1 sample from location OS01 was also analysed for OCPs and OPPs.

## 9.6 9.6Drainage Channels

17 surface samples (DC1 to DC10, DC12 to DC14 and DC12-a to DC12-d) were collected from
within the drainage channels separating the 5 Domains of Interest. All samples were submitted for
laboratory analysis of metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc),
OCPs and OPPs.

## 9.7 9.7 Surface Water and Ground Water

The 8 primary groundwater samples and the field QC samples collected were analysed for the following potential contaminants of concern:

- 8 priority metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
- pH;
- Sulphate; and
- Organochlorine pesticides (OCPs).
  - The 3 surface water samples and the field QC were analysed for the following potential contaminants of concern:
- 8 priority metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc);
- · Sulphate; and
- Organochlorine pesticides (OCPs).

## 9.8 9.8 Toxicity Characteristic Leaching Procedure (TCLP) Analysis

TCLP analysis was conducted to provide an indication of waste classification for materials that may require offsite disposal for remediation of the site. TCLP analysis was conducted on 2 samples (MS3-8\_0.0-0.2 and RE34\_0.0-0.2) from DOI 1 and 5 samples (MS4SP1, MS4SP9, MS4-26A\_0.5-0.6, MS4-27\_0.0-0.2 and MP15\_0.0-0.2) collected from DOI 2 to assess the leaching potential of contaminants detected in previous analysis at concentrations exceeding the adopted HIL A criteria. A summary of the TCLP analysis is as follows:

#### DOI 1

- 1 sample (MS3-8\_0.0-0.2) was submitted for TCLP analysis for arsenic, cadmium and lead;
- 1 sample (RE34\_0.0-0.2) was submitted for TCLP analysis for arsenic.

## DOI 2

- 3 samples (MS4-27\_0.0-0.2, MS4SP9 and MP15\_0.0-0.2) were submitted for TCLP analysis for lead:
- 2 samples (MS4-26A\_0.5-0.6 and MS4SP1) were submitted for TCLP analysis for arsenic.
- Sample MS4SP1 was also submitted for TCLP analysis for cadmium and zinc.

## 10 QUALITY ASSURANCE AND QUALITY CONTROL ASSESSMENT

The QA/QC was implemented for this assessment in accordance with the SAQP. A review of the quality assurance and quality control procedures has been undertaken and is described below, along with review of QA/QC data.

### 10.1.1 Field QA / QC Samples

Field QC samples for this sampling comprised of field duplicate and triplicate samples, and a trip blank. Details of the types of QC samples collected during the fieldwork are presented below.

**Field duplicates**: Individual samples were split in the field by the field staff and placed in three separate containers. The samples were homogenised prior to splitting to heterogeneity between samples. The primary, duplicate and triplicate samples were sent to the primary laboratory and the triplicate sample was sent to the secondary laboratory by the primary laboratory. The analysis of field duplicate samples provides an assessment of the precision of the sampling and laboratory analytical procedures. The analysis of field triplicate samples provides an independent check of the accuracy of the primary laboratory analytical results.

Intra-laboratory field duplicate samples and inter-laboratory triplicate samples were collected in general accordance with industry standard 1 in 10 duplicate and 1 in 20 triplicate criteria. Both duplicate and triplicate QC samples were analysed for all relevant COPCs. Field duplicate and triplicate samples are summarised in Table 4 below.

**Rinsates:** During sampling events where sampling equipment was used such as hand augers or stainless steel trowels to collect the sample, a rinsate sample was collected from the decontaminated equipment using deionised water. The rinsate sample ensures that no cross contamination of the sample from the sampling equipment has occurred.

QC samples were submitted to SGS Australia Pty Ltd (SGS). Inter-laboratory duplicate sample (field QC triplicate sample) was submitted to a secondary laboratory, MGT. SGS and MGT are both National Association of Testing Authorities (NATA) accredited laboratories.

Table 4: Summary of Field Duplicate and Triplicate Samples

| Sample ID | Sampling Date | Description                  | Matrix |
|-----------|---------------|------------------------------|--------|
| QC1       | 23/07/2009    | Duplicate of RE10 0.0-0.2 m  | Soil   |
| QC1       | 8/10/2009     | Duplicate of MW8             | Water  |
| QC2       | 24/07/2009    | Duplicate of RE41 0.0-0.2 m  | Soil   |
| QC3       | 27/07/2009    | Duplicate of RE34 0.0-0.2 m  | Soil   |
| QC4       | 28/07/2009    | Duplicate of K1 0.0-0.2 m    | Soil   |
| QC5       | 28/07/2009    | Duplicate of MS3-1 0.0-0.2 m | Soil   |

| Sample ID | Sampling Date | Description                    | Matrix |
|-----------|---------------|--------------------------------|--------|
| QC6       | 30/07/2009    | Duplicate of MS1-1 0.0-0.2 m   | Soil   |
| QC7       | 30/07/2009    | Duplicate of MS1-14 0.0-0.2 m  | Soil   |
| QC8       | 4/08/2009     | Duplicate of MP1 0.0-0.2 m     | Soil   |
| QC9       | 5/08/2009     | Duplicate of MP14 0.0-0.2      | Soil   |
| QC10      | 5/08/2009     | Duplicate of SP1               | Soil   |
| QC11      | 6/08/2009     | Duplicate of MS4-1 0.0-0.2 m   | Soil   |
| QC12      | 6/08/2009     | Duplicate of MS4-12 0.0-0.2 m  | Soil   |
| QC13      | 7/08/2009     | Duplicate of MS4-39 0.0-0.2 m  | Soil   |
| QC14      | 7/08/2009     | Duplicate of DC8               | Soil   |
| QC15      | 13/08/2009    | Duplicate of MS4SP1            | Soil   |
| QC16      | 13/08/2009    | Duplicate of SW1               | Water  |
| QC1A      | 8/10/2009     | Triplicate of MW8              | Water  |
| QC2A      | 24/07/2009    | Triplicate of RE41 0.0-0.2 m   | Soil   |
| QC3A      | 27/07/2009    | Triplicate of RE34 0.0-0.2 m   | Soil   |
| QC4A      | 28/07/2009    | Triplicate of K1 0.0-0.2 m     | Soil   |
| QC5A      | 28/07/2009    | Triplicate of MS3-1 0.0-0.2 m  | Soil   |
| QC6A      | 30/07/2009    | Triplicate of MS1-1 0.0-0.2 m  | Soil   |
| QC7A      | 30/07/2009    | Triplicate of MS1-14 0.0-0.2 m | Soil   |
| QC8A      | 4/08/2009     | Triplicate of MP1 0.0-0.2 m    | Soil   |
| QC9A      | 5/08/2009     | Triplicate of MP14 0.0-0.2     | Soil   |
| QC10A     | 5/08/2009     | Triplicate of SP1              | Soil   |
| QC11A     | 6/08/2009     | Triplicate of MS4-1 0.0-0.2 m  | Soil   |

| Sample ID | Sampling Date | Description                    | Matrix |
|-----------|---------------|--------------------------------|--------|
| QC12A     | 6/08/2009     | Triplicate of MS4-12 0.0-0.2 m | Soil   |
| QC13A     | 7/08/2009     | Triplicate of MS4-39 0.0-0.2 m | Soil   |
| QC14A     | 7/08/2009     | Triplicate of DC8              | Soil   |
| QC100A    | 25/11/2009    | Triplicate of MS3-16_0.0-0.2   | Soil   |

Field duplicate and triplicate results along with their respective calculated relative percent difference (RPD) values are presented in Table LR10.

RPD was calculated between each analyte concentration detected in primary samples and that detected in duplicate and triplicate samples. RPDs were all within the industry acceptable range of 50% for concentrations greater than 5 times LOR and 150% for concentrations less than 5 times LOR, with the exception of the following:

RE34 0.0-0.2 m and DUP3A - recorded RPDs for lead of 95% and zinc of 94%;

MS1-1 0.0-0.2 m and DUP6A – recorded RPD for copper of 59%;

MS1-14 0.0-0.2 m and DUP7A – recorded RPD for zinc of 54%;

MS4SP1 and QC15 – recorded RPDs for arsenic of 129%, cadmium of 162%, copper of 57%, nickel of 102% and zinc of 169%; and

MS4-39 0.0-0.2 m and QC13A – recorded RPDs for mercury of 105% and zinc of 67%.

The elevated RPDs identified above are considered to indicate variation that is likely to be attributable to minor sample heterogeneity. This is not considered to be significant as sample heterogeneity is likely to be reflected across all of the results for metals, and do not necessarily indicate lack of accuracy or precision in the sampling or laboratory methods.

## 10.2 Laboratory Quality Assurance and Quality Control

The quality control (QC) testing conducted internally by the laboratory consisted of laboratory split duplicates, laboratory reagent blanks, laboratory matrix spike, matrix spike duplicate recovery samples, laboratory control samples and surrogate spikes. The results of the laboratory QC testing are included with each of the NATA certified laboratory reports in Appendix B.

### 10.2.1 Laboratory QA / QC Results

Samples were received by the laboratories in good order, with the correct documentation and were properly chilled. All samples were analysed for the COPCs within the recommended holding times. Certified laboratory reports and Chain of Custody (COC) documentation is presented in Appendix B along with the signed sample receipt advice for all samples. Laboratory QA / QC information is included in the laboratory reports.

QA / QC procedures used by SGS Laboratories to determine the accuracy and precision of the analyses are detailed as follows:

- Analysis of method blanks to determine any contamination from the analytical process, conducted at
  a frequency of 1 in 20 samples. No target analytes were detected in the method blanks, indicating
  that the analytical method was satisfactory and no contamination occurred.
- Analysis of duplicate samples and laboratory splits of field samples to determine the precision of the analytical method in a given sample matrix. Expressed as RPD, precision should be an average RPD of <±20% for high concentrations and <±50% for low concentrations for laboratory duplicates. Laboratory duplicates were analysed at a frequency of 1 in 10 and overall completeness was greater than 95%. All RPDs of laboratory duplicate samples were found to be within the acceptable limits, with the exception of a laboratory duplicate sample of MS4-27 0.0-0.2 m which returned a RPD of 52% for lead.</li>
- Analysis of laboratory control samples (LCS), which is a standard reference material which contains
  representative analytes and is externally prepared and supplied, to determine the accuracy of the
  analytical method. Accuracy should be in the range 70-130% and analysed at a frequency of 1 in
  20. All LCS were found to be within the acceptable limits.
- Analysis of recovery samples, a laboratory prepared sample known to contain an amount of analyte
  comparable to the concentration expected for the sample batch and of a matrix representative of the
  analytical batch, to determine the efficiency of the extraction of the analyte. The recovery should be
  in the range 70-130% expressed as a percent of known content and should be run once per process
  batch. All recovery samples were found to be within the acceptable limits.
- Analysis of surrogate spikes and internal standards, where appropriate, that were added to all samples just before extraction. Surrogate spikes should be a known concentration of a compound which is not expected to be found in the sample will not interfere with quantification of the analyte and may be separately and independently quantified. Surrogate spikes monitor the method precision in a given sample matrix and are expressed as percent recovery of known content. The precision of percent recovery should be in the range 70-130%. All surrogate spike recoveries and internal standard recoveries were found to be within the acceptable limits.

In summary, Coffey considers that laboratory QC results to be acceptable for the purposes of this assessment.

## 10.2.2 Data Quality Assessment

In summary, the data quality assessment indicates that:

- The sample data and laboratory analytical results obtained are valid and meet the data quality objectives set for this assessment;
- Documentation, including signed COCs confirming the samples, and field calibration records are complete and copies provided in this report;
- Overall completeness is above 95% with all samples collected and analysed in accordance with the sampling strategy with the exception of selected COPCs. Field and laboratory QA / QC procedures, and results confirm satisfactory field sampling and laboratory procedures were achieved and all field data and analytical results collected for the assessment are valid.

 All samples were collected by an experienced field scientist with an established industrial standard sampling protocol and the samples were analysed by SGS and MGT, both NATA certified laboratory, using standard analytical methods. These indicate satisfactory data comparability.

Therefore Coffey concludes that the data collected is representative.

## 11 ASSESSMENT RESULTS

### 11.1 Field Observations

Extensive site walkovers were conducted as part of this assessment to confirm the presence/absence of mine sites across the site. An additional mine shaft was discovered at Mine Site 4 during these site walkovers. However, evidence of previously documented Mine Sites MSS2 and MSS5 was not encountered.

The site walkovers identified the following features at each of the AECs:

DOI 1 - Mine Site 3

- · One mine Shaft;
- Small volume stockpiles of material located around the opening to the mine shaft.

DOI 2 - Mine Site 4

- · One mine Shaft;
- · One mine adit;
- 2 open cut mine areas;
- 4 stockpiles of clayey material located close to the open cut mine areas (referred to as clay quarry stockpiles).

DOI 2 - Mineral Processing Area

- Remnant infrastructure including wooden posts and concrete slab;
- 2 sumps located around the remnant infrastructure.

DOI 3 - Kiln Area

Brick kiln

DOI 3 - Mine Site 1

- One mine Shaft;
- A stockpile of material located proximate to the opening to the mine shaft.

DOI 4 - Sheep Dip Area

- Remnant sheep dip infrastructure, including the sheep dip, scooping mound and concrete drainage area:
- Remnant pen infrastructure (wooden posts).

DOI 5

• No AECs were identified in this DOI.

### 11.2 Groundwater – Field Measurements

Total Dissolved Solids results for groundwater were estimated based on Electrical Conductivity measurements conducted in the field. Total Dissolved Solids (TDS) ranged from 336 (MW1) and 825mg/L (MW8), with an average TDS value of 304mg/L.

Groundwater elevation at each well was calculated from the gauged depth to water and surveyed well head levels. Groundwater elevation at each well is shown on Figure 9, along with interpreted groundwater contours.

## 11.3 Laboratory Results - Soils

The laboratory results for soils are reported alongside the adopted assessment criteria in Tables LR1 to LR6. Results for pH, Nett Acid Generation Potential (NAGP), total sulphur and total oxidisable sulphur are presented in Table LR9. Results exceeding the adopted HIL criteria are also shown on the respective Figures. Laboratory results for the predefined areas within each DOI indicated the following:

#### 11.3.1 DOI 1

Laboratory results for DOI 1 are presented in Table LR1.

#### **Residential Area**

- A surface sample collected at location RE34 returned an arsenic concentration of 130 mg/kg above the adopted HIL A criterion (100 mg/kg) and the EIL criterion (20 mg/kg). The above sample was subsequently submitted for TCLP analysis and returned a leachable concentration below the laboratory LOR. Samples were subsequently collected in the area immediately adjacent to RE34 (RE34-a to RE34-d), to investigate the recorded arsenic at this location. These samples returned results that were within normal background range, and well below the EIL and HIL-A criteria.
- All other samples analysed for arsenic in this set returned concentrations below the adopted HIL-A and EIL criteria;
- All samples submitted for analysis of cadmium, chromium, copper, lead, mercury, nickel and zinc returned concentrations below HIL A and EIL criteria.

#### Mine Site 3

- 14 surface samples collected at locations MS3-1 to MS3-2 and MS3-4 to MS3-15, and one subsurface sample at MS3-13 (at 0.5 0.6m bgl) returned arsenic concentrations above the adopted HIL-A criterion (100 mg/kg). Results for arsenic in this set ranged from 100 mg/kg up to 2900 mg/kg. All other samples in this set returned arsenic concentrations that exceeded the EIL (20 mg/kg), but were below the HIL-A criterion.
- 10 surface samples collected at locations MS3-1 to MS3-2, MS3-4 to MS3-8 and MS3-12 to MS3-14, and one subsurface sample at MS3-13 (at 0.5-0.6m bgl) returned lead concentrations above the adopted HIL-A criterion (300 mg/kg). Results for lead in this set ranged from 330 mg/kg up to 5200 mg/kg.
- All other samples analysed for lead returned concentrations below the adopted HIL-A and EIL criteria.

- 2 surface samples collected from investigation locations MS3-7 and MS3-8 returned cadmium concentrations above the adopted HIL A criterion (20 mg/kg), while at 4 other locations cadmium exceeded the EIL criterion (3 mg/kg). Results for cadmium in this set ranged from 11 mg/kg up to 47 mg/kg.
- All other samples analysed for cadmium returned concentrations below the adopted HIL A and EIL criteria
- All samples submitted for analysis of chromium, copper, lead, mercury, nickel and zinc returned concentrations below adopted HIL A and EIL criteria.
- TCLP analysis of the surface sample collected at location MS3-8 returned a result for arsenic of 0.44 mg/L, cadmium 0.18 mg/L and lead of 0.16 mg/L.

## Mine Site 3 Stockpiles

- 1 sample (MS3SP3) collected from 1 of the 3 stockpiles likely to have been generated from activities
  at Mine Site 3 returned an arsenic concentration above the adopted HIL-A criterion (100 mg/kg) of
  130 mg/kg. The 2 other samples (MS3SP1 and MS3SP3) returned arsenic concentrations above
  the adopted EIL criterion (20 mg/kg). All other metal concentrations in these samples were above
  the laboratory LOR but below the adopted EIL criteria.
- 3 samples collected each of the 3 stockpiles located at Mine Site 3 and were submitted for Net Acid Generation Potential (NAGP) and Net Acid Generation (NAG). Results for NAGP and NAG analysis are presented in Table LR9. The NAGP and NAG indicate that acidic conditions would not occur as a result of oxidisation of these materials.

### 11.3.2 DOI 2

Laboratory results for DOI 2 are presented in Table LR2.

### **Residential Area**

- All 6 residential area samples analysed for metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc) returned concentrations above the laboratory limits of reporting (LOR) but below the adopted EIL criteria.
- 3 surface samples (RE24, RE30 and RE35) were submitted for OCP and OPP analysis and returned concentrations below laboratory LOR.

### **Open Space Area**

- 1 surface sample (OS20) returned an arsenic concentration marginally above the adopted EIL criterion (20 mg/kg) of 23 mg/kg, but well below the adopted HIL- A criterion (100 mg/kg). However, subsequent sampling conducted at this location (OS20-a to )S20-d) did not confirm this level, or identify any extent of contamination.
- · Remaining samples analysed for metals returned concentrations below EIL criteria.
- 3 surface samples (OS15, OS16 and OS19) were submitted for OCP and OPP analysis and returned concentrations below laboratory LOR.

### Mine Site 4

- 4 surface samples (MS4-14, MS4-22, MS4-23 and MS4-27) returned arsenic concentrations above
  the adopted EIL criterion (20 mg/kg) but below the adopted HIL A criterion (100 mg/kg). Arsenic
  concentrations ranged from 26 mg/kg to 55 mg/kg in this set. The remaining samples analysed for
  arsenic in Mine Site 4 samples returned concentrations well below the adopted EIL criterion.
- 1 surface sample (MS4-14) returned a cadmium concentration of 48 mg/kg, exceeding the adopted HIL-A criterion (20 mg/kg). 1 depth sample, MS4-26A (0.5-0.6m bgl) returned a concentration of 240 mg/kg, significantly exceeding the HIL-A criterion (20 mg/kg).
- 8 surface samples (MS4-7 to MS4-9, MS4-14, MS4-15, MS4-23, MS4-26A and MS4-27) returned cadmium concentrations above the adopted EIL criterion (3 mg/kg). Results for cadmium in this set ranged from 3.5 mg/kg to 9.6 mg/kg.
- Remaining samples analysed for cadmium returned concentrations below the adopted EIL criterion.
- 8 surface samples (MS4-7 to MS4-8, MS4-14, MS4-23, MS4-27, MS4-37 to MS4-39) returned copper concentrations above the adopted EIL criterion (100 mg/kg) but below the adopted HIL A criterion. Results for copper in this set ranged from 120 mg/kg to 530 mg/kg. Remaining samples analysed for copper returned concentrations below the adopted EIL criterion.
- 17 surface samples (MS4-7 to MS4-9, MS4-12 to MS4-15, MS4-18, MS4-22 to MS4-27 and MS4-37 to MS4-39) returned lead concentrations above the adopted HIL A (300 mg/kg). Results for lead in this set ranged from 420 mg/kg to 46000 mg/kg.
- 4 subsurface samples (MS4-12 to MS4-13, MS4-25 and MS4-26A) returned lead concentrations above the adopted HIL-A (300 mg/kg). Results for lead in this set ranged from 390 mg/kg to 1400 mg/kg. Remaining samples analysed for lead returned lead concentrations below the adopted HIL-A (300 mg/kg) and EIL criterion (600 mg/kg).
- 4 samples (MS4-27 and MS4-37 to MS4-39) returned mercury concentrations above the adopted EIL criterion (1 mg/kg) but below the adopted HIL A criterion (15 mg/kg). Results for mercury in this set ranged from 2.2 mg/kg to 3.7 mg/kg. Remaining samples returned mercury concentrations either below the EIL criterion (1 mg/kg) or below the laboratory LOR.
- All samples analysed for chromium and nickel returned concentrations below the adopted EIL criteria.
- Zinc concentrations were detected above the adopted HIL-A criterion (7000 mg/kg) in 4 surface samples (MS4-7, MS4-8, MS4-14, MS4-27) and one depth sample (MS4-26A at 0.5 0.6m bgl). Results for zinc in this set ranged from 8900 mg/kg to 57000 mg/kg).
- Zinc concentrations were detected above the adopted EIL criterion (200 mg/kg) in 21 surface samples (MS4-9, MS4-10, MS4-12, MS4-13, MS4-15 to MS4-19, MS4-21 to MS4-26, MS4-29 to MS4-31 and MS4-37 to MS4-39). Results for zinc in this set ranged from 200 mg/kg to 2400 mg/kg.

### Mine Site 4 Stockpile

- 1 sample (MS4SP1) returned an arsenic concentration of 200 mg/kg above the adopted HIL A criterion (100 mg/kg). Remaining samples returned arsenic concentrations below the adopted EIL criterion.
- 1 sample, MS4SP1 returned a cadmium concentration of 350 mg/kg exceeding the adopted HIL-A criterion (20 mg/kg) and sample MS4SP5 returned a concentration of 4.9 mg/kg exceeding the EIL

- criterion (3 mg/kg). Remaining samples returned cadmium concentrations below the adopted EIL criterion.
- 3 samples (MS4SP1, MS4SP5 and MS4SP9) all returned copper and mercury concentrations above the adopted EIL criterion (100 mg/kg). Results for copper in this set ranged from 190 mg/kg to 360 mg/kg. Remaining samples returned copper concentrations below the adopted EIL criterion.
- 4 samples (MS4SP1, MS4SP5, MS4SP7 and MS4SP9) returned lead concentrations above the adopted HIL-A criterion (300 mg/kg). Results for lead in this set ranged from 14000 to 54000 mg/kg.
- One sample, MS4SP1 returned a zinc concentration of 130,000 mg/kg, significantly exceeding the adopted HIL-A criterion (7000 mg/kg). All other samples returned zinc concentrations above the adopted EIL criterion (200 mg/kg) ranging from 360 mg/kg to 810 mg/kg.
- 3 samples (MS4SP1, MS4SP5, MS4SP9) returned mercury concentrations above the EIL (1 mg/kg) criterion but below the HIL-A criterion (15 mg/kg). The remaining samples returned mercury concentrations below the EIL criterion.
- Sample MS4SP1 was subsequently submitted for TCLP analysis for arsenic, cadmium and zinc and returned a leachable arsenic concentration below the laboratory LOR, a cadmium concentration of 1.7 mg/L and a zinc concentration of 490 mg/L.
- Sample MS4SP9 was also submitted for TCLP analysis for lead and returned a leachable lead concentration of 500 mg/L.
- 10 samples collected from this stockpile were submitted for Net Acid Generation Potential (NAGP) and Net Acid Generation (NAG). Results for NAGP and NAG analysis are presented in Table LR9. The NAGP and NAG results indicate that acidic conditions would not occur as a result of oxidisation of these materials.

## **Former Clay Quarry Stockpiles**

 3 samples at the Mine Site 4 clay quarry stockpiles (SP1 to SP3) returned zinc concentrations above the adopted EIL criterion (200 mg/kg), ranging from 200 mg/kg to 450 mg/kg. Remaining metal concentrations were generally above the laboratory LOR but below the adopted EIL and HIL -A criteria.

## **Mineral Processing Area**

- 10 surface samples (MP4 to MP6 and MP9 to MP15) returned arsenic concentrations above the adopted EIL criterion (20 mg/kg), but below the HIL-A criterion (100 mg/kg). 8 subsurface samples (MP5 and MP9 to MP15) also returned arsenic concentrations above the adopted EIL criterion. Results in this set for arsenic ranged from 20 mg/kg to 96 mg/kg.
- 4 surface samples (MP6 and MP14 to MP16) and 3 subsurface samples returned lead concentrations above the adopted HIL A criterion (300 mg/kg). Results for lead ranged between 300 mg/kg to 400 mg/kg. Remaining samples submitted for lead analysis returned concentrations below the adopted EIL criterion.
- 25 surface and subsurface samples collected from 14 investigations locations (MP3 to MP16), returned zinc concentrations above the adopted EIL criterion (200 mg/kg). Results for zinc in this set ranged from 200 mg/kg to 660 mg/kg.

- 2 samples (MPSUMP-1 and MPSUMP-2) collected at sumps located within the mineral processing area returned arsenic, cadmium and zinc concentrations above the adopted EIL criteria. Zinc in MPSUMP-2 with a concentration of 8100 mg/kg, also exceeded the HIL – A criterion (7000 mg/kg).
- All other results for metals within the mineral processing area were below the adopted EIL criteria.
- 2 surface samples from the mineral processing area (at MP2 and MP4) as well as the 2 sump samples (MPSUMP-1 and MPSUMP-2) were also analysed for OCPs and OPPs, which returned concentrations below laboratory LOR.
- Surface sample MP15 was submitted for TCLP analysis for lead and returned a leachable concentration of 0.07 mg/L.

#### 11.3.3 DOI 3

Laboratory results for DOI 3 are presented in Table LR3.

#### **Residential Area**

- All samples collected from the Residential Area returned metals concentrations above laboratory LOR but below the adopted EIL criteria.
- 5 surface samples from investigation locations RE10, RE15, RE20 and RE25 were submitted for OCP and OPP analysis and all returned concentrations below the laboratory LOR.

### **Open Space Area**

- All samples collected from the Open Space Area returned metal concentrations generally above laboratory LOR but below the adopted EIL criteria.
- 2 surface samples from investigation locations OS05 and OS10 were submitted for OCP and OPP analysis and returned concentrations below the laboratory LOR.

#### Mine Site 1

- A surface and subsurface sample from investigation location MS1-7 returned a zinc concentration of 220 mg/kg and 210 mg/kg respectively, which were marginally above the adopted EIL criterion (200 mg/kg). All other metals concentrations in samples collected from this location returned values generally above the laboratory LOR but below the adopted EIL criteria.
- Remaining samples collected within the Mine Site 1 Area returned metal concentrations above the laboratory LOR but below the adopted EIL criteria.

#### Mine Site 1 Stockpile

- 2 samples collected from a stockpile located within the Mine Site 1 Area (MS1SP1 and MS1SP3), likely to have been generated from activities at Mine Site 1, returned metals concentrations generally above the laboratory LOR but below the adopted EIL criteria.
- 4 samples collected from the Mine Site 1 Stockpile were submitted for Net Acid Generation Potential (NAGP) and Net Acid Generation (NAG). Results for NAGP and NAG analysis are presented in Table LR9. The NAGP and NAG results indicate that acidic conditions would not occur as a result of oxidisation of these materials.

## Kiln Area

- All samples collected from the kiln area to a maximum depth of 0.6 m bgl returned pH values between 7.9 and 8.7.
- All samples collected from the Kiln Area returned PAH concentrations below laboratory LOR and the adopted EIL and HIL - A criteria.

### 11.3.4 DOI 4

Laboratory results for DOI 4 are presented in Table LR4.

#### **Residential Area**

- 5 surface samples collected from the Residential Area returned metals concentrations above laboratory LOR but below the adopted EIL criteria.
- A surface sample from investigation location RE12 was also submitted for OCP and OPP analysis and returned concentrations below laboratory LOR.

### **Open Space Area**

- 4 surface samples collected from the Open Space Area returned metals concentrations generally above laboratory LOR but below the adopted EIL criteria.
- A surface sample from investigation location OS06 was also submitted for OCP and OPP analysis and returned concentrations below laboratory LOR.

### 11.3.5 DOI 5

Laboratory results for DOI 5 are presented in Table LR5.

### **Residential Area**

- A surface sample collected at RE18 0.0-0.2 returned a zinc concentration of 1100 mg/kg, which was above the adopted EIL criterion (200 mg/kg) but below the adopted HIL A criterion.
- Remaining samples collected within the residential area returned metals concentrations generally above the laboratory LOR but below the adopted EIL criteria.
- 3 surface samples (at RE16, RE17 and RE27) were submitted for analysis of OCPs and OPPs and returned concentrations below the laboratory LOR.

### **Open Space Area**

- All samples submitted for metals analysis from the Open Space Area returned concentrations generally above the laboratory LOR but below the adopted EIL and HIL A criteria.
- One surface sample (OS01) was submitted for analysis of OCPs and OPPs and returned concentrations below the laboratory LOR.

### 11.3.6 Drainage Channels

Laboratory results for drainage channel samples are presented in Table LR6.

- Sample DC2 returned a zinc concentration of 210 mg/kg, which was marginally above the adopted EIL criterion (200 mg/kg). Remaining metals concentrations detected in this sample were above the laboratory LOR but below the adopted EIL (and HIL – A) criteria.
- Sample DC13 returned an arsenic concentration of 33 mg/kg, which was above the adopted EIL criterion (20 mg/kg). Remaining metals concentrations in this sample were above the laboratory LOR but below the adopted EIL (and HIL A) criteria. Subsequent sampling and analysis conducted at DC12 (DC12-a to DC12-d), downgradient and in the region of DC13, returned arsenic concentrations within normal background range, and well below the EIL and HIL-A criteria.
- All other drainage channel samples submitted for metals analysis returned concentrations generally above the laboratory LOR but below the adopted EIL criteria.
- All samples submitted for OCP and OPP analysis returned concentrations below the laboratory LOR.

## 11.4 Laboratory Results - Waters

#### 11.4.1 Groundwater and Surface Water

Laboratory results for groundwater and surface water samples are presented in Table LR7.

- All groundwater and surface water samples analysed for cadmium, mercury and OCPs returned concentrations below the adopted criteria, and generally below the laboratory LOR;
- Chromium was below the laboratory LOR in all samples except for groundwater at MW3. At MW3, a
  result of 0.002 mg/L was recorded, marginally exceeding the laboratory LOR and the adopted
  criteria of 0.001 mg/kg. However, it is noted that this criteria is conservative, and directly applicable
  to Cr(VI), not likely to be present at the site;
- Samples MW1, MW7 and MW8 returned arsenic concentrations exceeding the adopted criterion of 0.013 mg/L. Remaining groundwater and surface water samples returned arsenic concentrations below either the adopted criterion or the laboratory LOR;
- 6 groundwater samples (MW1 to MW4, MW 6 and MW8) returned lead concentrations exceeding
  the adopted criterion of 0.0034 mg/L. Samples MW5 and MW7 returned concentrations below the
  adopted criterion, of which MW7 returned a concentration below the laboratory LOR. All of the
  collected surface water samples (SW1, SW2 and SW3) returned results below the laboratory LOR
  for lead;
- All groundwater samples returned nickel concentrations below the adopted criterion of 0.011 mg/L, of which sample MW3 and the 3 surface water samples returned a concentration below the laboratory LOR for nickel.
- 4 groundwater samples (MW2, MW4 to MW6 and MW8), and the 3 surface water samples, returned zinc concentrations exceeding the adopted criterion of 0.008 mg/L. Samples MW1, MW3 and MW7 returned zinc concentrations above the laboratory LOR but below the adopted criterion;
- 4 groundwater samples (MW1, MW2, MW3 and MW6), and 2 surface water samples (Sw2 and SW3), returned copper concentrations exceeding the adopted criterion of 0.0014 mg/L. Samples MW4, MW5, MW8 and Sw1 returned copper concentrations either at or below the LOR;

- Sulfate was detected in all groundwater and surface water samples at concentrations ranging from 11 mg/L to 200 mg/L, and appeared to be generally higher in groundwater samples. This is below the adopted criteria of 400 mg/L for sulphate (ANZECC 1992);
- The pH of groundwater was observed to be neutral to slightly alkaline in all samples analysed.

# 11.5 TCLP Analysis

Laboratory results for TCLP analysis are presented in Table LR8.

#### DOI 1

- Sample MS3-8\_0.0-0.2 returned TCLP concentrations for arsenic (0.44 mg/L), cadmium (0.18 mg/L) and lead (0.16 mg/L) above the laboratory LOR but below the TCLP criteria identified in the Waste Classification Guidelines.
- Sample RE34\_0.0-0.2 returned a TCLP concentration for arsenic (<0.05 mg/L) below the laboratory LOR.

#### DOI<sub>2</sub>

- Samples MS4-27\_0.0-0.2 and MS4SP9 returned TCLP concentrations for lead (370 mg/L and 500 mg/L) exceeding Restricted Solid Waste in the Waste Classification Guidelines.
- Sample MS4SP1 returned TCLP concentrations for cadmium (1.7 mg/L) exceeding General Solid
  Waste but below Restricted Solid Waste in the Waste Classification Guidelines. Zinc returned a
  TCLP concentration of 490 mg/L, however no criteria exists for zinc in the Waste Classification
  Guidelines.
- Arsenic was below the laboratory LOR in both samples (MS4SP1 and MS4-26A\_0.5-0.6) analysed for this parameter.

### 12 RESULTS DISCUSSION

### 12.1 Soils and Sediments

In accordance with the SAQP, sampling of soils was conducted across each of the Domains of Interest in order to:

- 1. Provide confidence that there has been no anthropogenic impact to areas outside of the identified AECs Sampling Strategy 1; and
- 2. To confirm the lateral and vertical extent of contamination within the AEC areas, where potentially contaminating activities were identified Sampling Strategy 2.

In addition, field observation and inspections were carried out in order to confirm the potential AEC areas, and sediment samples were also collected from watercourses in order to assess the migration of contaminants via sediment transport. In execution of these sampling strategies, a higher sampling density was generally achieved in the AEC areas, compared to the areas outside of the AEC areas where there was no historical evidence of anthropological contamination. These areas have generally been designated for residential or open space use in the proposed development.

The results are discussed for each of the DOI areas in the following sections. Statistical analysis of sample sets for selected areas are also discussed below. Statistical calculations are provided in Appendix G.

### 12.1.1 DOI 1

DOI 1 is located in the south western corner of the site and includes Mine Site 3. Laboratory analysis of soil samples collected across DOI 1 indicates that contamination concentrations above the adopted HIL-A criteria were identified at Mine Site 3 and at sample location RE34.

#### Mine Site 3

Inspection of the historical Mine Site 3 identified one mine Shaft and small volume stockpiles of material located around the opening to the mine shaft.

Contaminants detected within Mine Site 3 in surface and subsurface soils included arsenic, cadmium and lead at concentrations above the adopted HIL-A criteria, and copper and zinc at concentrations above the adopted EIL criteria. The contaminants detected in this area are considered to be associated with natural mineral bearing rock present within the Mine Site 3 area at the surface and at depth. It is noted that surface and subsurface samples obtained during the current field investigation were collected from skeletal soils and underlying weathered rock which was broken up using a hand auger, and both the surface samples and underlying samples generally returned elevated results. The site history provided in the PB report (2007) indicates that no activity onsite has occurred since the 1960's. Due to the skeletal nature of the soils in this area, it is likely that surface soils have originated from the weathered underlying rock rather than mining spoils, given the period since mining activities ceased in the area.

The site history does not suggest that chemical processing has occurred at this location, which may have concentrated metals in this area. This is supported by low leaching potential detected in material submitted for TCLP analysis.

Vertical delineation of the contamination in this area has not been defined due to refusal on rock underlying the skeletal surface and subsurface soils. Evidence of mining activities (mine shaft and stockpile) and the high metal concentrations detected across Mine Site 3 suggest that elevated metal concentrations are likely to be encountered at depth within the underlying rock in this area.

Samples collected across the Mine Site 3 area indicates that metal contamination present within skeletal surface and near surface soils extends across the mine site area, as indicated by history and visual observation. An additional round of sampling was conducted on the 25 November 2009 to further delineate the metal contamination encountered across Mine Site 3. The delineation samples returned arsenic concentrations marginally exceeding the adopted EIL criterion but below the adopted HIL A criterion. Remaining metal concentrations detected in these samples were generally above the laboratory LOR but below the adopted EIL criteria. The concentrations detected in these samples are considered to represent the extent of the Mine Site 3 area, and concentrations detected in the delineation samples are also considered suitable for the proposed development and do not pose a risk to the environment in the context of the site. The delineation of areas with exceeding metals results is shown in Figure 5.

It is considered that the concentrations detected within the Mine Site 3 area are not suitable for the proposed residential or open space development and would require management and / or remediation.

One sample (MS3SP3) collected from stockpile material associated with Mine Site 3 returned a lead concentration (120 mg/kg) marginally exceeding the adopted HIL-A (100 mg/kg) criterion and a zinc concentration exceeding the EIL criterion. A stockpile sample (MS3SP1) collected also from stockpile material associated with Mine Site 3 returned an arsenic concentration marginally above the adopted EIL criterion. Although it is likely that the concentrations detected in this stockpile can be attributed to natural mineralisation, the stockpile is likely to have been generated from mining activities at Mine Site 3, and so remediation of this material either through onsite containment or offsite disposal is considered warranted.

## **Residential and Open Space Areas**

Results for soils outside of the delineated Mine Site 3 area, to be used for residential and open space use in the proposed development, returned results for all analytes that were below the HIL-A criteria, except for 1 location located downgradient of the mine Site 3 area. An arsenic concentration was detected above the adopted HIL-A criterion in a surface sample collected at location RE34. A subsurface sample was not collected at this location due to refusal on underlying rock. The concentration of arsenic (130 mg/kg) detected at this location was only marginally above the HIL-A criterion (100 mg/kg) and subsequent sampling and analysis at this location (4 samples RE34-a to RE34-d) did not confirm a 'hot spot' or any extent of contamination at this location. Further, the arsenic concentration at RE34 was below 250% of the HIL-A criterion. TCLP analysis for arsenic was conducted on this sample to assess the leachability of the material, and this result indicated a leachable arsenic concentration below the laboratory LOR.

Arsenic concentrations detected in samples collected across both the Mine Site 3 area and the proposed residential area in the vicinity of RE34 were recorded to be between two distinct ranges of 47 mg/kg to 130 mg/kg or 1600 mg/kg to 2900 mg/kg. The first range is considered to represent background levels in this portion of DOI 1 the second range is considered to represent contamination levels either concentrated by mining activities in the area or. Based the concentrations detected proximate to location RE34 and the above TCLP results, the concentration of arsenic detected at

location RE34 is considered to likely represent natural mineralisation which has not been concentrated by mining activities.

Remaining sampling locations within the proposed residential and open space areas (not including Mine Site 3 or sample location RE34) across DOI 1 returned metals, OCPs and OPP concentrations below the adopted EIL and HILA criteria.

Therefore, based on the soils results obtained in this assessment for DOI 1, Coffey considers that the areas outside of the delineated Mine Site 3 within DOI 1 are suitable for either:

- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

#### 12.1.2 DOI 2

DOI 2 is located in the south central portion of the site and includes the historical Mine Site 4 and Mineral Processing Area. Laboratory analysis of soil samples collected across DOI 2 indicates that contamination concentrations above the adopted HIL A criteria were identified at Mine Site 4 and the Mineral Processing Area.

#### Mine Site 4

Inspection of Mine Site 4 identified 1 mine Shaft, 1 mine adit, clay quarry area, 2 open cut mine areas and 4 stockpiles of clayey material located close to the Mine Site 4 area.

Contaminants detected within Mine Site 4 in surface and subsurface soils included cadmium, lead and zinc at concentrations above the adopted HIL-A criteria, and arsenic and copper at concentrations above the adopted EIL criteria. It is likely that mineral bearing rock is present within the Mine Site 4 area at the surface and at depth. The presence of mineral bearing rock in surface soils has been indicated by the presence of open cut mining in the area as well as high concentrations of lead in surface samples collected approximately 20 m up gradient of mine features (stockpiles, adits or shafts) where mining spoils are not likely to be encountered in surface soils. Discussions with field staff have also indicated that the surface soil samples were collected from in situ weathered rock that was broken up using a hand auger.

A total of ten broken rock samples (MS4SP1 to MS4SP10) were collected from stockpiles associated with mining activities at Mine Site 4. Five rock samples (MS4SP1, MS4SP3, MS4SP5, MS4SP7 and MS4SP9) were submitted for laboratory analysis for metals and all ten samples were submitted for Net Acid Producing Potential (NAPP) and Net Acid Generation (NAG). Rock samples returned metal concentrations exceeding the adopted HIL-A criteria for arsenic, cadmium, lead and zinc at concentrations similar to concentrations detected in skeletal surface soils across the Mine Site 4 area. It is likely that the rock samples represent mined material that has been either excavated from the surface or at depth either from the open cut mine area, adit or the mine shaft and has had minimal processing beyond excavation. The rock sample is therefore considered to represent high concentrations of natural mineralisation endemic to the local geology at Mine Site 4.

No evidence of secondary (crushing and/or sieving) or tertiary processing (chemical processing) of materials was observed except at the Mineral Processing area, where remnant infrastructure was observed and minor concentrations of cyanide was detected in 8 of the 9 samples analysed for this parameter. The Mineral Processing area did not have metals concentrations in the ranges detected at

Mine Site 4, however this may have be due to the successful extraction and capture of processed ore. Elevated concentrations of metals due to mineral processing do not appear to have occurred in this area.

TCLP analysis was conducted on sample MS4-26A 0.5-0.6 for arsenic and on MS4-27 0.0-0.2 for lead. Laboratory results returned a leachable arsenic concentration below the laboratory LOR and a leachable lead concentration of 370 mg/kg. Rock sample (MS4SP1) was submitted for TCLP analysis for arsenic (returning a result of <0.05 mg/L), cadmium (1.7 mg/L) and zinc (490 mg/L), and rock sample (MS4SP9) was submitted for TCLP analysis for lead (500 mg/L). The leachable concentrations detected for arsenic in MS4SP1 and lead in MS4SP9 were comparable to the leachable concentrations detected in soil samples collected across the Mine Site 4 area. The comparable leachable concentrations detected in both soil and rock samples suggest that tertiary processing of material has not occurred at this location and that the concentrations detected are a result of natural mineralisation. TCLP analysis for cadmium or zinc was only conducted on rock samples and not on soil samples collected across the Mine Site 4 area, therefore leaching rates are not comparable for these analytes.

Although high leachable concentrations were observed for Lead and zinc, NAG and NAGP analysis of rock samples collected from stockpiles associated with Mine Site 4 returned a negative Net Acid Generation Potential and a Net Acid Generation below the laboratory LOR. Based on the results of the NAG and NAGP, the TCLP test is considered to be very conservative in assessing the leachability of material in this area as it is unlikely that these materials would encounter in situ acidic conditions due to the neutralising capacity of the rock, if contained onsite under a Site Management Plan (SMP).

Vertical delineation of the contamination in this area has not been carried out due to refusal on rock underlying the skeletal surface and subsurface soils. Evidence of mining activities (mine shaft, adit and open cut excavation) and the high metal concentrations detected across Mine Site 4 suggest that elevated metal concentrations are likely to be encountered at depth within local geological formations in this area.

Samples collected across the Mine Site 4 area indicated that metals concentrations present within skeletal surface and near surface soils extends across the entire mine site area. An additional round of sampling was conducted on the 25 November 2009 to further delineate the metal contamination encountered across Mine Site 4. The delineation samples returned two zinc concentrations exceeding the adopted EIL criterion but below the adopted HIL A criterion. Remaining metals concentrations detected in these samples were generally above the laboratory LOR but below the adopted EIL criteria. The concentrations detected in these samples are considered to represent the extent of the Mine Site 4 area, and are considered suitable for the proposed development for residential or open space use. The delineation of areas with exceeding metals results is shown in Figure 6.

Samples SP1 – SP3, taken from 'clay quarry stockpiles' located close to Mine Site 4, returned zinc concentrations above the adopted EIL criterion (200 mg/kg), ranging from 200 mg/kg to 450 mg/kg. Remaining metal concentrations were generally above the laboratory LOR but below the adopted EIL and HIL - A criteria. These are discussed below as part of the areas suitable for development outside of the Mine Site 4 area.

The concentrations detected within the Mine Site 4 area are not suitable for the proposed development and will require management and /or remediation.

### **Mineral Processing Area**

Inspection of the Minerals Processing Area identified remnant infrastructure including wooden posts and concrete slab as well as 2 sumps.

Concentrations of metals within the Mineral Processing Area in surface and subsurface soils included arsenic and zinc concentrations exceeding the adopted EIL criteria. One surface sample at location MP6 and surface and subsurface samples at location MP14 to MP16 returned lead concentrations in the range 300 mg/kg to 400 mg/kg, marginally above the adopted HIL A criteria (300 mg/kg).

In order to assess the potential risk the identified contamination may pose to the environment and/or human health, the 95% Upper Confidence Limits (UCL) were calculated for arsenic, zinc and lead for samples from the Minerals Processing Area, and are discussed as follows.

The 95% UCL calculation for arsenic returned a concentration of 24.8 mg/kg, which marginally exceeds the adopted EIL criterion (20 mg/kg). During the current assessment a diversity of vegetation was observed in this area and no vegetation stress was observed. Based on this evidence, the arsenic concentrations detected across the Mineral Processing Area are not considered to pose an environmental risk in the context of the site. Due to the skeletal nature of the soils across the site, it is also anticipated that imported soil will be required for residential gardens, therefore exposure of future gardens to the skeletal surface soils currently onsite will be limited.

The 95% UCL calculation for lead for all samples in the Minerals Processing Area returned a concentration of 206.8 mg/kg, which is below the adopted HIL-A and EIL criterion. Based on the 95% UCL calculation, and that no single result exceeded 250% of the HIL-A criterion, the concentrations of lead detected in the Mineral Processing Area are considered to not pose an environmental or health risk for the proposed future development.

The 95% UCL calculation for zinc returned a concentration of 360.3 mg/kg, which exceeds the adopted EIL criterion, but is well below the adopted HIL-A criterion. Only 2 samples (MP14 and,MP15) exceeded the adopted EIL criterion by more than 250%, and no sample exceeded the HIL-A criterion. During the current assessment a diversity of vegetation was observed in this area and no vegetation stress was observed. In addition, due to the skeletal nature of the soils across the site, it is anticipated that imported soil will be required for residential gardens, therefore exposure of future gardens to the skeletal surface soils currently onsite will be limited. Based on the 95% UCL calculation and other evidence, the zinc concentrations detected in the Minerals Processing Area are not considered to not pose an environmental or health risk for the proposed future development.

Minor concentrations of cyanide below the adopted criterion were detected in 8 of 9 samples submitted for analysis of this contaminant. The concentrations detected suggest that some tertiary processing of mined material may have occurred in this area. However the low concentrations of cyanide detected and the low concentrations of metals detected in this area when compared to Mine Site 3 and Mine Site 4 indicate that tertiary processing of material in this area may not have been extensive.

Two sumps were identified within the Mineral Processing Area associated with mineral processing infrastructure. One sample was collected adjacent to each sump (MPSUMP-1 and MPSUMP-2). Arsenic and zinc were detected marginally exceeding the EIL criteria in MPSUMP-1. Arsenic, cadmium and zinc concentrations were detected in MPSUMP-2, exceeding the adopted EIL criteria, of which zinc also exceeded the HIL-A criterion. The concentrations of arsenic, cadmium and zinc detected in the sumps were generally higher than the concentrations detected across the Mineral Processing Area and samples collected during previous investigations indicate that these exceedences are localised and

associated with the sumps. It is anticipated that the sump infrastructure will be demolished as part of the proposed development. Due to the minor volumes associated with this material it is recommended that the sumps and associated soils are excavated out as part of the demolition works and disposed offsite to licensed landfill.

### **Residential and Open Space Areas**

Results for all other soils samples outside of the Mine Site 4 and Minerals Processing areas (discussed above), returned results for all analytes that were below the EIL and HIL-A criteria, except for sample OS20 0.0-0.2 discussed below.

Within this set, one sample (OS20\_0.0-0.2) returned an arsenic concentration of 23 mg/kg, marginally exceeding the EIL criterion (20 mg/kg). Subsequent sampling and analysis was conducted adjacent to OS20 (OS20-a to OS20-d), which returned arsenic concentrations within normal background levels, and well below the EIL and HIL-A criteria. Therefore, the result at OS20 is not considered to represent any 'hot spot', or any extent of contamination at this location, and is not considered significant. Samples SP1 – SP3, taken from 'clay quarry stockpiles' located close to Mine Site 4, also returned zinc concentrations above the adopted EIL criterion (200 mg/kg), ranging from 200 mg/kg to 450 mg/kg. These are also less than 250% of the EIL criteria, and in areas where diversity of vegetation was observed. Based on this evidence, these results are also not considered significant.

Therefore, based on the soils results obtained in this assessment in DOI 2, Coffey considers that the areas outside of the delineated Mine Site 4, and following demolition of remnant minerals processing structures, are suitable for either:

- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

### 12.1.3 DOI 3

DOI 3 is located in the north eastern portion of the site and includes Mine Site 1 and the lime kiln area. Laboratory analysis of soil samples collected across the residential and open space areas in DOI 2 indicate that contamination concentrations were generally above the laboratory LOR but below the adopted EIL and HIL A criteria for all analytes.

Laboratory analysis of soil samples collected across Mine Site 1 indicate that contamination concentrations were generally above the laboratory LOR but below the adopted EIL and HIL A criteria for all analytes, with the exception of zinc at location MS1-7 in surface and subsurface soils which returned a concentration of 220 mg/kg and 210 mg/kg respectively, marginally above the adopted EIL criterion (200 mg/kg) which is not considered significant.

Laboratory analysis of soil samples collected across the Kiln Area indicates that PAH contamination concentrations were below the laboratory LOR and adopted criteria.

Samples collected from Open Space and Residential Areas returned metal concentrations above the laboratory LOR but below the adopted EIL criteria. OCP and OPP concentrations were below the laboratory LOR for all samples analysed for these parameters.

Based on the analytical results from DOI 3 the contamination concentrations detected across this area including Mine Site 1 and the Kiln area are considered suitable for either:

- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

## 12.1.4 DOI 4

DOI 4 is located in the central northern portion of the site and includes the Sheep Dip Area. The Sheep Dip Area was not assessed as part of this investigation. Assessment and remediation of the Sheep Dip Area is to be completed as part of the validation works to be conducted as per the Remediation Action Plan dated (reference ENVICANB00233AA-R02).

Laboratory analysis of samples collected from the remaining residential and open space areas within DOI 4 indicate that contamination concentrations were generally above the laboratory LOR but below the adopted EIL and HIL A criteria for all analytes.

Based on the analytical results from DOI 4 the contamination concentrations detected across this area (excluding the Sheep Dip Area) are considered suitable for either:

- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

#### 12.1.5 DOI 5

DOI 5 is located in the north western portion of the site. Laboratory analysis of soil samples collected across DOI 5 indicate that contamination concentrations were generally above the laboratory LOR but below the adopted EIL and HIL A criteria for all analytes, with the exception of 1 surface sample collected within the proposed residential area at location RE18, which returned a zinc concentration (1100 mg/kg) above the adopted EIL criterion (200 mg/kg), but below the adopted HIL A criterion (7000 mg/kg).

While the zinc result at RE18 exceeds 250% of the EIL criterion, statistical analysis of all residential and open space areas outside of the identified AEC areas meets the EIL criterion for zinc (as discussed at Section 12.1.7). Further, no mining activities have occurred in DOI 5 and all adjacent samples returned results below the EIL criterion. Therefore the concentration detected is considered to represent naturally occurring mineralisation. Therefore the concentration detected at location RE18, although exceeding the adopted EIL criterion, is not considered to represent a hot spot requiring remediation, nor pose a risk to environmental receptors in the proposed development.

Based on the analytical results from DOI 5 the contamination concentrations detected across this area are considered suitable for either:

- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

#### 12.1.6 Drainage Channels

Samples collected from within the Drainage channels of Jumping Creek and its tributaries returned metal concentrations generally above the laboratory LOR but below the adopted EIL and HIL A criteria,

with the exception of 2 samples (DC2 and DC13) which returned metal concentrations marginally above the adopted EIL criteria. Sample DC2 returned a zinc concentration of 210 mg/kg and DC13 returned an arsenic concentration of 33 mg/kg, both only marginally exceeding the EIL and not considered significant. The drainage channel results indicate that significant migration of contaminants via sediment transport in the watercourse has not occurred.

### 12.1.7 Statistical Analysis of Residential and Open Space Areas

Statistical analysis of metals results obtained from samples collected in residential and open space areas was carried out for each analyte, excluding:

- Samples with exceeding metals results representing Mine Site 3 area, as defined by Figure 5;
- Samples with exceeding metals results representing Mine Site 4 area, as defined by Figure 6;

Statistical calculations are provided in Appendix G, and show that the 95% UCL for all metals are below the EIL and HIL-A criteria, confirming that these areas are suitable for either:

- Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
- Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

### 12.2 Groundwater and Surface Water

### 12.2.1 Groundwater

Groundwater monitoring wells were positioned across the site at locations where soil contamination concentrations had been detected above the adopted criteria, or where potential historical contamination in the area of the sheep dip may have impacted groundwater. Two (2) wells were positioned up gradient of these areas at Mine Site 3 and Mine Site 4 (MW1 and MW4 respectively). Remaining wells were positioned either within AEC areas or down gradient of the AEC areas, except for MW3 which is cross gradient from the Mine Site 3 area. The accurate locations of the wells with respect to the AEC areas are shown in Figure 3, as well as the detailed Figures 4, 5 and 6. The interpreted groundwater contours are shown in Figure 9.

Laboratory results from the two groundwater monitoring wells up gradient of Mine Site 3 and Mine Site 4 (MW1 and MW4) indicate that background arsenic, lead, zinc and copper concentrations in groundwater at these locations exceed the adopted ANZECC& ARMCANZ criteria. Monitoring well MW1 returned arsenic (0.015 mg/L), copper (0.002 mg/L) and lead (0.006 mg/L) concentrations exceeding the adopted criteria (arsenic 0.013 mg/L, copper 0.0014 mg/L and lead 0.0034 mg/L) and monitoring well MW4 returned lead (0.03 mg/L) and zinc (0.008 mg/L) concentrations exceeding the adopted criteria. Monitoring well MW8 also returned arsenic (0.014 mg/L), lead (0.009 mg/L) and zinc (0.008 mg/L) concentrations exceeding the adopted criteria. MW8 was positioned down gradient of the sheep dip where no mining activities had previously occurred, therefore metal concentrations detected in this well are also considered to be representative of background groundwater levels of across the site.

Groundwater monitoring well MW2 was positioned down gradient of Mine Site 3, and MW3 may be either cross gradient or partially downgradient of Mine Site 3. Both locations returned copper, lead and zinc concentrations exceeding the adopted criteria. Metal concentrations detected in MW2 and MW3

compared to the up gradient well (MW1) were comparable for copper (0.002 mg/L) and lead (0.009 mg/L) in MW3. Copper concentrations (0.003 mg/L) in MW2 were also comparable to the up gradient well (MW1) however the lead concentration was significantly higher for lead (0.2 mg/L) and zinc (0.01 mg/L). However the background levels detected in up gradient wells are already at elevated concentrations.

Groundwater monitoring wells (MW5 and MW6) were positioned down gradient or within Mine Site 4. Concentrations of zinc were detected above the adopted criterion in MW5 and concentrations of copper, lead and zinc were detected above the adopted criteria in MW6. MW4 was positioned up gradient of MW5 and MW6 and also returned lead and zinc concentrations above the adopted criteria. The lead (0.03 mg/L) and zinc (0.008 mg/L) concentrations detected in MW4 were comparable to the lead (0.042 mg/L) and zinc (0.014 mg/L) concentrations detected in MW6. Copper concentrations were detected in MW4 and MW5 at 0.001 mg/L below the adopted criteria, in comparison copper concentration in MW6 were detected at 0.003 mg/L. Generally, the metal concentrations detected in the up gradient and down gradient monitoring wells are considered to be comparable are therefore likely to represent background metal concentrations in groundwater across the site.

Groundwater monitoring well MW7 was positioned down gradient of the Mineral Processing Area. Metal concentrations detected in this well were above the laboratory LOR but below the adopted criteria for copper, nickel and zinc, and exceeded the criterion for arsenic. Remaining metal concentrations in this well were below the laboratory LOR.

Groundwater monitoring well MW8 was positioned down gradient of the Sheep Dip Area. Arsenic, lead and zinc was detected in this well at concentrations exceeding the adopted criteria. Nickel was also detected above laboratory LOR but below the adopted criteria. Remaining metal concentrations were below the laboratory LOR. Due to the absence of mining activities in DOI4, and comparing the concentrations detected in other up gradient wells across the site, the contamination concentrations detected in MW8, although above the adopted criteria for arsenic, lead and zinc are considered to be representative of background concentrations across the site.

OCPs and OPPs in all groundwater samples were below the laboratory LOR. Although the laboratory LOR exceeds the adopted ANZECC guidelines, concentrations of OCPs and OPPs within groundwater are considered to pose a low risk to aquatic ecosystems based on the following:

- Only minor concentrations of OCPs (DDT) were previously detected in soils in the Sheep Dip area.
- DDT has a half life in soil of between 2 and 15 years (CDC, 2005). Based on anecdotal evidence (PB, 2007) no specific land use has occurred on the site including the use of the sheep dip since the 1960s. Therefore it is likely that significant levels of residual OCP or OPP contamination would have degraded over this time;
- OCPs and OPPs have a high affinity to soil and are generally restricted to surface and near surface soils. Groundwater across the site was encountered at depths ranging between 17 m bgl (MW7) and 37.3 m bgl (MW1). It is unlikely that OCPs or OPPs would be available for transport into groundwater at these depths.

#### **Surface Water**

Surface water was collected at three locations across the site from locations which were safe to access and had standing surface water. These locations were within the lower section of Jumping Creek. Upper areas of Jumping Creek and its tributaries were generally dry at the time of sampling. It is

considered that surface water samples would not be representative of flowing surface water, as samples were collected from stagnant water pools.

Laboratory analysis of surface water samples detected concentrations of copper and zinc above the adopted criteria, except for SW1 which returned a copper concentration above the laboratory LOR but below the adopted criterion. Remaining metal concentrations were below the laboratory LOR. Concentrations of OCPs and OPPs were below the laboratory LOR.

The metal concentrations detected in surface water are consistent with concentrations detected in groundwater with the exception of arsenic and lead which were not detected above the laboratory LOR in any surface samples. This suggests that metals concentrations in surface water, like groundwater, are representative of regional mineralisation of the area, and not due to any anthropogenic processes. Further, as arsenic and lead were detected in upgradient groundwater (but not surface water); these results indicate that there may not be a significant connection between site groundwater, and the surface water in the lower section of Jumping Creek. Generally concentrations of metals in surface water samples, and also in sediment samples collected from the waterways, indicate that surface water flows are not a major transport route for metals at the site.

Coffey considers that the metals concentrations in surface water do not represent a risk to human health for the proposed site development, due to evidence suggesting that these concentrations are due to regional mineralisation. In addition, the levels recorded in surface water are well below guidelines for recreational water quality and aesthetics published in ANZECC & ARMCANZ 2000

## 13 CONCEPTUAL SITE MODEL

The following Conceptual Site Model (CSM) has been developed based on this current and previous assessment of the Site. The purpose of the CSM is to:

- Integrate all of the information available from the various sources;
- Confirm the significance of any data gaps;
- Determine potential migration and exposure pathways and human receptors to contamination;
- Provide a basis for evaluation of the risk to human health and the environment presented by contamination at the site; and
- Provide a basis remediation and management actions, discussed in the next Section.

The following CSM for the site was developed using ASTM E 1689-95 (2008) *Standard Guide for Developing Conceptual Site Models for Contaminated Sites*, as a guide.

## 13.1 Site Summary

'Standard' residential use with some areas reserved for public open space is proposed for the site which occupies 109 Ha (approx.). Jumping Creek residential estate to be located at the end of Lonergan Drive, Queanbeyan, NSW.

The Site lies in an enclosed valley within the Queanbeyan River corridor, with the Queanbeyan River to the west and high country to the east. The Site is highly undulating, and is dissected by Jumping Creek, ridgelines, gullies and associated drainage channels. The Site is bound by Queanbeyan River to the south west and low density residential allotments to the south west and west and by undeveloped land to the north, east and south. Jumping Creek flows to the Queanbeyan River immediately to the west of the Site which in turn flows to the Molonglo River, approximately 6km to the north of the Site.

Previous use of the Site dates back to the 1840s when the Site was first used for pastoral activities. Small scale mining activities are understood to have occurred on the Site between the 1850s and early 1900s. Based on the detailed site histories provided in previous investigation reports, potentially contaminating activities at the site include:

- Mining of lead, copper, zinc and possibly gold;
- · Possible minerals processing activities;
- · Limestone quarry and processing kiln; and
- Pastoral activities, including one sheep dip complex.

The site is currently used for a number of unauthorised activities, including trail bike riding, four wheel driving and bushwalking. It is understood that no particular authorized use has occurred on site since the 1960s.

Historical information and site inspection identified a number of potential Areas of Environmental Concern (AECs) associated with the above. These were:

- Mine Site 1;
- Mine Site 3:
- Mine Site 4;
- · Former Minerals Processing Area;
- · Former Kiln Area; and
- Former Sheep Dip Area.

Soils on the Site are skeletal silty sands and clayey soil with some gravel, underlain by hard sandy clay and gravelly clay, underlain by bedrock consisting of mainly highly to moderately weathered foliated tuff, siltstone or shale. Alluvial and slope wash deposits to a depth of up to 2m bgl are present within the gullies of Jumping Creek and its tributaries.

Previous assessments identified that 14 groundwater bores are located within 1km of the site boundary. All of the bores were identified for domestic use, which may include stock watering or irrigation.

Jumping Creek and its tributaries are ephemeral and were generally dry during investigations carried out by Coffey. It is considered unlikely that the watercourses on-site would have any utility for water supply or recreation. However it has been proposed that a constructed wetland may be installed on site as part of the development. Watercourses downstream (Queanbeyan and Molonglo Rivers) may have recreational utility.

### 13.2 Source Characterisation

This Stage 3 Contamination Assessment included supplementary assessment of soils, surface waters, sediments (in drainage channels) and groundwater. In accordance with an SAQP prepared for this project, sampling of soils was conducted across the AEC and remainder of the site, in order to:

- Provide confidence that there has been no anthropogenic impact to areas outside of the identified AECs sampling strategy 1; and
- To confirm the extent of contamination within the AECs, where potentially contaminating activities were identified sampling strategy 2.

The sheep dip area was not assessed as part of this investigation, however remediation and validation of the sheep dip area is to be conducted as per a Remediation Action Plan dated 15 December 2009 (Reference: ENVICANB00233AA-R02).

Sampling of sediments in site watercourses was carried out to assess the potential for offsite migration of identified contamination via sediment movement to the watercourse. Groundwater and surface water assessment was carried out to assess the potential for offsite migration of contamination via these vectors, and potential health and environmental risk.

The following is summarised from the assessment:

### 13.2.1 Contaminants of Concern

Based on this current and previous investigations, contaminants that have exceeded relevant guidelines and are considered to be the contaminants of concern for the site are as follows:

Soils and sediments: arsenic, cadmium, lead, copper, mercury and zinc. It is noted that mercury was detected only at the Mine Site 4 area;

Groundwater: arsenic, lead, zinc and copper;

Surface water: copper and zinc.

It is noted that OCPs were previously detected in low concentrations in samples from the sheep dip area, which were well below the adopted HIL-A criteria. In addition, OCPs were not detected in any other location on the site where OCPs were tested. However, OCPs are included as contaminants of potential concern for remediation and validation of this area.

The contaminants of the concern are non volatile, and would not be expected to migrate in soil gas. This would include mercury, which while at low levels in a localised area, would be expected to exist as a mineral salt.

#### 13.2.2 Soils and Sediments: Source Areas

Following from this assessment, and the discussion provided in Section 12, the source areas for contamination in soils are considered to be:

#### Mine Site 3

Contamination in soils at Mine Site 3 was confirmed in skeletal surface soils, near surface soils and mine workings stockpiles in this area exceeding the HIL-A and EIL criteria. Contamination exceeding criteria were in the following ranges:

Arsenic: 20 mg/kg to 2900 mg/kg

Lead: 330 mg/kg to 5200 mg/kg

Cadmium: 11 mg/kg to 47 mg/kg

Contamination was identified over a wide area in natural mineral bearing rock and skeletal soils, as well as disturbed soils and stockpiled materials. The locations of the elevated results in this area are shown in Figure 5.

### Mine Site 4

Contamination in soils at Mine Site 4 was confirmed in skeletal surface soils, near surface soils and mine workings stockpiles in this area exceeding the HIL-A and EIL criteria. Contamination exceeding criteria were in the following ranges:

Arsenic: 26 mg/kg to 200 mg/kg

Cadmium: 3.5 mg/kg to 350 mg/kg

Lead: 420 mg/kg to 54,000 mg/kg

Mercury: 2.2 mg/kg to 3.7 mg/kg

Copper: 120 mg/kg to 530 mg/kg

Zinc: 8900 mg/kg to 57,000 mg/kg

Like Mine Site 3, contamination was identified over a wide area in natural mineral bearing rock and skeletal soils, as well as disturbed soils and stockpiled materials. The locations of the elevated results in this area are shown in Figure 6.

## Minerals Processing Area

Contamination in soils at the Minerals Processing Area was confirmed in skeletal surface soils and near surface soils in this area exceeding the HIL-A and EIL criteria. Contamination exceeding criteria were in the following ranges:

Arsenic: 20 mg/kg to 96 mg/kg Lead: 300 mg/kg to 400 mg/kg

Zinc: 200 mg/kg to 8,100 mg/kg

The locations of the elevated results in this area are shown in Figure 7.

Outside of the above areas, arsenic was recorded in soils at 1 location (RE34) at 130 mg/kg, exceeding the HIL-A criteria for arsenic of 100 mg/kg. Subsequent sampling around this location did not confirm any 'hot spot' of contamination, and so this is not considered a source area for contamination in soils. In addition, marginally elevated metals concentrations were also recorded in soils at locations exceeding the EIL criteria at locations: RE18, MS1-7, SP1-SP3, OS20, DC2 and DC13. As discussed in this report, these are considered to be isolated results, not associated with any anthropogenic activities on the site, and adjacent to results that are not elevated. Further, these results are within the ranges considered to be representative of background concentrations, as discussed below. Therefore, they are not considered to be representative of significant source areas of contamination.

Results for sediment samples collected from watercourses returned results that were below the EIL criteria, except for DC2 and DC13, which only marginally exceeded the EIL criteria (zinc at 210 mg/kg and arsenic at 33 mg/kg respectively). These results indicate that migration of contamination at concentrations expected to cause an adverse environmental or human health impact via sediment transport in the watercourses has not occurred.

### 13.2.3 Soils: Background

ASTM E 1689-95 (2008) identifies background concentrations of an analyte as being attributable to natural occurrence at the site. However, this assessment has found that the majority of the source contamination is due to natural mineralisation on the site, due to elevated levels being associated with natural soils and rock. In this context, background levels may be considered to be those measured in all other areas of the site, apart from the source areas outlined above.

Statistical analysis of the results for each analyte for the samples outside of the main source areas of Mine Site 3 and Mine Site 4 has been carried out and is discussed in Section 12.1.7. The 95% UCL for each analyte (assuming normal distribution) was calculated as follows:

Arsenic: 12 mg/kg

Cadmium: 0.23 mg/kg

Lead: 34 mg/kg

Copper: 15 mg/kg

Coffey Environments ENVICANB00233AA-R01b 16 June 2010 Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

Zinc: 110 mg/kg

Mercury was detected only at the Mine Site 4 area, and was below the laboratory LOR in all background samples.

### 13.2.4 Surface waters

Surface water samples were collected from three locations which were safe to access and had standing surface water. Copper and zinc were detected in these samples at levels exceeding criteria for protection of aquatic ecosystems (freshwater trigger values for protection of 95% of species) adopted as investigation levels for the site. The following range in levels was recorded:

Copper: 0.001 to 0.005 mg/L

Zinc: 0.008 - 0.016 mg/L

### 13.2.5 Groundwater

Groundwater was assessed from 8 wells, located upgradient, downgradient and within, the AECs where soil concentrations had been detected above the adopted criteria (i.e. source areas). Copper, lead and zinc were detected in these samples at levels exceeding criteria for protection of aquatic ecosystems (freshwater trigger values for protection of 95% of species) adopted as investigation levels for the site. The following range in levels was recorded:

Copper: 0.001 to 0.003 mg/L

Lead: 0.001 to 0.2 mg/L

Zinc: 0.003 to 0.011 mg/L

### 13.3 Potential Migration Pathways

The following is identified with regard to potential migration pathways, for contamination from the identified source areas:

- Air, as a result of wind action and dust movement;
- Groundwater;
- Surface water;
- Sediment movement (erosion);
- Dermal contact or ingestion of soils;
- Food chain transfer.

### 13.4 Potential Receptors

The following potential human and environmental receptors are identified, considering the future planned use of the site as well as current surrounding land use:

- Site users, including residents and visitors;
- Site workers, involved in construction, services, landscaping or maintenance activities;

- On-site or offsite users of groundwater, including stock, or where groundwater may be used for growing fruit and/ or vegetables, which could be consumed by humans;
- Local plants, vertebrates and invertebrates;

### 13.5 Conceptual Site Model

Following from the above review, a pictorial presentation of the Site Conceptual Model is provided as Figure 10. The following discussion is provided:

- The soil contact pathway may be considered to be complete for either public open space or residential use of the source areas. These are Mine Site 3 and Mine Site 4, where concentrations of metals were recorded over a large area exceeding relevant health investigation levels.
- The sediment pathway is considered complete but is considered a low risk pathway, due to the low levels of contamination identified in drainage sediment samples considering the long period (50 100 years) that the mine sites have been in existence. The mine site areas are also generally stable, with low potential for erosion due to the nature of the materials and mature vegetation.
- The air pathway is considered not to be complete because the contaminants are non-volatile and that soils on the site are currently stable and not greatly available to wind erosion. This is indicated by the generally low levels of contamination outside of the identified source areas, suggesting minimal migration of contamination by this pathway (or other pathways). However, this pathway has the potential to become complete during future development or disturbance at the site.
- Some migration of dissolved contamination in surface water is evident, although at low levels. However, results obtained in this assessment are not considered to be representative of what may migrate to downstream watercourses as the samples were collected from stagnant pools, and not flowing surface water. Flowing surface water would be expected to contain much lower levels of contamination due to lower contact time with contaminated media as well as dilution effects, and therefore would present a low risk to the downstream environment. While the site watercourses are noted to be ephemeral, and not suited to recreational use (such as swimming), the results obtained for surface waters were well below guidelines for recreational water quality and aesthetics (ANZECC & ARMCANZ, 2000). Therefore, this pathway is considered to be potentially complete but does not represent a risk to human health for the proposed development.
- Food chain transfer of contamination to humans is possible should the source areas be used for growing edible produce. However, the thin skeletal soils and rock in the source areas are not suitable for this purpose, which would require the importation of clean soils to support healthy vegetation growth.
- Elevated levels of copper lead and zinc in groundwater both up-gradient and down-gradient of the source areas, as well as outside of the source areas (MW8) indicate that these are regional background levels, likely due to natural mineralisation within the local geology. However, the apparent increase in lead concentration from MW1 (up-gradient of Mine Site 3) to MW2 (within/down-gradient of Mine Site 3) suggests that groundwater impact from the Mine Site 3 area due to leaching of lead cannot be discounted, although this is not suggested by the results obtained at Mine Site 4 where surface concentrations of lead are approximately 10 times those at Mine Site 3. Depth to groundwater is in excess of 19m, and is therefore unlikely to recharge surface water bodies, either on site or in the vicinity. Further, groundwater extraction and use on the proposed development is unlikely for any use, including drinking water, therefore no complete exposure pathway exists for site

users under the proposed development. However, a potentially complete exposure pathway exists via regional or down-gradient extraction and use of groundwater, considering the levels of copper lead and zinc contamination in groundwater across the site. While the assessment of risk associated with this exposure is outside the scope of this document, levels of these metals would be expected to dissipate due to dispersion with movement of groundwater down-gradient of the site, assuming no other offsite sources contributed to contamination. Therefore, risk for the most likely stock watering use down-gradient of the site is expected to be low with regard to relevant levels.

### 14 REMEDIATION AND MANAGEMENT OPTIONS

Based on the findings of the soil and groundwater assessment, and the analysis conducted in the CSM, the delineated Mine Site 3 and Mine Site 4 areas would require some form of management or remediation for proposed development. In addition, demolition and removal of potentially contaminated structures in the Minerals Processing Area (particularly the sumps and associated soils and sediments) as well as remediation of the Sheep Dip Area would also be required.

Excavation and offsite disposal of soils and rock containing elevated concentrations of metals in the Mine Site 3 and Mine Site 4 areas is not considered feasible, due to evidence suggesting that the elevated concentrations in these areas are due to natural mineralisation, and not historical anthropogenic processes which may have concentrated the contamination in localised areas. Therefore, attempts to excavate materials in these areas are likely to only expose underlying mineralised rock, and would be unsuccessful. Further, contamination concentrations were detected in samples collected at Mine Site 3 and Mine Site 4 at concentrations exceeding either the General Solid Waste classification or the Restricted Solid Waste classification as per the NSW DECC (2008) Waste Classification Guidelines Part 1: Classifying Waste. Costs associated with the transport and disposal of large volumes of such materials would be prohibitive to the proposed development, due to the distance of the site from a waste facility licensed to accept such materials.

Following from the above, Mine Site 3 and Mine Site 4 areas may not be suitable for standard residential use, due to the significantly elevated metals concentrations in soil and rock in these areas. Further, capping of soils, with an appropriate management plan, is generally considered unsuitable for residential areas. Therefore, it would be prudent to avoid residential development of these areas, or alternatively conduct a site specific health risk assessment to confirm the risk for residential development of these areas.

Management and remediation options for the Mine Site 3 and Mine Site 4 areas would include:

- 1. Revision of the development plan for the site so that residential allotments are not within the Mine Site 3 and Mine Site 4 areas, including a suitable buffer zone;
- Restriction of access to the Mine Site 3 and Mine Site 4 areas in the short term to avoid unhealthy exposures to metals concentrations in these areas, as well as unsafe conditions associated with mine shafts, adits and other structures;
- 3. The removal or management of physical hazards (such as mine shafts or other structures) associated with these areas;
- 4. Removal and landfill disposal of stockpiles of rock and soils and other loose potentially contaminated materials in these areas. Alternatively, these materials may also be consolidated and capped on site in accordance with a Remediation Action Plan (RAP), which should also contain procedures for environmental management of the remedial works; and
- 5. Implementation of a landscape cap and vegetation in Mine Site 3 and Mine Site 4, so that these areas may be incorporated into the development as open space areas with adequate stabilisation and barrier to direct contact with rock and soils.

It is recommended that these portions of the site are remediated under a RAP, with ongoing management under a Site Environmental Management Plan (SEMP). Additionally, contamination associated with the sumps identified at the Minerals Processing Area is recommended to be removed to offsite licensed landfill (or capped on site), along with the demolition of these structures.

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

Assessment and remediation of the Sheep Dip Area is to be completed as part of the validation works to be conducted as per the Remediation Action Plan dated (reference ENVICANB00233AA-R02).

### 15 CONCLUSIONS AND RECOMMENDATIONS

### 15.1 Conclusions

Inspections carried out as part of this assessment provided observations regarding site condition and location of evidence of former land uses. The following was concluded from the observations:

- · No evidence of plant stress was observed;
- No odours associated with contamination were observed;
- General waste resulting from unauthorised fly tipping was observed across the site in small volumes.
- Following removal of weeds where practicable and further site walkovers conducted by Coffey in 2009, no further AECs were observed across the site, with the exception of a previously unidentified mine shaft at Mine Site 4. Following from this, the following AEC's were confirmed in this assessment:
  - Mine Site 1 (within DOI 3);
  - Mine Site 3 (within DOI 1);
  - Mine Site 4 (within DOI 2);
  - Former Minerals Processing Area (within DOI 2);
  - Former Kiln (within DOI 3); and
  - Former Sheep Dip (within DOI 4).
- Mine sites were generally observed to consist of a mine shaft and waste rock/soil stockpile/s. Mine Site 4 also had an adit, open cut mine area and an adjacent clay quarry.
- The mineral processing area and sheep dip area were observed to generally consist of remnant infrastructure.
- A remnant kiln constructed from Bricks was observed at the kiln area.

In accordance with the SAQP prepared for this project, sampling of soils was conducted across each of the Domains of Interest in order to:

- 1. Provide confidence that there has been no anthropogenic impact to areas outside of the identified AECs Sampling Strategy 1; and
- 2. To confirm the lateral and vertical extent of contamination within the AEC areas, where potentially contaminating activities were identified Sampling Strategy 2.

Following implementation of sampling and analysis of soils in accordance with these strategies, it was concluded that:

The primary source of elevated metals concentrations on the site has been confirmed to be
due to natural mineralisation within local geological formations. Based on analytical results
from samples of rock fragments and samples from weathered rock surface samples, which
were collected from up gradient locations of the mine sites, mining activities are considered to

- in general not have concentrated the contamination in the identified AEC areas. As such, the mine sites are considered to be identifiers of areas where natural mineralisation is present within the local geology. However, disturbance of the AEC areas is evident, and so the distribution of elevated metals concentrations cannot be concluded to be completely natural.
- An area of elevated metals concentrations exists within soil and rock at the Mine Site 3 area, which has been adequately delineated in this assessment. Metals concentrations exceeded the adopted HIL-A criteria for arsenic, cadmium and lead, and the EIL criteria for copper and zinc.
- An area of elevated metals concentrations exists within soil and rock at the Mine Site 4 area, which has been adequately delineated in this assessment. Metals concentrations exceeded the adopted HIL-A criteria for cadmium, lead and zinc, and the EIL criteria for arsenic and copper.
- 4. Coffey considers that the Mine Site 3 and Mine Site 4 areas may not be suitable for standard residential use, due to the significantly elevated metals concentrations in soil and rock in these areas, the difficulty and cost of removing soil and rock containing elevated metals concentrations from the site, and evidence suggesting that the concentrations are due to natural mineralisation of the area. Further, capping of soils, with an appropriate management plan, is generally considered unsuitable for residential areas. Therefore, it would be prudent to avoid residential development of these areas, or alternatively conduct a site specific health risk assessment to confirm the risk for residential development of these areas.
- 5. Inspection of the Minerals Processing Area identified remnant infrastructure including wooden posts and concrete slab as well as 2 sumps. It is concluded that metals concentrations in the Minerals Processing Area meet the adopted HIL-A and EIL criteria on a statistical basis. However, metals concentrations exceeding the EIL (arsenic, cadmium and zinc) and HIL-A criteria (zinc only) was identified associated with 2 sump structures, and it is recommended that this contamination is removed to offsite landfill (or otherwise managed on site) with the demolition of these structures.
- 6. Samples collected from within the drainage channels of Jumping Creek and its tributaries returned metal concentrations generally above the laboratory LOR but below the adopted EIL and HIL A criteria, the drainage channel results indicate that significant migration of contaminants via sediment transport in the watercourse has not occurred.
- 7. Based on the sampling and analytical results, Coffey conclude that DOI 3 and DOI 5 are suitable for the proposed development with no further assessment or remedial works required. It is noted that the Sheep Dip Area was not assessed as part of this investigation. DOI 4 is also considered suitable for the proposed development providing remedial works are carried out on the Sheep Dip Area as per the RAP (reference ENVICANB00233AA-R02).
- 8. All other assessed areas of the site, outside of the delineated Mine Site 3 and Mine Site 4 areas, and the sumps in the Mineral processing Area, are suitable for either:
  - · Residential with gardens and accessible soils corresponding with HIL-A land use scenario; or
  - Parks, recreational open space, playing fields including secondary schools corresponding to the HIL-E land use scenario.

Groundwater across the site was identified to have elevated concentrations of copper, lead and zinc. Samples collected from wells located up gradient of AECs also displayed high metal concentrations exceeding the adopted criteria and generally within a similar range to concentrations detected in down gradient wells. An exception to this was lead detected in MW2 (down gradient of Mine Site 1), which was approximately 1 order of magnitude higher than the up gradient well. Lead concentrations in both wells exceeded the adopted criteria and it is likely that the increase in lead concentrations in the down gradient well is due to the presence of natural mineralisation in the local geology and not due to mining activities in the area. Coffey therefore concludes that the groundwater across the site has elevated metal concentrations exceeding the adopted criteria. Based on the soil analytical results and results from water samples collected up gradient of AECs, Coffey concludes that the elevated concentrations of metals in groundwater are likely due to natural mineralisation and not due to historical mining activities. However, impact to groundwater from the source areas on site cannot be excluded, although groundwater quality up-gradient of the site source areas also suggest that these metals are elevated in groundwater on a regional basis, likely due to natural mineralisation.

Evaluation of the Conceptual Site Model suggests that risk of exposure of site users to elevated metals levels in groundwater is low, considering the depth to groundwater under the site, and the low likelihood of groundwater extraction and use on the site. However, a potentially complete exposure pathway exists to groundwater contamination for offsite users of groundwater, via groundwater extraction. Assuming the source areas are contributing to groundwater metals impact, levels of these metals would be expected to dissipate due to dilution down-gradient of the site. Therefore, risk for the most likely stock watering use down-gradient of the site is expected to be low with regard to relevant levels. Further, metals levels in groundwater would be unaffected by the proposed site development, given the evidence presented in this report that mineralisation in the local geology is the likely primary source of metals in groundwater.

OCPs and OPPs were also not detected in soil samples collected across the site. Groundwater samples returned OCP and OPP concentrations below the laboratory LOR. The laboratories did not report to ANZECC guidelines, however due to the depth of groundwater across the site, OCP and OPPs affinity to bind to soil and the time period (minimum of 50 years) since any potentially contaminating activities involving these contaminants of concern has occurred, the risk of OCPs and/or OPPs to be present in the groundwater at concentrations lower than the laboratory LOR are considered to be low.

Coffey considers that the metals concentrations in surface water do not represent a risk to human health for the proposed site development, due to evidence suggesting that these concentrations are due to regional mineralisation, and also being well below guidelines for recreational water quality and aesthetics published in ANZECC & ARMCANZ 2000.

Generally concentrations of metals in surface water samples, and considering low concentrations in sediment samples collected from the waterways, indicate that surface water flow are not a major transport route for metals at the site.

### 15.2 Recommendations

The following recommendations are made from this assessment:

1. It would be prudent to avoid residential development of these areas by revising the development plan for the site, or alternatively conduct a site specific health risk assessment to confirm the risk for residential development of these areas.

- 2. Restriction of access to the Mine Site 3 and Mine Site 4 areas in the short term to avoid unhealthy exposures to metals concentrations in these areas, as well as unsafe conditions associated with mine shafts, adits and other structures;
- 3. The removal or management of physical hazards (such as mine shafts or other structures) associated with these areas. However, it is noted that the identification and management of physical hazards on the site were outside the scope of this assessment;
- 4. Removal and landfill disposal (or on-site management) of stockpiles of rock and soils and other loose potentially contaminated materials in the Mine Site areas; and
- 5. Implementation of a landscape cap and vegetation in Mine Site 3 and Mine Site 4, so that these areas may be incorporated into the development as open space areas with adequate stabilisation and barrier to direct contact with rock and soils.

It is recommended that these portions of the site are remediated under a RAP and managed under a Site Environmental Management Plan (SEMP). The RAP should include environmental management procedures to manage potential migration or exposure of contamination during remedial works.

Assessment and remediation of the Sheep Dip Area is to be completed as part of the validation works to be conducted as per the Remediation Action Plan dated (reference ENVICANB00233AA-R02).

### 16 REFERENCES

ANZECC & ARMCANZ 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, Paper No. 4, Commonwealth of Australia;

Centers for Disease Control and Prevention (CDC) (2005), <u>Third National Report on Human</u> Exposure to Environmental Chemicals. Department of Health and Human Services. US Government;

Coffey Environments Australia Pty Ltd, 2009, Remediation Action Plan – Sheep Dip Area, Jumping Creek, Queenbeyan. Report ENVICANB00233AA-R02;

**EGIS Consulting Australia, September 2001**, <u>Jumping Creek Site Queanbeyan NSW Summary Site</u> Audit Report. Report VA0420.001 (EGIS, 2001);

**Geological Survey of NSW, 1996,** <u>1:250,000 Geological Survey of New South Wales, Sydney Map No. SI 56-5.</u> NSW Department of Primary Industries;

IT Environmental Australia Pty Ltd, November 1999. Stage 2 Environmental Investigation Jumping Creek Queanbeyan NSW 2620. Report J109217-R01 (IT, 1999);

National Environment Protection Council (NEPC), 1999, National Environment Protection
(Assessment of Site Contamination) Measure (NEPM). Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater;

**NEPC 1999b**, National Environment Protection (Assessment of Site Contamination) Measure 1999, Schedule B(6) Guideline on Risk Based Assessment of Groundwater Contamination;

**NSW Archaeology Pty Ltd, 2009**, <u>Draft Proposed Jumping Creek Rezoning Queanbeyan, NSW Aboriginal Archaeological Study.</u>

**NSW DECC 2007**, <u>Guidelines for the Assessment and Management of Groundwater Contamination</u>, NSW Government;

**NSW Department of Natural Resources (2005),** Soil Landscape of The Sydney 1: 100,000 Sheet, third edition, NSW Government;

NSW EPA (1995), Sampling Design Guidelines, ISBN 0-7310-3756-1;

NSW EPA (1997), Guidelines for Consultants Reporting on Contaminated Sites, ISBN 0 7310 3892 4;

NSW EPA (1994), Guidelines for Assessing Service Station Sites, ISBN 0-7310-3712-X;

NSW EPA (1998), Guidelines for the NSW Site Auditor Scheme, ISBNo0-7313 0177 3;

**NEPC 1999b**, National Environment Protection (Assessment of Site Contamination) Measure 1999, Schedule B(6) Guideline on Risk Based Assessment of Groundwater Contamination;

Parsons Brinckerhoff Australia Pty Ltd, September 2007, Jumping Creek Supplementary Contamination Assessment, Report 2111525A/PR\_6551 (PB, 2007).



### Important information about your Coffey Environmental Report

Uncertainties as to what lies below the ground on potentially contaminated sites can lead to remediation costs blow outs, reduction in the value of the land and to delays in the redevelopment of land. These uncertainties are an inherent part of dealing with land contamination. The following notes have been prepared by Coffey to help you interpret and understand the limitations of your report.

## Your report has been written for a specific purpose

Your report has been developed on the basis of a specific purpose as understood by Coffey and applies only to the site or area investigated. For example, the purpose of your report may be:

- To assess the environmental effects of an on-going operation.
- To provide due diligence on behalf of a property vendor.
- To provide due diligence on behalf of a property purchaser.
- To provide information related to redevelopment of the site due to a proposed change in use, for example, industrial use to a residential use.
- To assess the existing baseline environmental, and sometimes geological and hydrological conditions or constraints of a site prior to an activity which may alter the sites environmental, geological or hydrological condition.

For each purpose, a specific approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible, quantify risks that both recognised and unrecognised contamination pose to the proposed activity. Such risks may be both financial (for example, clean up costs or limitations to the site use) and physical (for example, potential health risks to users of the site or the general public).

### Scope of Investigations

The work was conducted, and the report has been prepared, in response to specific instructions from the client to whom this report is addressed, within practical time and budgetary constraints, and in reliance on certain data and information made available to Coffey. The analyses, evaluations, opinions and conclusions presented in this report are based on those instructions, requirements, data or information, and they could change if such instructions etc. are in fact inaccurate or incomplete.

### Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man and may change with time. For example, groundwater levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of the subsurface exploration, decisions should not be based on a report whose adequacy may have been affected by time. Consult Coffey to be advised how time may have impacted on the project and/or on the property.

### Interpretation of factual data

Environmental site assessments identify actual subsurface conditions only at those points where samples are taken and when they are taken. Data derived from indirect field measurements and sometimes other reports on the site are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how well qualified, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions. For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of Coffey through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other problems encountered on site.



### Important information about your Coffey Environmental Report

## Your report will only give preliminary recommendations

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced and therefore your report recommendations can only be regarded as preliminary. Only Coffey, who prepared the report, is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered with redevelopment or on-going use of the site. If another party undertakes the implementation of the recommendations of this report there is a risk that the report will be misinterpreted and Coffey cannot be held responsible for such misinterpretation.

## Your report is prepared for specific purposes and persons

To avoid misuse of the information contained in your report it is recommended that you confer with Coffey before passing your report on to another party who may not be familiar with the background and the purpose of the report. In particular, a due diligence report for a property vendor may not be suitable for satisfying the needs of a purchaser. Your report should not be applied for any purpose other than that originally specified at the time the report was issued.

### Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, retain Coffey to work with other professionals who are affected by the report. Have Coffey explain the report implications to professionals affected by them and then review plans and specifications produced to see how they have incorporated the report findings.

### Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists, engineers or geologists based on their interpretation of field logs (assembled by field personnel), field testing and laboratory evaluation of field samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

### **Contact Coffey for additional assistance**

Coffey is familiar with a variety of techniques and approaches that can be used to help reduce risks for all parties to land development and land use. It is common that not all approaches will be necessarily dealt with in your environmental site assessment report due to concepts proposed at that time. As a project progresses through planning and design toward construction and/or maintenance, speak with Coffey to develop alternative approaches to problems that may be of genuine benefit both in time and cost.

### Responsibility

Environmental reporting relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it, which is far less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. To help prevent this problem, a number of clauses have been developed for use in contracts, reports and other documents. Responsibility clauses do not transfer appropriate liabilities from Coffey to other parties but are included to identify where Coffey's responsibilities begin and end. Their use is intended to help all parties involved to recognise their individual responsibilities. Read all documents from Coffey closely and do not hesitate to ask any questions you may have.

# FINAL DRAFT

## **Tables**

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW



| Sample # and Depth | MS3-1_0.0-0.2 | MS3-2_0.0-0.2 | MS3-3_0.0-0.2 | MS3-3_0.5-0.6 | MS3-4_0.0-0.2 | MS3-5_0.0-0.2 | MS3-6_0.0-0.2 | MS3-7_0.0-0.2 | MS3-8_0.0-0.2 |
|--------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sampled_Date-Time  | 28/07/2009    | 28/07/2009    | 28/07/2009    | 28/07/2009    | 28/07/2009    | 28/07/2009    | 28/07/2009    | 28/07/2009    | 28/07/2009    |
| Area               | Mine Site 3   |

| Method_Type                     | ChemName            | Units | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A |          |      |       |        |        |      |      |      |      |
|---------------------------------|---------------------|-------|------|---------------|-----------------|----------|------|-------|--------|--------|------|------|------|------|
| Metals in Soil by ICP-OES       | Arsenic             | mg/kg | 3    | 20            | 100             | 1700     | 1600 | 50    | 47     | 120    | 1800 | 1900 | 1500 | 2900 |
| Wickels III doll by IOI -OEO    | Cadmium             | mg/kg | 0.3  | 3             | 20              | 12       | 11   | 1.6   | 1.4    | 2.1    | 13   | 13   | 23   | 47   |
|                                 | Chromium (III+VI)   | mg/kg | 0.3  | ,             | 20              | 21       | 21   | 22    | 21     | 25     | 22   | 23   |      | 8.1  |
|                                 | Copper              | mg/kg |      | 100           | 1000            | 110      | 92   | 34    | 38     | 42     | 92   | 100  |      | 260  |
|                                 | Lead                | mg/kg | 1    | 600*          | 300             | 1600     | 1300 | 230   | 220    | 330    | 1700 | 1700 | 1200 | 5200 |
| Mercury Cold Vapor/Hg Analyser  | Mercury             | mg/kg | 0.05 |               | 15              | 0.13     | 0.09 | <0.05 | < 0.05 | < 0.05 | 0.09 | 0.11 | 0.12 | 0.11 |
| morodry cold vapolitig/aldiyool | Nickel              | mg/kg | 0.5  | 60            | 600             | 18       | 18   | 20    | 19     | 21     | 19   | 20   | 6.1  | 7.4  |
|                                 | Zinc                | ma/ka | 0.5  | 200           | 7000            | 2200     | 2100 | 420   | 370    |        | 2300 | 2300 | 3500 | 4500 |
|                                 | Lino                | mgmg  | 0.0  | 200           | 7000            | 2200     | 2.00 | 120   | 0.0    | 4.0    | 2000 | 2000 | 0000 | 1000 |
| OC Pesticides in Soil           | 2,4-DDT             | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      | -    | -    |      |      |
|                                 | 4,4-DDE             | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      |      | -    |      |      |
|                                 | a-BHC               | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      | -    | -    | -    |      |
|                                 | Aldrin              | mg/kg | 0.1  |               |                 |          |      | -     |        |        |      |      |      | -    |
|                                 | b-BHC               | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      |      | -    |      |      |
|                                 | cis-Chlordane       | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      |      | -    |      |      |
|                                 | d-BHC               | mg/kg | 0.1  |               |                 | -        | -    | -     | -      | -      | -    | -    | -    | -    |
|                                 | DDD                 | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      |      | -    |      |      |
|                                 | DDT                 | mg/kg | 0.1  |               |                 | -        | -    | -     | -      | -      | -    | -    | -    | -    |
|                                 | Dieldrin            | mg/kg | 0.1  |               |                 |          |      |       |        |        |      |      |      |      |
|                                 | Endosulfan I        | mg/kg | 0.1  |               |                 |          |      |       |        |        |      |      |      | i.   |
|                                 | Endosulfan II       | mg/kg | 0.1  |               |                 | -        | -    | -     |        | -      |      | -    |      |      |
| Enc<br>Enc                      | Endosulfan sulphate |       | 0.1  |               |                 |          |      | -     |        |        |      |      |      |      |
|                                 | Endrin              | mg/kg | 0.1  |               |                 |          |      |       |        |        |      |      |      | i.   |
|                                 | Endrin aldehyde     | mg/kg | 0.1  |               |                 |          | -    |       |        |        |      |      |      |      |
|                                 | Endrin ketone       | mg/kg | 0.1  |               |                 |          |      | -     |        |        |      |      |      |      |
|                                 | g-BHC (Lindane)     | mg/kg | 0.1  |               |                 |          |      | -     |        |        |      |      |      |      |
|                                 | Heptachlor          | mg/kg | 0.1  |               | 10              |          |      |       |        |        |      |      |      | i.   |
|                                 | Heptachlor epoxide  | mg/kg | 0.1  |               | 10              | -        | 1.   | -     | -      |        |      |      |      |      |
|                                 | Hexachlorobenzene   | mg/kg | 0.1  |               |                 |          |      | -     |        |        |      |      |      |      |
|                                 | Methoxychlor        | mg/kg | 0.1  |               |                 |          |      |       |        |        |      |      |      | i.   |
|                                 | o,p'-DDD            | mg/kg | 0.1  |               |                 | _        | _    | _     | _      |        | i .  | _    | 1_   |      |
|                                 | o,p'-DDE            | mg/kg | 0.1  |               |                 | -        | 1.   | -     | -      |        |      |      |      |      |
|                                 | trans-chlordane     | mg/kg | 0.1  |               |                 |          |      | -     |        |        |      |      |      |      |
|                                 | trans-Nonachlor     | mg/kg | 0.1  |               |                 | _        | _    | _     | _      |        | i .  | _    | 1_   |      |
| ESDAT Combined Compounds        | Aldrin + Dieldrin   | mg/kg | 0.1  |               | 10              |          | -    |       |        |        |      |      |      |      |
| LODATI COMBINCO COMPONICO       | DDT+DDE+DDD         | mg/kg |      |               | 200             |          |      | -     |        |        |      |      |      |      |
|                                 | DDT-DDE-DDD         | g/.kg |      |               | 200             |          |      |       |        |        |      |      |      |      |
| OP Pesticides in Soil by GCMS   | Azinophos methyl    | mg/kg | 0.2  |               |                 |          | 1.   | -     |        |        |      |      |      |      |
| C COLICIOS III COII DY GONG     | Bromophos-ethyl     | mg/kg | 0.2  |               |                 | <b>.</b> | 1.   | 1.    | -      | 1.     | l_   | 1.   | -    | l    |
|                                 | Chlorpyrifos        | mg/kg | 0.2  |               |                 | <b>.</b> | -    | -     | -      |        | -    |      |      | -    |
|                                 | Diazinon            | mg/kg |      |               |                 |          | 1.   | -     |        |        |      |      |      |      |
|                                 | Dichlorvos          | mg/kg | 1    |               |                 | <b>.</b> | 1.   | 1.    | -      | 1.     | l_   | 1.   | -    | l    |
|                                 | Dimethoate          | mg/kg | 1    |               |                 | <b>.</b> | 1    | -     | -      |        | -    |      |      | -    |
|                                 | Ethion              | mg/kg | 0.2  |               |                 | _        | 1    | -     |        | _      | -    | 1_   | -    | -    |
|                                 | Fenitrothion        | mg/kg | 0.2  |               |                 |          | 1    | -     |        | 1      | -    | -    |      | Ē    |
|                                 | Malathion           | mg/kg | 0.2  |               |                 | 1.       | 1:   | +:    | 1.     | 1:     | 1    | 1    | 1    | 1:   |
|                                 | Methidathion        | mg/kg | 0.5  |               |                 |          | 1    | -     |        | -      | [    | -    |      |      |
|                                 | Parathion           | mg/kg | 0.2  |               |                 |          | 1    | -     |        | 1      | -    | -    |      | Ē    |
|                                 | i aratilion         | my/kg | U.Z  |               |                 | -        | 1-   | 1-    | ( -    | 1.     | 1-   | 1-   | 1.7  | 1-   |



| Sample # and Depth | MS3-9_0.0-0.2 | MS3-10_0.0-0.2 | MS3-11_0.0-0.2 | MS3-12_0.0-0.2 | MS3-13_0.0-0.2 | MS3-13_0.5-0.6 | MS3-14_0.0-0.2 | MS3-15_0.0-0.2 | MS3-15_0.5-0.6 |
|--------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Sampled_Date-Time  | 28/07/2009    | 28/07/2009     | 28/07/2009     | 28/07/2009     | 28/07/2009     | 28/07/2009     | 28/07/2009     | 28/07/2009     | 28/07/2009     |
| Area               | Mine Site 3   | Mine Site 3    | Mine Site 3    | Mine Site 3    | Mine Site 3    | Mine Site 3    | Mine Site 3    | Mine Site 3    | Mine Site 3    |

| Method_Type                    | ChemName               | Units          | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A |       |       |     |     |      |     |      |       |       |
|--------------------------------|------------------------|----------------|------|---------------|-----------------|-------|-------|-----|-----|------|-----|------|-------|-------|
| Metals in Soil by ICP-OES      | Arsenic                | mg/kg          |      | 20            | 100             | 110   | 100   | 100 | 140 | 130  | 110 | 130  | 110   | 82    |
| motato in compy for GEG        | Cadmium                |                |      |               | 20              | 2.1   |       |     |     | 0.9  |     | 0.95 | 1.9   | 1.6   |
|                                | Chromium (III+VI)      | mg/kg          | 0.3  | •             |                 | 24    | 24    |     |     | 18   | 13  | 17   | 24    | 24    |
|                                | Copper                 | mg/kg          | 0.5  | 100           | 1000            | 40    | 41    |     |     | 42   | 38  | 42   | 39    | 36    |
|                                | Lead                   | mg/kg          | 1    | 600*          |                 | 280   |       |     |     |      | 340 |      | 290   | 220   |
| Mercury Cold Vapor/Hg Analyser | Mercury                | mg/kg          | 0.05 |               | 15              | <0.05 | <0.05 |     |     | 0.06 |     | 0.06 | <0.05 | <0.05 |
| , , , , , ,                    | Nickel                 | mg/kg          |      |               | 600             | 21    | 21    |     |     | 17   | 17  |      | 21    | 20    |
|                                | Zinc                   | mg/kg          |      |               |                 | 450   |       |     |     |      |     |      |       | 370   |
|                                |                        |                |      |               |                 |       |       |     |     |      |     |      |       |       |
| OC Pesticides in Soil          | 2,4-DDT                | mg/kg          | 0.1  |               |                 |       | -     |     | -   | -    | -   |      | -     | -     |
|                                | 4,4-DDE                | mg/kg          | 0.1  |               |                 |       | -     |     | -   | -    | -   |      | -     | -     |
|                                | a-BHC                  | mg/kg          |      |               |                 |       | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Aldrin                 | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | b-BHC                  | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | cis-Chlordane          | mg/kg          | 0.1  |               |                 | -     | -     |     | -   | -    | -   | -    | -     | -     |
|                                | d-BHC                  | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | DDD                    | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | DDT                    | mg/kg          | 0.1  |               |                 | -     | -     |     | -   | -    | -   | -    | -     | -     |
|                                | Dieldrin               | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Endosulfan I           | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Endosulfan II          | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Endosulfan sulphate    |                | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Endrin                 | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Endrin aldehyde        | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Endrin ketone          | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | g-BHC (Lindane)        | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Heptachlor             | mg/kg          | 0.1  |               | 10              | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Heptachlor epoxide     | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Hexachlorobenzene      | mg/kg          |      |               |                 | -     | -     | -   |     |      | •   | -    |       |       |
|                                | Methoxychlor           | mg/kg          | 0.1  |               |                 | -     | -     | -   |     |      | •   | -    |       |       |
|                                | o,p'-DDD               | mg/kg          | 0.1  |               |                 | -     | -     | -   |     |      | •   | -    |       |       |
|                                | o,p'-DDE               | mg/kg          |      |               |                 | -     | -     | -   | •   | -    | -   | •    | •     | •     |
|                                | trans-chlordane        |                |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | trans-Nonachlor        | mg/kg          | 0.1  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
| ESDAT Combined Compounds       | Aldrin + Dieldrin      | mg/kg          |      |               | 10              | -     | -     | -   | -   | •    | -   | -    | -     | -     |
|                                | DDT+DDE+DDD            | mg/kg          |      |               | 200             | -     | -     | -   | -   | •    | -   | -    | -     | -     |
|                                |                        |                |      |               |                 |       |       |     |     |      |     |      |       |       |
| OP Pesticides in Soil by GCMS  | Azinophos methyl       | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Bromophos-ethyl        | mg/kg          |      |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Chlorpyrifos           | mg/kg          | 0.2  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Diazinon<br>Dichlorvos | mg/kg<br>mg/kg | 0.5  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                |                        | mg/kg<br>mg/kg | 1    |               |                 | -     | -     | •   | -   | -    | -   | -    | -     | -     |
|                                | Dimethoate<br>Ethion   | mg/kg<br>mg/kg | 0.2  |               |                 | -     | -     | •   | -   | -    | -   | -    | -     | -     |
|                                | Fenitrothion           |                |      |               |                 | -     | -     |     | -   | -    | -   | -    | -     | -     |
|                                | Malathion              | mg/kg<br>mg/kg | 0.2  |               |                 | -     | -     |     | -   | -    | -   | -    | -     | -     |
|                                | Methidathion           | mg/kg          | 0.2  |               |                 | -     | -     | -   | -   | -    | -   | -    | -     | -     |
|                                | Parathion              | mg/kg<br>mg/kg | 0.5  |               |                 | -     | 1-    | -   | -   | -    | -   | -    | -     | -     |
|                                | raialiillii            | rng/kg         | U.Z  |               |                 | 1-    | 1*    | •   | 1-  | 1-   | 1-  | ı -  | 1.    | -     |

Notes:
\* Only lead concentrations exceeding HILA have been shaded
Bold = EIL exceedence

Italics = HILA exceedence



| Sampled_Date-Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25/11/2009  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| Area Mine Site 3 M | Mine Site 3 |

| Method_Type                             | ChemName            | Units | EQL | NEPM 1999 EIL | NEPM 1999 HIL A |       |       |       |       |       |        |        |        |       |
|-----------------------------------------|---------------------|-------|-----|---------------|-----------------|-------|-------|-------|-------|-------|--------|--------|--------|-------|
| Metals in Soil by ICP-OES               | Arsenic             | mg/kg |     | 20            | 100             | 32    | 40    | 39    | 27    | 23    | 22     | 27     | 28     | 30    |
| , , , , , , , , , , , , , , , , , , , , | Cadmium             | mg/kg |     | 3             | 20              | 0.3   | 0.4   | 0.4   | <0.3  | <0.3  | <0.3   | <0.3   | 0.3    | 1.1   |
|                                         | Chromium (III+VI)   | mg/kg | 0.3 | -             |                 | 16    | 18    | 18    | 17    | 16    | 16     | 19     | 18     | 18    |
|                                         | Copper              | mg/kg |     | 100           | 1000            | 26    | 28    | 28    | 22    | 21    | 19     | 23     | 23     | 28    |
|                                         | Lead                | mg/kg |     | 600*          | 300             | 100   | 120   | 120   | 72    | 75    | 60     | 75     |        | 160   |
| Mercury Cold Vapor/Hg Analyser          | Mercury             | mg/kg |     | 1             | 15              | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | < 0.05 | < 0.05 | <0.05 |
|                                         | Nickel              | mg/kg |     | 60            | 600             | 12    | 15    | 14    | 16    | 15    | 14     | 17     | 17     | 16    |
|                                         | Zinc                | mg/kg | 0.5 | 200           | 7000            | 100   | 120   | 120   | 110   | 100   | 100    |        |        | 290   |
|                                         |                     |       |     |               |                 |       | ,     |       |       |       |        |        |        |       |
| OC Pesticides in Soil                   | 2.4-DDT             | mg/kg | 0.1 |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | 4,4-DDE             | mg/kg |     |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | a-BHC               | mg/kg | 0.1 |               |                 |       | -     | -     |       | -     |        |        | -      |       |
|                                         | Aldrin              | mg/kg |     |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | b-BHC               | mg/kg |     |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | cis-Chlordane       | mg/kg |     |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | d-BHC               | mg/kg | 0.1 |               |                 |       | -     |       | -     |       | -      |        | -      |       |
|                                         | DDD                 | mg/kg | 0.1 |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | DDT                 | mg/kg |     |               |                 |       |       |       |       | -     |        |        |        |       |
|                                         | Dieldrin            | mg/kg |     |               |                 |       | -     |       | -     |       | -      |        | -      |       |
|                                         | Endosulfan I        | ma/ka |     |               |                 |       | -     |       | -     |       | -      |        | -      |       |
|                                         | Endosulfan II       | mg/kg |     |               |                 |       |       |       |       | -     |        |        |        |       |
|                                         | Endosulfan sulphate | mg/kg | 0.1 |               |                 |       |       |       |       |       |        |        |        |       |
| End                                     | Endrin              | mg/kg |     |               |                 |       | -     |       | -     |       | -      |        | -      |       |
|                                         | Endrin aldehyde     | mg/kg |     |               |                 |       |       |       |       | -     |        |        |        |       |
|                                         | Endrin ketone       | mg/kg |     |               |                 |       |       |       |       |       |        |        |        |       |
|                                         | g-BHC (Lindane)     | mg/kg | 0.1 |               |                 |       |       |       |       |       |        |        |        |       |
|                                         | Heptachlor          | mg/kg |     |               | 10              |       | -     |       | -     |       | -      |        | -      |       |
|                                         | Heptachlor epoxide  | mg/kg | 0.1 |               |                 |       |       |       |       | -     |        |        |        |       |
|                                         | Hexachlorobenzene   | mg/kg |     |               |                 |       |       |       |       | -     |        |        |        |       |
|                                         | Methoxychlor        | mg/kg |     |               |                 |       | -     |       | -     |       | -      |        | -      |       |
|                                         | o,p'-DDD            | mg/kg |     |               |                 |       | -     |       | -     |       | -      |        | -      |       |
|                                         | o,p'-DDE            | mg/kg |     |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | trans-chlordane     | mg/kg |     |               |                 | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | trans-Nonachlor     | mg/kg |     |               |                 |       | -     | -     |       |       |        |        | -      |       |
| ESDAT Combined Compounds                | Aldrin + Dieldrin   | mg/kg |     |               | 10              | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         | DDT+DDE+DDD         | mg/kg |     |               | 200             | -     | -     | -     | -     |       | -      | -      | -      | -     |
|                                         |                     |       |     |               |                 |       |       |       |       |       |        |        |        |       |
| OP Pesticides in Soil by GCMS           | Azinophos methyl    | mg/kg | 0.2 |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Bromophos-ethyl     | mg/kg | 0.2 |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Chlorpyrifos        | mg/kg | 0.2 |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Diazinon            | mg/kg |     |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Dichlorvos          | mg/kg | 1   |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Dimethoate          | mg/kg | 1   |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Ethion              | mg/kg | 0.2 |               |                 | i -   | -     | -     | 1-    | -     | -      | -      | -      | -     |
|                                         | Fenitrothion        | mg/kg |     |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Malathion           | mg/kg |     |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Methidathion        | mg/kg |     |               |                 | -     | -     | -     | -     | -     | -      | -      | -      | -     |
|                                         | Parathion           | ma/ka |     |               |                 |       | -     | -     | -     |       | -      | -      | -      | -     |

Notes:
\* Only lead concentrations exceeding HILA have been shaded
Bold = EIL exceedence

Italics = HILA exceedence



|                                |                     |            |               | Sample # and Depth | MS3-34 0.0-0.2 | MS3-35 0.0-0.2 | MS3SP1     | MS3SP3    | RE34 0.0-0.2 | RE36 0.0-0.2 | RF37 0.0-0.2 | RE38 0.0-0.2 | RE39 0.0-0.2 | RE40 0.0-0.2 | DC12-a     | DC12-b     | DC12-c | DC12-d     | RE34-a | RE34-b | RE34-c     | RE34-d       |
|--------------------------------|---------------------|------------|---------------|--------------------|----------------|----------------|------------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|--------|------------|--------|--------|------------|--------------|
|                                |                     |            |               | Sampled Date-Time  | 25/11/2009     | 25/11/2009     | 13/08/2009 |           | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 28/04/2010 | 28/04/2010 |        | 28/04/2010 |        |        | 28/04/2010 |              |
|                                |                     |            |               | Area               | Mine Site 3    | Mine Site 3    | Stockpile  | Stockpile | Residential  | Residential  | Residential  | Residential  | Residential  | Residential  | DO1        | DO2        | DO3    | DO4        | DO9    | DO10   | DO11       | DO12         |
| Method_Type                    | ChemName            | Unite EOI  | NEPM 1999 EIL | NEPM 1999 HIL A    |                |                |            |           |              |              |              |              |              |              |            |            |        |            |        |        |            |              |
| Metals in Soil by ICP-OES      | Arsenic             | mg/kg 3    | 20            | 100                | 29             | 35             | 26         | 120       | 130          | 5            | 8            | <3           | <3           | 10           | 2          | 3          | 3      | 3          | 7      | 6      | 0          | 7            |
| Metals III 30II by ICF=0E3     | Cadmium             | mg/kg 0.3  | 20            | 20                 | 0.0            | 1              | 0.9        | 2.4       | 0.5          | 0.4          | <0.3         | <0.3         | < 0.3        | 0.6          | 20 2       | < 0.3      | < 0.3  | < 0.3      | 0.4    | 0.4    | 0.5        | 0.5          |
|                                |                     | mg/kg 0.3  | 3             | 20                 | 18             | 19             | 1.7        | 2.5       | 20           | 27           | 28           | 19           | 26           | 23           | 13         | 12         | 11     | 14         | 21     | 20     | 21         | 20           |
|                                | Copper              | mg/kg 0.5  | 100           | 1000               | 30             | 33             | 1.6        | 11        | 40           | 7.6          | 4.4          | 1            | 5.7          | 6.4          | 10         | 9.4        | 7      | 10         | 14     | 16     | 22         | 15           |
|                                | Lead                | mg/kg 1    | 600*          | 300                | 150            | 190            | 180        | 110       | 85           | 10           | 7            | 3            | 4            | 11           | 9.7        | 10         | 11     | 9.9        | 10     | 10     | 9.1        | 18           |
| Mercury Cold Vapor/Hg Analyser | Mercury             | mg/kg 0.05 |               | 15                 | <0.05          | < 0.05         | < 0.05     | < 0.05    | < 0.05       | < 0.05       | <0.05        | < 0.05       | <0.05        | < 0.05       | < 0.05     | < 0.05     | < 0.05 | < 0.05     | < 0.05 | < 0.05 | <0.05      | < 0.05       |
|                                | Nickel              | mg/kg 0.5  | 60            | 600                | 15             | 16             | 1.3        | 2         | 32           | 13           | 13           | 10           | 21           | 12           | 11         | 9.8        | 7.7    | 11         | 21     | 21     | 22         | 19           |
|                                | Zinc                | mg/kg 0.5  |               | 7000               | 250            | 300            | 170        | 450       | 140          | 43           | 34           | 22           | 28           | 69           | 47         | 47         | 39     | 47         | 47     | 40     | 36         | 58           |
|                                | Lino                | mg/kg 0.0  | 200           | 7000               | 200            |                | 110        | 100       | 110          | 10           |              |              | 20           |              | 1.         |            |        |            |        | 10     |            | -00          |
| OC Pesticides in Soil          | 2,4-DDT             | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | 4,4-DDE             | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | 1-           |
|                                | a-BHC               | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Aldrin              | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | b-BHC               | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | cis-Chlordane       | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | d-BHC               | mg/kg 0.1  |               |                    |                | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | DDD                 | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | DDT                 | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Dieldrin            | mg/kg 0.1  |               |                    |                | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Endosulfan I        | mg/kg 0.1  |               |                    |                | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Endosulfan II       | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Endosulfan sulphate |            |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Endrin              | mg/kg 0.1  |               |                    |                | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Endrin aldehyde     | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Endrin ketone       | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | g-BHC (Lindane)     | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            |              | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Heptachlor          | mg/kg 0.1  |               | 10                 | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Heptachlor epoxide  | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Hexachlorobenzene   | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Methoxychlor        | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | o,p'-DDD            | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | o,p'-DDE            | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | < 0.1        | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | trans-chlordane     | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          |              |
|                                | trans-Nonachlor     | mg/kg 0.1  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.1         | -            | -          | -          | -      | -          | -      | -      | -          |              |
| ESDAT Combined Compounds       | Aldrin + Dieldrin   | mg/kg      |               | 10                 | -              | -              | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | DDT+DDE+DDD         | mg/kg      |               | 200                | -              | -              | -          | -         | -            | -            | -            | -            | <0.3         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                |                     |            |               |                    |                |                |            |           |              |              |              |              |              |              |            |            |        |            |        |        |            |              |
| OP Pesticides in Soil by GCMS  | Azinophos methyl    | mg/kg 0.2  |               |                    | -              |                | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Bromophos-ethyl     | mg/kg 0.2  |               |                    | -              | •              | -          | -         | -            | -            | -            | •            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Chlorpyrifos        | mg/kg 0.2  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          | -            |
|                                | Diazinon            | mg/kg 0.5  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.5         | -            | -          | -          | -      | -          | -      | -      | -          |              |
|                                | Dichlorvos          | mg/kg 1    |               |                    | -              | -              | -          | 1-        | -            | -            | -            | -            | <1           | 1-           | -          | -          | -      | -          | -      | -      | 1-         |              |
|                                | Dimethoate          | mg/kg 1    |               |                    | -              | 1-             | -          | 1-        | -            | -            | -            | -            | <1           | 1-           | -          | -          | -      | -          | -      | -      | 1-         |              |
|                                | Ethion              | mg/kg 0.2  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          |              |
|                                | Fenitrothion        | mg/kg 0.2  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          | <del>-</del> |
|                                | Malathion           | mg/kg 0.2  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          |              |
|                                | Methidathion        | mg/kg 0.5  |               |                    | -              | -              | -          | -         | -            | -            | 1-           | -            | <0.5         | -            | -          | -          | -      | -          | -      | -      | -          | 4-           |
|                                | Parathion           | mg/kg 0.2  |               |                    | -              | -              | -          | -         | -            | -            | -            | -            | <0.2         | -            | -          | -          | -      | -          | -      | -      | -          | -            |

Notes:

\* Only lead concentrations exceeding HILA have been shaded
Bold = EIL exceedence

Italics = HILA exceedence



|                                         |                                      |                |      |               | Sample # and Depth |            |            |            |            |            |            |             |            |            |            |            |            |            | 2 MP7_0.5-0.6 |
|-----------------------------------------|--------------------------------------|----------------|------|---------------|--------------------|------------|------------|------------|------------|------------|------------|-------------|------------|------------|------------|------------|------------|------------|---------------|
|                                         |                                      |                |      |               | Sampled_Date-Time  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009   | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009     |
|                                         |                                      |                |      |               | Area               | Mineral P.  | Mineral P. | Mineral P. | Mineral P. | Mineral P. | Mineral P. | Mineral P. | Mineral P.    |
| Method_Type                             | ChemName                             | Units          | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A    | 1          |            |            |            |            |            |             |            |            |            |            |            |            |               |
| Cvanide                                 | Cvanide Total                        | mg/kg          | 0.1  |               | 500                | 0.2        |            | 0.1        | -          | -          | -          | 0.1         | -          |            | -          | -          |            | -          | Τ-            |
|                                         | -,                                   |                | 1    |               |                    |            |            |            |            |            |            |             |            |            |            |            |            |            | +             |
| Inorganics                              | pH (Field)                           | pH Units       | s 0  |               |                    |            | -          | 1.         |            |            | -          | -           | -          |            | -          | -          |            |            | -             |
|                                         | ,                                    | F1G1           | 1    |               |                    |            |            |            |            |            |            |             |            |            |            |            |            |            |               |
| Metals in Soil by ICP-OES               | Arsenic                              | mg/kg          | 3    | 20            | 100                | 12         | 11         | 13         | 11         | 10         | 10         | 20          | 15         | 20         | 21         | 22         | 18         | 7          | 7             |
| , , , , , , , , , , , , , , , , , , , , | Cadmium                              | mg/kg          | 0.3  | 3             | 20                 | 0.5        | 0.3        | 0.6        | 0.4        | 0.4        | 0.3        | 0.6         | 0.4        | 0.6        | 0.6        | 11         | 0.8        | < 0.3      | < 0.3         |
|                                         | Chromium (III+VI)                    | mg/kg          | 0.3  | T             |                    | 26         | 27         | 24         | 26         | 22         | 22         | 28          | 28         | 30         | 31         | 26         | 35         | 24         | 24            |
|                                         | Copper                               | mg/kg          | 0.5  | 100           | 1000               | 14         | 14         | 13         | 13         | 17         | 17         | 28          | 22         | 26         | 26         | 17         | 11         | 4.5        | 4.3           |
|                                         | Lead                                 | mg/kg          | 1    | 600*          | 300                | 120        | 89         | 120        | 95         | 110        | 97         | 190         | 160        | 230        | 200        | 310        | 210        | 39         | 41            |
| Mercury Cold Vapor/Hg Analyser          |                                      | mg/kg          | 0.05 | 1             | 15                 | <0.05      | < 0.05     | < 0.05     | < 0.05     | <0.05      | <0.05      | <0.05       | < 0.05     | <0.05      | < 0.05     | <0.05      | <0.05      | < 0.05     | <0.05         |
| morodry cold vaporrigralayou            | Nickel                               | mg/kg          | 0.5  | 60            | 600                | 14         | 12         | 13         | 13         | 16         | 16         | 18          | 18         | 25         | 25         | 19         | 26         | 11         | 9.9           |
|                                         | Zinc                                 | mg/kg          | 0.5  | 200           | 7000               | 160        | 110        | 180        | 130        | 320        | 230        | 300         | 240        | 350        | 350        | 500        | 480        | 80         | 70            |
|                                         | Lino                                 | mgmg           | 0.0  | 200           | 7000               | 100        | 110        | 100        | 100        | 020        | 200        | 000         | 2-10       | 000        | 000        | 000        | 100        | 00         | +**           |
| Moisture                                | Moisture                             | %              | 1    |               |                    | 13         | 12         | 13         | 12         | 15         | 14         | 12          | 10         | 16         | 18         | 15         | 12         | 12         | 12            |
|                                         |                                      | 70             | + ·  |               |                    | 1.5        | t          | 1-7        | 1-         | 1.3        | 1.         | ļ- <u>-</u> | 1-2        | 1.0        | 1.0        | 1.0        | +-         | +          | +             |
| OC Pesticides in Soil                   | 2,4-DDT                              | mg/kg          | 0.1  |               |                    | <0.1       | t          | <0.1       | 1.         | 1.         | 1.         | <0.1        | 1_         | 1.         | 1.         | 1.         | 1_         | 1.         | +             |
| OC 1 esticides III OOII                 | 4,4-DDE                              | mg/kg          | 0.1  |               |                    | <0.1       |            | <0.1       | 1          |            |            | <0.1        |            |            |            | -          | -          |            | +             |
|                                         | a-BHC                                | mg/kg          | 0.1  |               |                    | <0.1       | i .        | <0.1       | 1          | HÎ.        | 1          | <0.1        | +:         | 1          | 12         | +:-        |            | +:         | +:            |
|                                         | Aldrin                               | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | +          | +          | -          | <0.1        | +          | -          | +          | +          | +          | +          | +             |
|                                         | b-BHC                                | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | 1          | -          | 1          | <0.1        | 1          | -          | 1          |            |            |            | +             |
|                                         | cis-Chlordane                        | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       |            | -          |            | <0.1        |            | -          | -          | -          | -          |            | +             |
|                                         | d-BHC                                | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | +          | +          | -          | <0.1        | +          | -          | 1          | +          | +          | +          | +             |
|                                         |                                      | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | l          | -          | -          | <0.1        | +          | -          | +          | +          | +          | -          | +             |
|                                         |                                      | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | 1          | +-         | 1-         | <0.1        | +          | -          | +-         | +          | +          | +          | +             |
|                                         | Dieldrin                             | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | +-         | -          | +             |
|                                         | Endosulfan I                         | mg/kg          | 0.1  | ļ             |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          |            | -          | -          | -          |               |
|                                         | Endosulfan II                        | mg/kg          | 0.1  | ļ             |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          |               |
|                                         |                                      |                | 0.1  | ļ             |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          |               |
|                                         | Endosulfan sulphate<br>Endrin        | mg/kg<br>mg/kg | 0.1  | ļ             |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          | -             |
|                                         | Endrin aldehyde                      | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | +-         | -          | +             |
|                                         |                                      |                | 0.1  | ļ             |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          |               |
|                                         | Endrin ketone                        | mg/kg          | 0.1  | ļ             |                    |            | -          |            | -          | -          | -          |             | -          | -          | -          | -          | -          | -          | -             |
|                                         | g-BHC (Lindane)                      | mg/kg          |      |               | 10                 | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | 1-         | -          | -          | -          | -          | -          | -             |
|                                         | Heptachlor                           | mg/kg          | 0.1  |               | 10                 | <0.1       | -          |            | -          | -          | -          | <0.1        | 1-         | -          | -          | -          | -          | -          | -             |
|                                         | Heptachlor epoxide                   | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | 1-         | -          | -          | -          | -          | -          | -             |
|                                         | Hexachlorobenzene                    | mg/kg          | 0.1  |               |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          | +-            |
|                                         | Methoxychlor                         | mg/kg          |      | ļ             |                    | <0.1       | -          |            | -          | -          | -          |             | -          | -          | -          | -          | -          | -          | -             |
|                                         | o,p'-DDD<br>o.p'-DDE                 | mg/kg<br>ma/ka | 0.1  |               |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          | +-            |
|                                         |                                      |                | 0.1  |               |                    | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          | +-            |
|                                         | trans-chlordane                      | mg/kg          |      |               |                    | <0.1       | -          |            | -          | -          | -          |             | 1-         | -          | -          | -          | -          | -          |               |
| ESDAT Combined Compounds                | trans-Nonachlor<br>Aldrin + Dieldrin | mg/kg          | 0.1  |               | 10                 | <0.1       | -          | <0.1       | -          | -          | -          | <0.1        | -          | -          | -          | -          | -          | -          | +-            |
| ESDAT Combined Compounds                |                                      | mg/kg          | -    |               | 10                 |            | -          |            | -          | -          | -          |             | 1-         | -          | -          | -          | -          | -          |               |
|                                         | DDT+DDE+DDD                          | mg/kg          | -    |               | 200                | <0.3       | -          | <0.3       | -          | -          | -          | < 0.3       | 1-         | -          | -          | -          | -          | -          | -             |
| 000 000                                 |                                      |                | 1    |               |                    |            |            | 1          | 1          | 1          | 1          | <b>!</b>    | 1          |            | 1          | 1          | 1          |            | +             |
| OP Pesticides in Soil by GCMS           | Azinophos methyl                     | mg/kg          | 0.2  |               |                    | -          | -          | -          | 1-         | -          | -          | -           | -          | -          | 1-         | -          | -          | -          | +-            |
|                                         | Bromophos-ethyl                      | mg/kg          | 0.2  |               |                    | -          | -          | -          | 1-         | -          | -          | -           | -          | -          | 1-         | -          | -          | -          | +-            |
|                                         | Chlorpyrifos                         | mg/kg          | 0.2  |               |                    | -          | -          | 1-         | 1-         | -          | -          | -           | -          | 1-         | 1-         | -          | -          | -          | +             |
|                                         | Diazinon                             | mg/kg          | 0.5  |               |                    | -          | -          | -          | -          | 1-         | -          | -           | 1-         | -          | -          | -          | -          | -          | -             |
|                                         | Dichlorvos                           | mg/kg          | 17   |               |                    | -          | -          | -          | 1-         | -          | -          | -           | -          | -          | 1-         | -          | -          | -          | <del>-</del>  |
|                                         | Dimethoate                           | mg/kg          | 11   |               |                    | -          | -          | 1-         | 1-         | -          | -          | -           | -          | 1-         | 1-         | -          | -          | -          | +             |
|                                         | Ethion                               | mg/kg          | 0.2  |               |                    | -          | -          | -          | 1-         | -          | -          | -           | -          | 1-         | -          | -          | -          | -          |               |
|                                         | Fenitrothion                         | mg/kg          | 0.2  |               |                    | -          | -          | -          | 1-         | -          | -          | -           | -          | 1-         | -          | -          | -          | 1-         | <del>_</del>  |
|                                         | Malathion                            | mg/kg          | 0.2  |               |                    | -          | -          | -          | -          | -          | -          | -           | -          | -          | -          | -          | -          | -          | 1-            |
|                                         | Methidathion                         | mg/kg          | 0.5  |               |                    | -          | -          | -          | 1-         | -          | -          | -           | -          | 1-         | -          | -          | -          | 1-         | <del>_</del>  |
|                                         | Parathion                            | mg/kg          | 0.2  |               |                    | -          | -          | -          | -          | -          | -          | -           | -          | -          | -          | -          | -          | -          | <u> </u>      |



|                                |                               |                |              |               | Sample # and Depth | MP8 0 0-0 : | 2 MP8 0.5-0 ( | 6 IMP9 0 0-0 2 | MP9 0 5-0 6 | IMP10 0 0-0: | 2 MP10 0.5-0. | 3 IMP11 0 0-0 2 | MP11 0.5-0 | 5 IMP12 0 0-0 | 2 MP12 0.5-0 | 6 MP13 0 0-0 | 2 IMP13 0.5-0 | 6 MP14 0.0- |
|--------------------------------|-------------------------------|----------------|--------------|---------------|--------------------|-------------|---------------|----------------|-------------|--------------|---------------|-----------------|------------|---------------|--------------|--------------|---------------|-------------|
|                                |                               |                |              |               | Sampled_Date-Time  | 4/08/2009   | 4/08/2009     | 4/08/2009      | 4/08/2009   | 4/08/2009    | 4/08/2009     | 4/08/2009       | 4/08/2009  | 4/08/2009     | 4/08/2009    | 4/08/2009    | 4/08/2009     | 5/08/2009   |
|                                |                               |                |              |               | Area               | Mineral P.  | Mineral P.    | Mineral P.     | Mineral P.  | Mineral P.   | Mineral P.    | Mineral P.      | Mineral P. | Mineral P.    | Mineral P.   | Mineral P.   | Mineral P.    | Mineral P.  |
| lethod Type                    | ChemName                      | Units          | EQL          | NEPM 1999 EIL | NEPM 1999 HIL A    |             |               |                |             |              |               |                 |            |               |              |              |               |             |
| yanide                         | Cyanide Total                 | mg/kg          | 0.1          |               | 500                | -           | -             | < 0.1          | -           | 0.2          | -             | 0.2             | -          | -             | -            | 0.2          | -             | 0.5         |
| •                              |                               |                |              |               |                    |             |               |                |             |              |               |                 |            |               |              |              |               |             |
| norganics                      | pH (Field)                    | pH_Units       | 0            |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
| *                              |                               |                |              |               |                    |             |               |                |             |              |               |                 |            |               |              |              |               |             |
| Metals in Soil by ICP-OES      | Arsenic                       | mg/kg          | 3            | 20            | 100                | 10          | 11            | 26             | 37          | 28           | 28            | 40              | 35         | 21            | 20           | 21           | 22            | 33          |
|                                | Cadmium                       | mg/kg          | 0.3          | 3             | 20                 | 0.3         | 0.4           | 0.5            | 0.7         | 0.6          | 0.5           | 0.7             | 0.5        | 0.5           | 0.5          | 0.4          | 0.4           | 2.2         |
|                                | Chromium (III+VI)             | mg/kg          | 0.3          |               |                    | 21          | 22            | 27             | 34          | 27           | 28            | 30              | 25         | 25            | 23           | 26           | 27            | 25          |
|                                | Copper                        | mg/kg          | 0.5          | 100           | 1000               | 9.7         | 10            | 26             | 32          | 24           | 25            | 29              | 23         | 19            | 20           | 19           | 20            | 22          |
|                                | Lead                          | mg/kg          | 1            | 600*          | 300                | 140         | 150           | 140            | 170         | 130          | 120           | 190             | 110        | 97            | 94           | 99           | 100           | 300         |
| lercury Cold Vapor/Hg Analyser | Mercury                       | mg/kg          | 0.05         | 1             | 15                 | < 0.05      | < 0.05        | < 0.05         | < 0.05      | < 0.05       | < 0.05        | <0.05           | < 0.05     | < 0.05        | < 0.05       | < 0.05       | < 0.05        | < 0.05      |
|                                | Nickel                        | mg/kg          | 0.5          | 60            | 600                | 11          | 11            | 23             | 24          | 20           | 21            | 23              | 24         | 22            | 19           | 19           | 20            | 20          |
|                                | Zinc                          | mg/kg          | 0.5          | 200           | 7000               | 210         | 220           | 220            | 330         | 250          | 260           | 330             | 200        | 210           | 200          | 200          | 190           | 610         |
|                                |                               |                | <b>1</b> . — |               |                    |             |               |                | 1           |              |               |                 |            |               |              |              |               |             |
| loisture                       | Moisture                      | %              | 1            |               |                    | 9           | 9             | 11             | 11          | 13           | 12            | 11              | 9          | 12            | 14           | 9            | 9             | 10          |
|                                | 0.4.007                       |                |              |               |                    |             |               |                | 1           |              | 1             |                 | 1          | 1             | -            |              |               |             |
| C Pesticides in Soil           | 2,4-DDT                       | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                | 4,4-DDE                       | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | < 0.1       |
|                                | a-BHC                         | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                | Aldrin                        | mg/kg          | 0.1          |               |                    | -           | -             | < 0.1          | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | < 0.1       |
|                                | b-BHC                         | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
| d-Bi<br>DDI<br>DDI             | cis-Chlordane                 | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                |                               | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                |                               | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                |                               | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                | Dieldrin                      | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                | Endosulfan I                  | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | < 0.1       |
|                                | Endosulfan II                 | mg/kg          |              |               |                    | -           | -             |                | -           |              | -             |                 | -          | -             | +:           |              | -             | < 0.1       |
|                                | Endosulfan sulphate<br>Endrin | mg/kg<br>mg/kg | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                | Endrin aldehyde               | mg/kg<br>mg/kg | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | -             | <0.1        |
|                                | Endrin ketone                 | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | +           | <0.1         | +             | <0.1            | -          | -             | -            | <0.1         |               | <0.1        |
|                                | g-BHC (Lindane)               | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | +           | <0.1         | -             | <0.1            | -          | -             | -            | <0.1         | +             | <0.1        |
|                                | Heptachlor                    | mg/kg          | 0.1          |               | 10                 | _           |               | <0.1           | +           | <0.1         |               | <0.1            |            | -             | -            | <0.1         | +             | <0.1        |
|                                | Heptachlor epoxide            | mg/kg          | 0.1          |               | 10                 | -           | -             | <0.1           | 1           | <0.1         |               | <0.1            | +          | -             |              | <0.1         |               | <0.1        |
|                                | Hexachlorobenzene             | mg/kg          | 0.1          |               |                    |             |               | <0.1           |             | <0.1         | -             | <0.1            | +          | -             | -            | <0.1         |               | <0.1        |
|                                | Methoxychlor                  | mg/kg          | 0.1          |               |                    | 1           | -             | <0.1           | 1           | <0.1         | -             | <0.1            | 1          | -             | -            | <0.1         | -             | <0.1        |
|                                | o,p'-DDD                      | mg/kg          | 0.1          |               |                    |             | 1.            | <0.1           | 1.          | <0.1         | 1.            | <0.1            | 1.         | 1.            | 1.           | <0.1         | 1.            | <0.1        |
|                                | o.p'-DDE                      | mg/kg          | 0.1          |               |                    | -           | 1-            | <0.1           | 1-          | <0.1         | 1-            | <0.1            | 1-         | -             | -            | <0.1         | 1-            | <0.1        |
|                                | trans-chlordane               | mg/kg          | 0.1          |               |                    | -           | -             | <0.1           | -           | <0.1         | -             | <0.1            | 1-         | -             | -            | <0.1         | -             | <0.1        |
|                                | trans-Nonachlor               | mg/kg          | 0.1          |               |                    | -           | -             | < 0.1          | -           | <0.1         | -             | <0.1            | 1-         | -             | -            | <0.1         | -             | <0.1        |
| SDAT Combined Compounds        | Aldrin + Dieldrin             | mg/kg          | 1            |               | 10                 | -           | -             | < 0.2          | -           | <0.2         | -             | <0.2            | -          | -             | -            | <0.2         | -             | < 0.2       |
|                                | DDT+DDE+DDD                   | mg/kg          |              |               | 200                | -           | -             | < 0.3          | -           | < 0.3        | -             | < 0.3           | 1-         | -             | -            | < 0.3        | -             | <0.3        |
|                                |                               |                | 1            |               |                    |             |               |                |             |              |               |                 |            |               |              |              |               |             |
| Pesticides in Soil by GCMS     | Azinophos methyl              | mg/kg          | 0.2          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Bromophos-ethyl               | mg/kg          | 0.2          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Chlorpyrifos                  | mg/kg          | 0.2          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Diazinon                      | mg/kg          | 0.5          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | 1-          |
|                                | Dichlorvos                    | mg/kg          | 1            |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Dimethoate                    | mg/kg          | 1            |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | 1-          |
|                                | Ethion                        | mg/kg          | 0.2          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Fenitrothion                  | mg/kg          | 0.2          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Malathion                     | mg/kg          | 0.2          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | 1-          |
|                                | Methidathion                  | mg/kg          | 0.5          |               |                    | -           | -             | -              | -           | -            | -             | -               | -          | -             | -            | -            | -             | -           |
|                                | Parathion                     | ma/ka          | 0.2          |               |                    |             | 1             | 1              | 1           |              |               |                 |            |               |              | 1            |               | $\neg$      |



|                                |                           |                |      |               | Sample # and Depth |            |            |            |            |            |            |            |             |             |             |             |             | 2 MS4-3_0.5-0.6 |
|--------------------------------|---------------------------|----------------|------|---------------|--------------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-----------------|
|                                |                           |                |      |               | Sampled_Date-Time  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 6/08/2009   | 6/08/2009   | 6/08/2009   | 6/08/2009   | 6/08/2009   | 6/08/2009       |
|                                |                           |                |      |               | Area               | Mineral P. | Mine Site 4     |
| Method_Type                    | ChemName                  | Units          | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A    |            |            |            |            |            |            |            |             |             |             |             |             |                 |
| Cyanide                        | Cvanide Total             | mg/kg          | 0.1  |               | 500                | -          |            |            | -          | -          | 0.6        | 1.4        | -           |             | -           |             | -           | Τ.              |
|                                | -,                        |                |      |               |                    |            |            |            |            |            |            |            |             |             |             |             |             | _               |
| Inorganics                     | pH (Field)                | pH Units       | s 0  |               |                    |            |            |            |            | -          |            | -          | 7.1         |             | -           | -           | -           | ٦.              |
|                                |                           | F              |      |               |                    |            |            |            |            |            |            |            |             |             |             |             |             | _               |
| Metals in Soil by ICP-OES      | Arsenic                   | mg/kg          | 3    | 20            | 100                | 30         | 45         | 41         | 17         | 18         | 96         | 45         | 6           | 6           | 10          | 6           | 4           | 5               |
| ,                              | Cadmium                   | mg/kg          | 0.3  | 3             | 20                 | 2.3        | 2.1        | 2.1        | 0.94       | 1.3        | 1.8        | 9.6        | 0.3         | < 0.3       | 0.6         | 0.4         | < 0.3       | 0.3             |
|                                | Chromium (III+VI)         | mg/kg          | 0.3  |               |                    | 25         | 27         | 25         | 25         | 25         | 58         | 19         | 21          | 25          | 19          | 22          | 17          | 20              |
|                                | Copper                    | mg/kg          | 0.5  | 100           | 1000               | 21         | 25         | 23         | 14         | 15         | 87         | 91         | 11          | 13          | 13          | 12          | 10          | 13              |
|                                | Lead                      | mg/kg          | 1    | 600*          | 300                | 320        | 400        | 360        | 310        | 330        | 220        | 240        | 63          | 41          | 44          | 65          | 45          | 48              |
| Mercury Cold Vapor/Hg Analyser | Mercury                   | mg/kg          | 0.05 | 1             | 15                 | < 0.05     | < 0.05     | < 0.05     | < 0.05     | < 0.05     | 0.08       | 0.15       | < 0.05      | < 0.05      | < 0.05      | < 0.05      | < 0.05      | < 0.05          |
|                                | Nickel                    | mg/kg          | 0.5  |               | 600                | 19         | 22         | 20         | 14         | 16         | 19         | 22         | 16          | 16          | 17          | 19          | 12          | 15              |
|                                | Zinc                      | mg/kg          | 0.5  | 200           | 7000               | 620        | 720        | 660        | 370        | 420        | 1800       | 8100       | 130         | 76          | 220         | 140         | 96          | 110             |
|                                |                           |                |      |               |                    |            |            |            |            |            |            |            |             |             |             |             |             |                 |
| Moisture                       | Moisture                  | %              | 1    |               |                    | 10         | 14         | 15         | 12         | 13         | 56         | 85         | 16          | 12          | 2           | 14          | 9           | 10              |
|                                |                           |                |      |               |                    |            |            |            |            |            |            |            |             |             |             |             |             |                 |
| OC Pesticides in Soil          | 2,4-DDT                   | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | < 0.1      | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | 4,4-DDE                   | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | < 0.1      | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | a-BHC                     | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | < 0.1      | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Aldrin                    | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | -               |
|                                | b-BHC                     | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | < 0.1      | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | cis-Chlordane             | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
| DDI<br>DDI                     | d-BHC                     | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | < 0.1      | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | DDD                       | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | DDT                       | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | -               |
|                                | Dieldrin                  | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Endosulfan I              | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | < 0.1      | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Endosulfan II             | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Endosulfan sulphate       | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Endrin                    | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Endrin aldehyde           | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | -               |
|                                | Endrin ketone             | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | g-BHC (Lindane)           | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | -               |
|                                | Heptachlor                | mg/kg          | 0.1  |               | 10                 | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Heptachlor epoxide        | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | -               |
|                                | Hexachlorobenzene         | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | Methoxychlor              | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | -               |
|                                | o,p'-DDD                  | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | o,p'-DDE                  | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
|                                | trans-chlordane           | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | < 0.1      | -           | -           | -           | -           | -           | -               |
| 50047.0 1: 10                  | trans-Nonachlor           | mg/kg          | 0.1  |               |                    | -          | -          | -          | -          | -          | <0.1       | <0.1       | -           | -           | -           | -           | -           | 4               |
| ESDAT Combined Compounds       | Aldrin + Dieldrin         | mg/kg          |      |               | 10                 | -          | -          | -          | 1-         | -          | <0.2       | <0.2       | 1-          | -           | -           | -           | -           | 4               |
|                                | DDT+DDE+DDD               | mg/kg          | +    |               | 200                | -          | -          | -          | -          | -          | <0.3       | < 0.3      | 1-          | -           | -           | -           | -           | 1-              |
| OD Darkaldar in Call by COME   | Animarka a mathed         |                | 0.0  |               |                    |            | -1         |            | 1          | 1          | 1          | _          | 1           |             |             | -           | -           |                 |
| OP Pesticides in Soil by GCMS  | Azinophos methyl          | mg/kg          | 0.2  |               |                    | -          | 1-         | 1-         | 1-         | 1-         | +-         | 1-         | +-          | -           | 1-          | 1-          | -           | 1-              |
| -                              | Bromophos-ethyl           | mg/kg          | 0.2  |               |                    | -          | -          | -          | -          | -          | -          | -          | -           | -           | -           | -           | -           | 1-              |
|                                | Chlorpyrifos              | mg/kg          | 0.2  |               |                    | -          | 1-         | 1-         | 1-         | 1-         | +-         | 1-         | +-          | -           | 1-          | 1-          | -           | 1-              |
|                                | Diazinon                  | mg/kg          | 0.5  |               |                    | -          | 1-         | 1-         | 1-         | 1-         | +-         | 1-         | +-          | -           | 1-          | 1-          | -           | 1-              |
|                                | Dichlorvos                | mg/kg          | 1    | l             |                    | -          | 1-         | +-         | 1-         | -          | 1-         | 1-         | +           | -           | 1-          | -           | -           | 1-              |
|                                | Dimethoate                | mg/kg          | 0.2  |               |                    | -          | 1-         | 1-         | 1-         | 1-         | +-         | 1-         | +-          | -           | 1-          | 1-          | -           | 1-              |
|                                | Ethion                    | mg/kg          |      |               |                    | -          | +-         | +          | +          | +-         | +          | 1-         | +           | +-          | +-          | 1-          | +           | +               |
|                                | Fenitrothion              | mg/kg          | 0.2  |               |                    | -          | 1-         | 1-         | 1-         | 1-         | +-         | 1-         | +-          | -           | 1-          | 1-          | -           | 1-              |
|                                | Malathion                 | mg/kg          | 0.2  | l             |                    | -          | 1-         | +-         | 1-         | -          | 1-         | 1-         | +           | -           | 1-          | -           | -           | 1-              |
|                                | Methidathion<br>Parathion | mg/kg<br>ma/ka | 0.5  |               |                    | -          | 1-         | 1-         | 1-         | 1-         | -          | 1-         | +-          | -           | 1-          | 1-          | -           | -               |
|                                | Paraunion                 | rng/kg         | 0.2  |               |                    | -          | -          | 1-         | -          | -          | -          | 1-         | 1-          | 1-          |             | -           | -           |                 |



|                                         |                                  |                |      |               | Sample # and Depth | MS4-4 0.0-0.2 | MS4-4 0.5-0. | 6 MS4-5 0.0-0.2 | MS4-5 0.5-0.6 | MS4-6 0.0-0. | 2 MS4-6 0.5-0. | .6 MS4-7 0.0-0.2 | MS4-8 0.0-0.2 | MS4-9 0.0-0.2 | 2 MS4-10 0.0-0.2 | 2 MS4-11 0.0-0 | .2 MS4-11 0.5-0. | 6 MS4-12 0.0-0.2 |
|-----------------------------------------|----------------------------------|----------------|------|---------------|--------------------|---------------|--------------|-----------------|---------------|--------------|----------------|------------------|---------------|---------------|------------------|----------------|------------------|------------------|
|                                         |                                  |                |      |               | Sampled Date-Time  | 6/08/2009     | 6/08/2009    | 6/08/2009       | 6/08/2009     | 6/08/2009    | 6/08/2009      | 6/08/2009        | 6/08/2009     | 6/08/2009     | 6/08/2009        | 6/08/2009      | 6/08/2009        | 6/08/2009        |
|                                         |                                  |                |      |               | Area               | Mine Site 4   | Mine Site 4  | Mine Site 4     | Mine Site 4   | Mine Site 4  | Mine Site 4    | Mine Site 4      | Mine Site 4   | Mine Site 4   | Mine Site 4      | Mine Site 4    | Mine Site 4      | Mine Site 4      |
|                                         |                                  |                |      |               |                    |               |              |                 |               |              |                |                  |               |               |                  |                |                  |                  |
| Method_Type                             | ChemName                         | Units          |      | NEPM 1999 EIL | NEPM 1999 HIL A    |               |              |                 |               |              |                |                  |               |               |                  |                |                  |                  |
| Cyanide                                 | Cyanide Total                    | mg/kg          | 0.1  |               | 500                | -             | -            | -               | -             | -            | -              |                  | -             | -             | -                | -              | -                | -                |
|                                         |                                  |                |      |               |                    |               |              |                 |               |              |                |                  |               |               |                  |                |                  |                  |
| Inorganics                              | pH (Field)                       | pH_Units       | 0    |               |                    | 7.3           | -            | -               | -             | -            | -              | 7.9              | -             | -             | -                | 7.6            | -                | 7.1              |
| Metals in Soil by ICP-OES               | Accests                          |                | 2    | 20            | 100                | -             | -            | 7               | 7             | 0            | 0              | 00               | 00            | 22            | 0                |                |                  | 0                |
| Metals In Soil by ICP-OES               | Arsenic<br>Cadmium               | mg/kg<br>mg/kg | 0.3  | 20            | 100                | 0.5           | 0.5          | 0.4             | 0.4           | 9<br>0.5     | 0.4            | 26<br>7.4        | 7.6           | 7.2           | 0.4              | 0.4            | <0.3             | 0.5              |
|                                         | Chromium (III+VI)                | mg/kg          | 0.3  | 3             | 20                 | 20.5          | 21           | 20              | 19            | 24           | 22             | 18               | 18            | 21            | 24               | 22             | 18               | 21               |
|                                         | Copper                           | mg/kg          |      | 100           | 1000               | 14            | 14           | 15              | 16            | 15           | 15             | 120              | 130           | 52            | 16               | 16             | 15               | 17               |
|                                         | Lead                             | mg/kg          | 1    | 600*          | 300                | 47            | 45           | 58              | 53            | 85           | 74             | 6300             | 7400          | 1300          | 130              | 69             | 43               | 490              |
| Mercury Cold Vapor/Hg Analyser          | Mercury                          | mg/kg          | 0.05 |               | 15                 | <0.05         | < 0.05       | < 0.05          | <0.05         | < 0.05       | < 0.05         | 0.54             | 0.63          | 0.18          | <0.05            | < 0.05         | <0.05            | < 0.05           |
| , , , , , , , , , , , , , , , , , , , , | Nickel                           | mg/kg          |      | 60            | 600                | 14            | 16           | 20              | 21            | 22           | 21             | 19               | 17            | 20            | 21               | 21             | 16               | 15               |
|                                         | Zinc                             | mg/kg          | 0.5  | 200           | 7000               | 120           | 110          | 180             | 160           | 190          | 170            | 11000            | 8900          | 2400          | 200              | 170            | 130              | 410              |
|                                         |                                  |                |      |               |                    |               |              |                 |               |              |                |                  |               |               |                  |                |                  |                  |
| Moisture                                | Moisture                         | %              | 1    |               |                    | 12            | 12           | 16              | 17            | 9.9          | 11             | 7                | 8             | 9             | 14               | 16             | 10               | 12               |
|                                         |                                  |                |      |               |                    |               |              |                 |               |              |                |                  |               |               |                  |                |                  |                  |
| OC Pesticides in Soil                   | 2,4-DDT                          | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | 4,4-DDE                          | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | a-BHC                            | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Aldrin<br>b-BHC                  | mg/kg<br>mg/kg | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | cis-Chlordane                    | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              |                  | -             | -             | -                |                | -                | -                |
|                                         | d-BHC                            | mg/kg          | 0.1  |               |                    | -             |              |                 |               | 1            |                |                  |               |               |                  |                |                  |                  |
|                                         | DDD                              | mg/kg          | 0.1  |               |                    | -             | -            | 1.              | 1-            | 1            | -              |                  | -             | -             | -                | -              | -                | -                |
|                                         | DDT                              | mg/kg          | 0.1  |               |                    | -             | -            |                 | -             |              | -              | -                | -             |               | -                | -              | -                |                  |
|                                         | Dieldrin                         | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Endosulfan I                     | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Endosulfan II                    | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Endosulfan sulphate              | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Endrin                           | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              |                  | -             | -             | -                | -              | -                | -                |
|                                         | Endrin aldehyde                  | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Endrin ketone                    | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | g-BHC (Lindane)                  | mg/kg          | 0.1  |               | 10                 | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Heptachlor<br>Heptachlor epoxide | mg/kg          | 0.1  |               | 10                 | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Hexachlorobenzene                | mg/kg<br>mg/kg | 0.1  |               |                    | -             | -            | -               | -             | 1            | -              | -                | 1             | 1             | -                | -              | -                | -                |
|                                         | Methoxychlor                     | mg/kg          | 0.1  |               |                    | 1             |              | -               | 1             | 1            |                |                  | 1             | -             | -                | -              |                  |                  |
|                                         | o,p'-DDD                         | mg/kg          | 0.1  |               |                    | -             | 1            |                 | 1             | 1            | 1              |                  | 1             |               | -                | 1.             |                  |                  |
|                                         | o,p'-DDE                         | mg/kg          | 0.1  |               |                    | -             | -            |                 | -             |              | -              | -                | -             |               | -                | -              | -                |                  |
|                                         | trans-chlordane                  | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | trans-Nonachlor                  | mg/kg          | 0.1  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
| ESDAT Combined Compounds                | Aldrin + Dieldrin                | mg/kg          |      |               | 10                 | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | DDT+DDE+DDD                      | mg/kg          |      |               | 200                | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         |                                  |                |      |               |                    |               |              |                 |               |              |                |                  |               |               |                  |                |                  |                  |
| OP Pesticides in Soil by GCMS           | Azinophos methyl                 | mg/kg          | 0.2  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Bromophos-ethyl                  | mg/kg          | 0.2  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Chlorpyrifos                     | mg/kg          | 0.2  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |
|                                         | Diazinon<br>Dichlorvos           | mg/kg          | 0.5  |               |                    | -             | -            | -               | 1-            | -            | -              | -                | 1-            | 1-            | +                | -              | -                | -                |
|                                         | Dicniorvos<br>Dimethoate         | mg/kg          | 1    |               |                    | -             | -            | 1-              | -             | 1-           | -              | -                | -             | ļ-            | +                | -              | -                | -                |
| 1                                       | Ethion                           | mg/kg<br>mg/kg | 0.2  |               |                    | 1:            |              |                 | 1:            | -            | 1:             | 1:               | 1             | 1             | 1:               | 12             |                  | 1                |
| 1                                       | Fenitrothion                     | mg/kg          | 0.2  |               |                    | 1.            | 1_           | 1.              | 1.            | 1_           | 1.             | 1:               | 1.            | 1.            | 1.               | 1_             | 1.               | 1.               |
|                                         | Malathion                        | mg/kg          | 0.2  |               |                    | 1.            | 1-           | 1-              | 1-            | -            | 1-             | 1:               | 1-            | 1.            | 1.               | 1-             | -                | 1.               |
|                                         | Methidathion                     | mg/kg          | 0.5  |               |                    | 1.            | -            | -               | 1-            | 1-           | 1-             | -                | 1-            | 1.            | 1.               | -              | -                | 1.               |
|                                         | Parathion                        | ma/ka          | 0.2  |               |                    | -             | -            | -               | -             | -            | -              | -                | -             | -             | -                | -              | -                | -                |



| Sample # and Depth | MS4-12\_0.5-0.6 | MS4-13\_0.0-0.2 | MS4-13\_0.0-0.2 | MS4-13\_0.0-0.2 | MS4-14\_0.0-0.2 | MS4-15\_0.0-0.2 |

|                                |                           |          |      |               | Sampled_Date-Time | 6/08/2009      | 6/08/2009       | 6/08/2009     | 6/08/2009        | 6/08/2009      | 6/08/2009     | 6/08/2009     | 6/08/2009    | 6/08/2009     | 6/08/2009     | 6/08/2009       | 6/08/2009    | 6/08/2009       |
|--------------------------------|---------------------------|----------|------|---------------|-------------------|----------------|-----------------|---------------|------------------|----------------|---------------|---------------|--------------|---------------|---------------|-----------------|--------------|-----------------|
|                                |                           |          |      |               | Area              | Mine Site 4    | Mine Site 4     | Mine Site 4   | Mine Site 4      | Mine Site 4    | Mine Site 4   | Mine Site 4   | Mine Site 4  | Mine Site 4   | Mine Site 4   | Mine Site 4     | Mine Site 4  | Mine Site 4     |
|                                |                           |          |      |               | Area              | Will le Site 4 | IVIII IE SILE 4 | Willie Site 4 | WILLIE OLE 4     | WIII IE SILE 4 | Willie Site 4 | Willie Site 4 | WILLIE OHE 4 | WILLIE SILE 4 | Willie Site 4 | IVIII IE SILE 4 | WILLIE SHE 4 | IVIII IE SILE 4 |
|                                |                           |          |      |               |                   |                |                 |               |                  |                |               |               |              |               |               |                 |              |                 |
| Method_Type                    | ChemName                  | Units    |      | NEPM 1999 EIL | NEPM 1999 HIL A   |                |                 |               |                  |                |               |               |              |               |               |                 |              |                 |
| Cyanide                        | Cyanide Total             | mg/kg    | 0.1  |               | 500               | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                |                           |          |      |               |                   |                |                 |               |                  |                |               |               |              |               |               |                 |              |                 |
| Inorganics                     | pH (Field)                | pH Units | 0    |               |                   | -              | -               | -             | 7.2              | -              | -             | -             | 7.2          | -             | -             | -               | 7.6          | -               |
|                                |                           |          |      |               |                   |                |                 |               |                  |                |               |               |              |               |               |                 |              |                 |
| Metals in Soil by ICP-OES      | Arsenic                   | mg/kg    | 3    | 20            | 100               | 8              | 8               | 8             | 55               | 13             | 9             | 8             | 8            | 10            | 9             | 9               | 10           | 20              |
| ,                              | Cadmium                   | mg/kg    | 0.3  | 3             | 20                | 0.4            | 0.4             | 0.4           | 48               | 3.5            | 0.5           | 0.6           | 1.9          | 0.97          | < 0.3         | 0.5             | 0.6          | 1.8             |
|                                | Chromium (III+VI)         | mg/kg    | 0.3  |               |                   | 24             | 19              | 20            | 12               | 18             | 20            | 19            | 22           | 32            | 27            | 20              | 20           | 20              |
|                                | Copper                    | mg/kg    |      | 100           | 1000              | 17             | 15              | 15            | 130              | 28             | 12            | 11            | 18           | 22            | 15            | 14              | 13           | 39              |
|                                | Lead                      | mg/kg    | 1    | 600*          | 300               | 390            | 440             | 420           | 14000            | 1100           | 38            | 35            | 370          | 160           | 29            | 39              | 48           | 1300            |
| Manager Calabian               |                           |          | 0.05 |               | 15                | <0.05          |                 |               |                  | 0.12           |               |               |              |               |               |                 |              |                 |
| Mercury Cold Vapor/Hg Analyser | Mercury                   | mg/kg    | 0.05 |               |                   | 18             | < 0.05          | <0.05         | 0.67             | 14             | < 0.05        | <0.05         | < 0.05       | <0.05         | <0.05         | < 0.05          | <0.05        | 0.27<br>15      |
|                                | Nickel                    | mg/kg    | 0.5  |               | 600               |                | 14              |               |                  |                | 18            | 17            | 20           | 24            |               | 18              | 18           |                 |
|                                | Zinc                      | mg/kg    | 0.5  | 200           | 7000              | 360            | 410             | 410           | 20000            | 1200           | 210           | 210           | 770          | 700           | 53            | 170             | 220          | 1000            |
|                                |                           |          |      |               |                   |                |                 |               |                  |                |               |               |              |               |               |                 |              |                 |
| Moisture                       | Moisture                  | %        | 1    |               |                   | 9              | 14              | 13            | 3                | 15             | 4             | 3             | 16           | 19            | 11            | 4               | 4            | 9               |
|                                | 1                         |          |      |               |                   |                |                 |               |                  |                |               |               |              |               |               |                 |              |                 |
| OC Pesticides in Soil          | 2,4-DDT                   | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | 1-             | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | 4,4-DDE                   | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | T-              |
|                                | a-BHC                     | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | 1-              |
|                                | Aldrin                    | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | 1-              |
|                                | b-BHC                     | mg/kg    | 0.1  |               |                   |                | -               | -             |                  |                | -             | -             |              |               |               |                 | -            | -               |
|                                | cis-Chlordane             | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              |               | -             | -            |               | -             | -               | -            | -               |
|                                | d-BHC                     | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                |                |               | -             |              | -             | -             | -               | -            | +               |
|                                | DDD                       | mg/kg    | 0.1  |               |                   | -              |                 | -             |                  | -              |               |               | -            | -             |               | -               |              | +               |
|                                | DDT                       |          | 0.1  |               |                   |                |                 | _             | _                | -              | -             | -             | -            |               | _             |                 |              | +               |
|                                | Dieldrin                  | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              |               | -             | -            | -             | -             | -               | -            |                 |
|                                |                           | mg/kg    |      |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            |                 |
|                                | Endosulfan I              | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Endosulfan II             | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Endosulfan sulphate       | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Endrin                    | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Endrin aldehyde           | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Endrin ketone             | mg/kg    | 0.1  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | g-BHC (Lindane)           | mg/kg    | 0.1  |               |                   |                | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Heptachlor                | mg/kg    | 0.1  |               | 10                | -              | -               | -             | -                |                | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Heptachlor epoxide        | mg/kg    | 0.1  |               |                   |                | -               |               |                  |                | -             | -             |              | -             |               |                 | -            | -               |
|                                | Hexachlorobenzene         | mg/kg    | 0.1  |               |                   |                | <b>-</b>        | 1.            |                  | 1.             |               | -             |              | 1.            | -             | -               | -            | <b>-</b>        |
|                                | Methoxychlor              | mg/kg    | 0.1  |               |                   | _              | _               | _             | _                | -              | -             | -             | _            | -             | _             | _               | _            | +               |
|                                | o,p'-DDD                  | mg/kg    | 0.1  |               |                   | -              | -               | -             |                  | -              | -             | -             | -            | -             |               | -               |              | +               |
| 1                              | o,p'-DDE                  | mg/kg    | 0.1  |               |                   | -              | +               | +             | -1-              | 1-             | +             | +             | +            | +             | +             |                 | +            | +               |
| 1                              | trans-chlordane           |          | 0.1  |               |                   | -              | +               | +             | -1-              | 1-             | +             | +             | +            | +             | +             |                 | +            | +               |
|                                |                           | mg/kg    |      |               |                   | -              | -               | H-            | -                | -              | -             | -             | -            | -             | -             |                 | -            | +               |
| ECDAT Combined Comm            | trans-Nonachlor           | mg/kg    | 0.1  |               | 10                | -              | -               | <u> </u>      | -                | -              | -             | -             | 1-           | -             | -             | -               | -            | +               |
| ESDAT Combined Compounds       | Aldrin + Dieldrin         | mg/kg    | 1    |               | 10                | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | DDT+DDE+DDD               | mg/kg    |      |               | 200               | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | 1                         |          | 1    |               |                   |                |                 |               |                  |                |               |               |              |               |               |                 | 1            |                 |
| OP Pesticides in Soil by GCMS  | Azinophos methyl          | mg/kg    | 0.2  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
| ,                              | Bromophos-ethyl           | mg/kg    | 0.2  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Chlorpyrifos              | mg/kg    | 0.2  |               |                   | -              | -               | -             | -                | -              | -             | 1-            | -            | -             | -             | -               | -            | -               |
|                                | Diazinon                  | mg/kg    | 0.5  |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Dichlorvos                | mg/kg    | 1    |               |                   | -              | -               | -             | -                | -              | -             | -             | -            | -             | -             | -               | -            | -               |
|                                | Dimethoate                | mg/kg    | 1    |               |                   | -              | 1-              | 1-            | 1-               | -              | -             | 1-            | 1-           | -             | -             | -               | 1-           | 1-              |
|                                | Ethion                    | mg/kg    | 0.2  |               |                   | -              | -               | -             | 1-               | -              | -             | 1.            | -            | -             | -             | -               | -            | 1.              |
| 1                              | Fenitrothion              | mg/kg    | 0.2  |               |                   | _              | 1.              | 1.            | <del>-  </del> - | 1-             | 1.            | 1             | 1.           | -             | -             | 1.              | +_           | +-              |
|                                | Malathion                 | mg/kg    | 0.2  |               |                   | 1              | -1:             |               | - 1              | 1              | 1             | 1             | 1            |               | -13           | - 1             | -10          | +               |
|                                |                           |          |      |               |                   |                | +               | +             | +                | +              | +-            | +             | +            | +             | +-            | +               | +            | +               |
| <u> </u>                       | Methidathion<br>Parathion | mg/kg    | 0.5  |               |                   | -              | +-              | +             | +-               | +              | +-            | +-            | +            | +-            | +-            | +               | +-           | +               |
|                                | Paramon                   | mg/kg    | 0.2  |               |                   | -              |                 | 1-            |                  | 1-             | 1-            | 1-            | 1-           | 1-            | -             | 1-              | -            |                 |



| Method Type ChemNam Cyanide Cyanide To Cyanide Cyanide To Inorganics Pt (Field) Metals in Soil by ICP-DES Arsenic Cadmium Chromium Chromium Copper Mercury Cold Vapor/Hg Analyse Mercury Cold Vapor/Hg Analyse Moisture Moisture Moisture Moisture Moisture OC Pesticides in Soil 2,4-DDT 4,4-DDE 3-BHC Alarin D-BHC Cols-Chlorid 6-BHC DDT Dielfrin Endosulfan Endin alde Endrin alde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ide Total  liceld)  lice sinum  sinum  sinum (III+VI)  er  er  ury  il  ury  bit  liceld)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg pH_Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg             | 0.1<br>0<br>3<br>0.3<br>0.3                     | 20<br>3<br>100<br>600*<br>1<br>600 | Sample # and Depth Sampled_Date-Time Area  NEPM 1999 HIL A 500  100 20 1000 300 15 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4  | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 6/08/2009<br>Mine Site 4 | 7/08/2009<br>Mine Site 4 | 7/08/2009<br>Mine Site 4 | 7/08/2009<br>Mine Site 4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------|--------------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Cyanide To Cyanide To Cyanide To Inorganics   Metals in Soil by ICP-OES   Arsenic   Cadmium   Chromium   Copper   Mercury Cold Vapor/Hg Analyser   Mercury Cold Vapor/Hg Analyser   Moisture   Moisture   Moisture   Moisture   Advin   B-BHC   Advin   B-BHC   ODD   ODD   ODD   ODD   DDT   Dieldrin   Endosulfan   Endrin kete   G-BHC (Line   G-BHC ( | ide Total  liceld)  lice sinum  sinum  sinum (III+VI)  er  er  ury  il  ury  bit  liceld)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg pH_Units mg/kg | 0.1<br>0<br>3<br>0.3<br>0.3<br>0.5<br>1<br>0.05 | 20<br>3<br>100<br>600*<br>1<br>600 | NEPM 1999 HIL A 500 100 20 1000 300                                                | 23<br>4.2<br>14<br>120   | -<br>-<br>12<br>2.8<br>20 | 9                        | 9                        | Mine Site 4              | Mine Site 4              | -                        | Mine Site 4              | Mine Site 4              | Mine Site 4              | Mine Site 4              | -                        | Mine Site 4              |
| Cyanide Cyanide To Cyanide To Cyanide To Cyanide To Cyanide To Inorganics ph (Field)  Metals in Soil by ICP-OES Arsenic Copper Comper Comper Comper Lead  Mercury Cold Vapor/Hg Analyser Mercury Nickel Lead  Moisture Moisture Moisture Moisture Administration Copper a-BHC Admin b-BHC cis-Chlord d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endrin ale Endrin alet Endrin alet Endrin alet Endrin alet Endrin alet Endrin alet Endrin let Endrin alet Endrin let Endrin alet Endrin ale | ide Total  liceld)  lice sinum  sinum  sinum (III+VI)  er  er  ury  il  ury  bit  liceld)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg pH_Units mg/kg | 0.1<br>0<br>3<br>0.3<br>0.3<br>0.5<br>1<br>0.05 | 20<br>3<br>100<br>600*<br>1<br>600 | 100<br>20<br>1000<br>300                                                           | 4.2<br>14<br>120         | 2.8                       |                          | 9                        | -                        | -                        | 8.9                      | -                        | -                        | -                        | -                        | -                        | -                        |
| Cyanide T Cyanide Copper Copper Lead Mercury Cold Vapor/Hg Analyser Mercury Nokel Zen Moisture Moisture Moisture COPesticides in Soil 2,4-DDT 4,4-DDE a-BHC Aldrin D-BHC cis-Chlorde d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endrin alde Endrin alde Endrin lead Endrin | ide Total  liceld)  lice sinum  sinum  sinum (III+VI)  er  er  ury  il  ury  bit  liceld)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg pH_Units mg/kg | 0.1<br>0<br>3<br>0.3<br>0.3<br>0.5<br>1<br>0.05 | 20<br>3<br>100<br>600*<br>1<br>600 | 100<br>20<br>1000<br>300                                                           | 4.2<br>14<br>120         | 2.8                       |                          | 9                        | -                        | -                        | 8.9                      | -                        | -                        | -                        | -                        | -                        | -                        |
| Inorganics pH (Field)  Metals in Soil by ICP-OES Arsenic Cadmium Chromium Copper Lead Mercury Cold Vapor/Hg Analyser Mercury Noisture  Moisture  OC Pesticides in Soil 2.4-DDT 4.4-DDE 9-BHC CIPP CIPP CIPP CIPP CIPP CIPP CIPP CIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rield)  hic sium (III+VI) er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pH_Units  mg/kg      | 0<br>3<br>0.3<br>0.3<br>0.5<br>1<br>0.05<br>0.5 | 100<br>600*<br>1                   | 100<br>20<br>1000<br>300                                                           | 4.2<br>14<br>120         | 2.8                       |                          | - 9                      | -                        | -                        | 8.9                      | -                        | -                        | -                        | -                        | -                        | -                        |
| Metals in Soil by ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nic nium (III+VI) er ury el l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                      | 0.3<br>0.5<br>1<br>0.05<br>0.5                  | 100<br>600*<br>1                   | 1000                                                                               | 4.2<br>14<br>120         | 2.8                       |                          | 9                        | -                        | -                        | 8.9                      |                          |                          |                          |                          | 6.4                      |                          |
| Metals in Soil by ICP-OES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nic nium (III+VI) er ury el l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                      | 0.3<br>0.5<br>1<br>0.05<br>0.5                  | 100<br>600*<br>1                   | 1000                                                                               | 4.2<br>14<br>120         | 2.8                       |                          | 9                        | -                        | -                        | 8.9                      |                          |                          |                          | -                        |                          |                          |
| Cadmium Chromium Chromium Copper Chromium Copper Lead Mercury Cold Vapor/Hg Analyser Mercury Nokele Zho Zho Moisture  OC Pesticides in Soil 4.4-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nium (III+VI) milum (III+VI) ury milum (III+VI) mil | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                      | 0.3<br>0.5<br>1<br>0.05<br>0.5                  | 100<br>600*<br>1                   | 1000                                                                               | 4.2<br>14<br>120         | 2.8                       |                          | 9                        |                          |                          |                          | -                        |                          | -                        |                          | 0.4                      | -                        |
| Cadmium Chromium Chromium Copper Chromium Copper Lead Mercury Cold Vapor/Ng Analyser Mercury Nokel Zinc Moisture  Moisture CC Pesticides in Soil 2,4-DDT 4,4-DDE a-BHC DAbrin D-BHC cis-Chlorde (4-BHC DDD DDT Dietrin Endosulfan Endosulfan Endosulfan Endofilan Endofilan Endofilan Endofilan Endofilan Endofilan Endofilan Endrin alde Endrin alde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nium (III+VI) milum (III+VI) ury milum (III+VI) mil | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                      | 0.3<br>0.5<br>1<br>0.05<br>0.5                  | 100<br>600*<br>1                   | 1000                                                                               | 4.2<br>14<br>120         | 2.8                       |                          | 9                        |                          |                          |                          |                          |                          |                          |                          |                          |                          |
| Chromium Copper Copper Lead Copper Lead Mercury Cold Vapor/hg Analyser Mercury Nickel Zinc Moisture Moisture OC Pesticides in Soil 2,4-DDT 4,4-DDE a-BHC Gis-Chlorde G-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endrin alde Endrin alde G-BHC  | er ury al bott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                               | 0.3<br>0.5<br>1<br>0.05<br>0.5                  | 600*<br>1<br>60                    | 1000                                                                               | 14<br>120                | 20                        | 1.1                      |                          | 10                       | 6                        | 5                        | 18                       | 80                       | 17                       | 9                        | 9                        | 7                        |
| Copper Mercury Cold Vapor/hg Analyser Mercury Nokel Zinc Moisture Moisture Moisture  CC Pesticides in Soil 4,4-DDE a-BHC OB-BHC  | ury ure DDT DCE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                        | 0.5<br>1<br>0.05<br>0.5                         | 600*<br>1<br>60                    | 300                                                                                | 120                      |                           |                          | 0.5                      | 1.1                      | 0.4                      | 0.5                      | 240                      | 11                       | 0.4                      | 0.6                      | 0.6                      | 0.5                      |
| Mercury Cold Vapor/Hg Analyser Mercury Nickel Nickel Zinc Moisture Moisture OC Pesticides in Soil 2,4-DDT 4,4-DDE a-BHC DDD DT Dieldrin Endosulfan Endosulfan Endofin Endrin ale Endrin ale Endrin ale Endrin ale B-BHC  | ury  ure  DDT  DE  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg<br>mg/kg<br>mg/kg<br>mg/kg                                                 | 1<br>0.05<br>0.5                                | 600*<br>1<br>60                    | 300                                                                                |                          |                           | 34                       | 22                       | 22                       | 20                       | 2.2                      | 11                       | 11                       | 25                       | 19                       | 19                       | 22                       |
| Mercury Cold Vapor/hg Analyser Mercury Nockel Zinc Moisture Moisture Moisture Ad-DDE A-BHC Albrin B-BHC G-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endofin alde Endrin alde B-BHC G-BHC G-BHC DDD DDT DIeldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ury  ure  DDT  DDE  C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg<br>mg/kg<br>mg/kg                                                          | 0.5                                             | 1<br>60                            |                                                                                    |                          | 27                        | 26                       | 20                       | 19                       | 10                       | 4.1                      | 52                       | 530                      | 12                       | 13                       | 12                       | 8.9                      |
| Nickel Zinc  Moisture  Moisture  OC Pesticides in Soil  2,4-DDT  4,4-DDE  a-BHC  Aldrin  b-BHC  cis-Chlorder  DDD  DDT  Dieldrin  Endosulfan  Endosulfan  Endofin alde  Endrin alde  Endrin alde  B-BHC Light Chlorder  Zinch  Zin | DDT DDE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg<br>mg/kg                                                                   | 0.5                                             | 60                                 |                                                                                    | 5100                     | 1300                      | 200                      | 510                      | 650                      | 350                      | 15                       | 1400                     | 46000                    | 39                       | 120                      | 130                      | 94                       |
| Zinc  Moisture  Moisture  OC Pesticides in Soil  4.4-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ure<br>DT<br>DE<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/kg                                                                            |                                                 |                                    |                                                                                    | 0.85                     | 0.12                      | 0.07                     | <0.05                    | <0.05                    | < 0.05                   | <0.05                    | < 0.05                   | 3.7                      | <0.05                    | < 0.05                   | < 0.05                   | < 0.05                   |
| Moisture Moisture  OC Pesticides in Soil 2,4-DDT 4,4-DDE a-BHC Aldrin b-BHC cis-Chlorder d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endofin alde Endrin alde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DDT<br>DDE<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.5                                             |                                    | 600                                                                                | 11                       | 14                        | 24                       | 15                       | 15                       | 16<br>220                | 2                        | 13                       | 7.1                      | 20                       | 12                       | 12                       | 13                       |
| OC Pesticides in Soil 2.4-DDT 4.4-DDE a-BHC Line Shift Soil 4.4-DDE Constitution of the Shift Soil Shift Soil Shift Soil Shift Soil Shift Shift Soil Shift Soil Shift Sh | DDT<br>DDE<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                                |                                                 | 200                                | 7000                                                                               | 2400                     | 1100                      | 810                      | 490                      | 640                      | 220                      | 180                      | 57000                    | 10000                    | 83                       | 280                      | 230                      | 190                      |
| OC Pesticides in Soil 2.4-DDT 4.4-DDE a-BHC Line Shift Soil 4.4-DDE Constitution of the Shift Soil Shift Soil Shift Soil Shift Soil Shift Shift Soil Shift Soil Shift Sh | DDT<br>DDE<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | %                                                                                |                                                 |                                    |                                                                                    |                          |                           |                          |                          | 40                       |                          | 00                       | 45                       | 40                       | 8                        |                          | 14                       | 10                       |
| 4.4-DDE a-BHC Aldrin b-BHC cis-Chlordel d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endoff Endrin alde Endrin alde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DDE<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  | 1                                               |                                    |                                                                                    | 9                        | 14                        | 17                       | 14                       | 12                       | 11                       | 28                       | 15                       | 13                       | 8                        | 14                       | 14                       | 12                       |
| 4.4-DDE a-BHC Aldrin b-BHC cis-Chlordel d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DDE<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ma/ka                                                                            | 0.1                                             |                                    |                                                                                    |                          |                           | -                        | -                        | -                        | -                        | -                        |                          | -                        | -                        | -                        | -                        | +                        |
| a-BHC Lind Addrin Land Lind Lind Lind Lind Lind Lind Lind Li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |
| Addrin b-BHC cis-Chlorder d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | +-                       | -                        | -                        | -                        | +                        |
| b-BHC Line Chloridus Charles Charles Chloridus Charles Chloridus Charles Charl |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |
| cis-Chiorded d-BHC DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endrin alde Endrin alde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
| d-BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
| DDD DDT Dieldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endrin aldel Endrin aldel Endrin aldel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |
| DDT Deletrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endrin Endrin alde Endrin alde Endrin alde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
| Dieldrin Endosulfan Endosulfan Endosulfan Endosulfan Endosulfan Endrin Endrin Endrin elde Endrin kelt g-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |
| Endosulfan Endosulfan Endosulfan Endosulfan Endrin alde Endrin alde Endrin lade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
| Endosulfan Endosulfan Endorin Endrin alde Endrin alde Endrin kelt 9-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |
| Endosulfan<br>Endrin<br>Endrin alde<br>Endrin kelc<br>g-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
| Endrin Endrin alde Endrin ketc g-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |                          |
| Endrin alde<br>Endrin keto<br>g-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
| Endrin keto<br>g-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | +                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | <del></del>              |
| g-BHC (Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | +                        | -                        | -                        | -                        | -                        | +                        | -                        | -                        | -                        | +                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | +                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    | 10                                                                                 | -                        | -                         | -                        | +                        | -                        | -                        | -                        | -                        | +                        | -                        | -                        | -                        | +                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    | 10                                                                                 | -                        | -                         | -                        | +                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | +                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | +                        | -                        | -                        | -                        | -                        | +                        | -                        | -                        | -                        | +                        |
| Methoxychi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | -                        | -                         | -                        | 10                       | -                        | -                        | -                        | -                        | +:                       |                          | -                        | -                        |                          |
| o,p'-DDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             | <b> </b>                           |                                                                                    |                          | -                         |                          | -                        |                          |                          |                          | 1                        | +                        | - 1                      | 1                        | -                        |                          |
| o,p'-DDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             | <b> </b>                           |                                                                                    |                          |                           |                          | +1                       | 1                        |                          |                          | 1                        | +:                       |                          | 1                        | -                        |                          |
| trans-chlore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             |                                    |                                                                                    | i i                      | 1-                        | 1-                       | -                        | 1-                       | 1-                       | 1-                       | 1-                       | -                        | 1-                       | 1-                       | 1-                       | <b>-</b>                 |
| trans-Nona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.1                                             | <b> </b>                           |                                                                                    | _                        | -                         | -                        | 1.                       |                          | -                        | 1.                       | 1.                       | -                        | 1.                       | 1.                       | 1.                       |                          |
| ESDAT Combined Compounds Aldrin + Die                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                            | U. /                                            |                                    | 10                                                                                 | -                        | -                         | -                        | 1.                       | -                        | 1-                       | -                        | 1-                       | -                        | -                        | -                        | -                        | -                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                            |                                                 |                                    | 200                                                                                | _                        | 1.                        | 1.                       | 1.                       | -                        | 1_                       | 1.                       | 1_                       | -                        | 1.                       | 1.                       | 1.                       |                          |
| BBTTBBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riging                                                                           |                                                 |                                    | 200                                                                                |                          |                           |                          | 1                        |                          |                          |                          | 1                        |                          |                          |                          |                          | _                        |
| OP Pesticides in Soil by GCMS Azinophos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nhos methyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mg/kg                                                                            | 0.2                                             |                                    |                                                                                    | _                        | 1.                        | 1.                       | 1.                       | -                        | 1_                       | 1.                       | 1.                       | -                        | 1.                       | 1.                       | 1.                       |                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                            | 0.2                                             |                                    |                                                                                    | -                        | -                         | -                        | 1.                       | -                        | 1-                       | -                        | 1-                       | -                        | -                        | -                        | -                        | -                        |
| Chlorpyrifo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.2                                             |                                    |                                                                                    | <u> </u>                 | 1.                        | 1.                       | 1.                       | 1_                       | 1.                       | 1.                       | 1.                       | 1.                       | 1.                       | 1.                       | 1.                       | <b>–</b> 1.              |
| Diazinon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.5                                             |                                    |                                                                                    | -                        | -                         | -                        | 1.                       | -                        | 1-                       | -                        | 1-                       | -                        | -                        | -                        | -                        | -                        |
| Dichloryos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                            | 1                                               |                                    |                                                                                    | -                        | -                         | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        | -                        |
| Dimethoate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                            | 1                                               |                                    |                                                                                    | -                        | -                         | -                        | 1.                       | -                        | 1-                       | -                        | 1-                       | -                        | -                        | -                        | -                        |                          |
| Ethion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.2                                             |                                    |                                                                                    | -                        | 1-                        | 1-                       | 1.                       | 1-                       | 1-                       | 1-                       | 1-                       | 1-                       | 1-                       | 1-                       | 1-                       | <b>-</b>                 |
| Fenitrothio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mg/kg                                                                            | 0.2                                             |                                    |                                                                                    | -                        | -                         | -                        | 1.                       | -                        | 1-                       | -                        | 1-                       | -                        | -                        | -                        | -                        |                          |
| Malathion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rothion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                  | 0.2                                             |                                    |                                                                                    | -                        | 1-                        | 1-                       | 1.                       | 1-                       | 1-                       | 1-                       | 1.                       | 1-                       | 1-                       | 1-                       | 1-                       | 1-                       |
| Methidathic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                  | 0.5                                             |                                    |                                                                                    | -                        | -                         | -                        | 1.                       | 1-                       | 1-                       | -                        | 1.                       | -                        | -                        | -                        | -                        | -                        |
| Parathion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  | 0.2                                             |                                    |                                                                                    | -                        | 1-                        | 1-                       | 1.                       | 1.                       | 1-                       | 1-                       | 1.                       | 1-                       | 1-                       | 1-                       | 1-                       | 1-                       |

|                                         |                     |                |      |               | Sample # and Depth |             |             |             |             |             |             |             |             |             |             | .2 MS4-39_0.0-0. |             |             |
|-----------------------------------------|---------------------|----------------|------|---------------|--------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|-------------|-------------|
|                                         |                     |                |      |               | Sampled_Date-Time  | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009        | 25/11/2009  | 25/11/2009  |
|                                         |                     |                |      |               | Area               | Mine Site 4      | Mine Site 4 | Mine Site 4 |
| Method_Type                             | ChemName            | Units          | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A    |             |             |             |             |             |             |             |             |             |             |                  |             |             |
| Cyanide                                 | Cyanide Total       | mg/kg          | 0.1  |               | 500                |             |             |             |             |             |             | -           |             |             |             |                  |             | Τ.          |
| *                                       |                     |                |      |               |                    |             |             |             |             |             |             |             |             |             |             |                  |             | -           |
| Inorganics                              | pH (Field)          | pH Units       | 0    |               |                    |             |             |             |             | 6.6         |             | -           |             |             |             |                  |             | 1.          |
|                                         | p ( )               | F              | -    |               |                    |             |             |             |             |             |             |             |             |             |             |                  |             | _           |
| Metals in Soil by ICP-OES               | Arsenic             | mg/kg          | 3    | 20            | 100                | 8           | 6           | 4           | 6           | 5           | 5           | 7           | 6           | 44          | 51          | 46               | 6           | 8           |
| * * * * * * * * * * * * * * * * * * * * | Cadmium             | mg/kg          | 0.3  | 3             | 20                 | 0.5         | 0.3         | 0.4         | 0.3         | 0.5         | 0.3         | 0.3         | < 0.3       | 2.7         | 2.4         | 2.3              | 11          | < 0.3       |
|                                         | Chromium (III+VI)   | mg/kg          | 0.3  |               |                    | 20          | 14          | 16          | 16          | 18          | 16          | 15          | 14          | 17          | 16          | 18               | 15          | 17          |
|                                         | Copper              | mg/kg          | 0.5  | 100           | 1000               | 12          | 16          | 9           | 11          | 10          | 9.6         | 15          | 11          | 350         | 340         | 340              | 7.7         | 5.7         |
|                                         | Lead                | mg/kg          |      | 600*          | 300                | 110         | 110         | 86          | 190         | 86          | 130         | 110         | 26          | 33000       | 25000       | 23000            | 71          | 23          |
| Mercury Cold Vapor/Hg Analyser          |                     | mg/kg          | 0.05 |               | 15                 | <0.05       | < 0.05      | < 0.05      | < 0.05      | < 0.05      | < 0.05      | < 0.05      | <0.05       | 3.2         | 2.2         | 2.5              | <0.05       | < 0.05      |
| morodry cold vapornig/mayou             | Nickel              | mg/kg          | 0.5  |               | 600                | 13          | 12          | 12          | 12          | 13          | 10          | 13          | 18          | 8.7         | 7.4         | 8.6              | 12          | 14          |
|                                         | Zinc                | mg/kg          | 0.5  |               | 7000               | 200         | 110         | 130         | 120         | 140         | 120         | 130         | 51          | 2400        | 2200        | 2200             | 1200        | 65          |
|                                         |                     |                |      |               | 7000               |             |             |             |             |             |             |             | -           |             |             |                  |             |             |
| Moisture                                | Moisture            | %              | 1    |               |                    | 13          | 8           | 11          | 10          | 13          | 9           | 8           | 7           | 7           | 7           | 9                | 2           | 2           |
|                                         |                     | 1              | Ė    |               |                    |             | 1           | 1           | 1           |             | 1           | 1           | 1           | 1           |             | 1                | 1           | 1           |
| OC Pesticides in Soil                   | 2.4-DDT             | mg/kg          | 0.1  |               |                    | -           | -           | -           |             | -           | -           |             | -           | -           | -           | -                | -           | 1-          |
|                                         | 4,4-DDE             | mg/kg          | 0.1  |               |                    |             |             | 1-          | 1-          | 1-          | 1-          | 1.          | 1-          | 1-          | 1-          | 1-               | 1-          | 1-          |
|                                         | a-BHC               | mg/kg          | 0.1  |               |                    |             | _           | 1.          | 1.          |             | 1.          | 1.          | 1.          | <b>-</b>    | -           | -                | 1.          | 4.          |
|                                         | Aldrin              | mg/kg          | 0.1  |               |                    |             | -           |             |             |             |             | -           | -           | -           |             |                  |             | +_          |
|                                         | b-BHC               | mg/kg          | 0.1  |               |                    |             | _           | 1.          | 1.          |             | 1.          | 1.          | 1.          | <b>-</b>    | -           | -                | 1.          | 4.          |
|                                         | cis-Chlordane       | mg/kg          | 0.1  |               |                    |             | _           | 1.          | 1.          |             | 1.          | 1.          | 1.          | <b>-</b>    | -           | -                | 1.          | 4.          |
|                                         | d-BHC               | mg/kg          | 0.1  |               |                    |             | -           |             |             |             |             | -           | -           | -           |             |                  |             | +_          |
|                                         | DDD                 | mg/kg          | 0.1  |               |                    | -           | -           | 1           |             | -           | 1.          | -           | 1           | -           | -           | -                | 1.          | +:          |
|                                         | DDT                 | mg/kg          | 0.1  |               |                    |             | -           |             | -           | -           |             | -           | -           | -           | -           | -                | -           | -           |
|                                         | Dieldrin            | mg/kg          | 0.1  |               |                    |             | -           | -           | -           |             | -           |             | -           | -           | -           | -                | -           |             |
|                                         | Endosulfan I        | mg/kg          | 0.1  |               |                    |             |             |             |             |             | +           |             | - 1         |             |             |                  | -           | +           |
|                                         | Endosulfan II       | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           |             | -           |             | -           | -           | -           | -                | -           | +           |
|                                         | Endosulfan sulphate | mg/kg          | 0.1  |               |                    |             |             |             |             |             | +           |             | - 1         |             |             |                  | -           | +           |
|                                         | Endrin              | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           | 1           | 1           | -           |             |             | -           | -                | 1           | +:          |
|                                         | Endrin aldehyde     | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           |             | -           |             | -           | -           | -           | -                | -           |             |
|                                         | Endrin ketone       | mg/kg          | 0.1  |               |                    |             | -           | -           | -           | +           | 1           | +           |             |             | -           | -                | -           | +           |
|                                         | g-BHC (Lindane)     | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           | 1           | 1           | -           |             |             | -           | -                | 1           | +:          |
|                                         | Heptachlor          | mg/kg          | 0.1  |               | 10                 |             | -           | -           | -           | +           | 1           | +           |             |             | -           | -                | -           | +           |
|                                         | Heptachlor epoxide  | mg/kg          | 0.1  |               | 10                 | -           | -           | -           | -           | 1           | 1           | -           |             | -           | -           | -                | 1           | +:          |
|                                         | Hexachlorobenzene   | mg/kg          | 0.1  |               |                    |             | -           | -           | -           | +           | 1           | +           |             |             | -           | -                | -           | +           |
|                                         | Methoxychlor        | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           | 1           | 1           | -           |             | -           | -           | -                | 1           | +:          |
|                                         | o,p'-DDD            | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           | -           | -           |             |             | -           | -           | -                | -           |             |
|                                         | o.p'-DDE            | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           | 1           | 1           | -           |             | -           | -           | -                | 1           | +:          |
|                                         | trans-chlordane     | mg/kg          | 0.1  |               |                    | -           | -           | -           | -           |             | -           |             | -           | -           | -           | -                | -           |             |
|                                         | trans-Nonachlor     | mg/kg          | 0.1  |               |                    |             | -           | -           | -           | +           | 1           | +           |             |             | -           | -                | -           | +           |
| ESDAT Combined Compounds                | Aldrin + Dieldrin   | mg/kg          | 0.1  |               | 10                 | -           | -           | -           | -           |             | -           |             | -           | -           | -           | -                | -           | +           |
| EODAT Combined Compounds                | DDT+DDE+DDD         | mg/kg          |      |               | 200                |             | -           | -           | -           | +           | 1           | +           |             |             | -           | -                | -           | +           |
|                                         | DUITUUETUUU         | mg/kg          |      |               | 200                | -           | -           | -           | -           | -           | -           |             | -           |             | -           | -                | -           | +           |
| OP Pesticides in Soil by GCMS           | Azinophos methyl    | malka          | 0.2  |               |                    |             |             |             |             |             | 1           |             |             |             | _           |                  |             | +           |
| Or 1 conclues III JUIL DY GUMS          | Bromophos-ethyl     | mg/kg<br>mg/kg | 0.2  |               |                    |             | 1           | 10          | 1           | 12          | 10          | -1          | -12         | -17         | -12         | -10              | +1          | +1          |
|                                         | Chlorpyrifos        | mg/kg          | 0.2  |               |                    | -           | l-          | 1           | 1           | 1-          | +-          | +*          | -1-         | -1"         | -1"         | -1"              | +-          | +           |
|                                         | Diazinon            | mg/kg          | 0.5  |               |                    | -           | -           | -           | -           | -           | -           |             | -           |             | -           | -                | -           | +           |
|                                         | Dichloryos          | mg/kg          | 1    |               |                    |             | E .         | 1           | 1           | 1           | -           | -12         | 1           | -1:         |             |                  | 1           | +           |
|                                         | Dimethoate          | mg/kg          | 1    |               |                    |             |             | 1           | 1           | 1           | 1           |             |             | - 1         |             |                  | +1          |             |
|                                         | Ethion              | mg/kg          | 0.2  |               |                    | -           | -           | 1           | 1           | 1           | 1           |             | -12         | - 1         | -           | -                | +12         | +:          |
|                                         | Fenitrothion        |                | 0.2  |               |                    | -           | -           | -           | -           | -           | +           | -           | +           |             | -           | -                | +-          | +           |
|                                         | Malathion           | mg/kg          | 0.2  |               |                    | -           | -           | 1-          | 1-          | 1-          | +           | +           | +           | -           |             |                  | +           | +           |
|                                         | Methidathion        | mg/kg          | 0.2  |               |                    | -           | -           | -           | -           | -           | +           | -           | +           |             | -           | -                | +-          | +           |
|                                         |                     | mg/kg          | 0.5  |               |                    | -           | -           | -           | -           | -           | -           |             | -           |             | -           | -                | +-          | +           |
|                                         | Parathion           | mg/kg          | U.2  |               |                    | -           | -           | 1-          | -           | -           | -           |             | 1-          | -           | -           | -                | -           | 1-          |

| Sample # and Depth | MS4-45\_0.0-0.2 | MS4-47\_0.0-0.2 | MS4-47\_0.0-0.2 | MS4-47\_0.0-0.2 | MS4-51\_0.0-0.2 |

|                                 |                     |           |      |               | Sampled_Date-Time | 25/11/2009  | 25/11/2009  | 25/11/2009  | 25/11/2009  | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 24/07/2009 | 24/07/2009  | 24/07/2009  | 24/07/2009    |
|---------------------------------|---------------------|-----------|------|---------------|-------------------|-------------|-------------|-------------|-------------|------------|------------|------------|------------|------------|------------|-------------|-------------|---------------|
|                                 |                     |           |      |               | Area              | Mine Site 4 | Mine Site 4 | Mine Site 4 | Mine Site 4 | Stockpile  | Stockpile  | Stockpile  | Stockpile  | Stockpile  | Open Space | Open Space  | Open Space  | Open Space    |
|                                 |                     |           |      |               | P                 | 1           | p           | 1           | 1           | Latonbuo   | Latourpho  | Juonpho    | Luonpiio   | Lancorphic | Jpon opubb | _ por opube | 1-bon obros | port opace    |
| Method Type                     | ChemName            | Units     | ΕOI  | NEPM 1999 EIL | NEPM 1999 HIL A   |             |             |             |             |            |            |            |            |            |            |             |             |               |
| Cyanide                         | Cvanide Total       | mg/kg     | 0.1  | NEFW 1999 EIL | 500               |             | 1           | 1           | 1           |            | 1          |            |            |            |            |             | 1           | $\overline{}$ |
| Cyanide                         | Cyanide Iolai       | Hig/kg    | U. I |               | 500               | -           | -           | -           | -           | +-         | -          | -          | -          | -          | -          | +           | -           | +             |
| Inorganics                      | pH (Field)          | pH Units  | 0    |               |                   |             |             |             |             |            |            |            |            |            |            |             |             | +             |
| inorganics                      | pri (rieu)          | pri_Units | U    |               |                   | -           | -           | -           | -           | +-         | -          | -          | -          | -          | -          | +           | -           | +             |
| Metals in Soil by ICP-OES       | Arsenic             | mg/kg     | 2    | 20            | 100               | 0           | 4           | 0           | 5           | 200        | 0          | 0          | c          | 15         | 11         | <3          | 2           | -             |
| Welais III 30II by ICF-OE3      | Cadmium             | mg/kg     | 0.3  |               | 20                | 4.0         | <0.3        | <0.3        | <0.3        | 350        | 2.6        | 4.9        | 0.4        | 0.95       | 0.3        | <0.3        | <0.3        | < 0.3         |
|                                 | Chromium (III+VI)   | mg/kg     | 0.3  | 3             | 20                | 1.3         | 14          | 16          | 14          | 5.4        | 9.7        | 3.8        | 2          | 3.2        | 20         | 15          | 14          | 17            |
|                                 | Copper Copper       | mg/kg     |      | 100           | 1000              | 9.6         | 5.3         | 6.9         | 4.9         | 360        | 18         | 190        | 96         | 190        | 8.2        | 8.6         | 7.5         | 14            |
|                                 | Lead                | mg/kg     | 0.5  | 600*          | 300               | 67          | 18          | 23          | 20          | 19000      | 120        | 35000      | 14000      | 54000      | 16         | 10          | 7.5         | 20            |
|                                 |                     |           | 0.05 |               |                   | 0,          |             |             |             |            |            | 35000      |            |            |            |             | 9           |               |
| Mercury Cold Vapor/Hg Analyser  |                     | mg/kg     | 0.05 |               | 15                | <0.05       | < 0.05      | < 0.05      | < 0.05      | 3.2<br>6.8 | 0.16       | 4.5        | 0.65       | 1.3        | <0.05      | < 0.05      | < 0.05      | <0.05         |
|                                 | Nickel              | mg/kg     | 0.5  |               | 600               |             | 10          | 14          | 10          |            | 11         | 1.5        | 0.7        |            | 23         | 11          | 10          |               |
|                                 | Zinc                | mg/kg     | 0.5  | 200           | 7000              | 1500        | 53          | 69          | 48          | 130000     | 710        | 810        | 360        | 840        | 64         | 24          | 19          | 65            |
|                                 |                     | 0/        | ١,   |               |                   |             |             |             |             |            |            |            |            |            |            | 40          | 40          |               |
| Moisture                        | Moisture            | %         | 1    |               |                   | 1           | <1          | 1           | 1           | -          | -          | -          | -          | -          | 8          | 13          | 19          | 13            |
|                                 |                     |           | L .  |               |                   |             |             |             |             |            |            |            |            |            |            |             |             |               |
| OC Pesticides in Soil           | 2,4-DDT             | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | 4,4-DDE             | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | a-BHC               | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | Aldrin              | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | b-BHC               | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | cis-Chlordane       | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | < 0.1       | <0.1          |
|                                 | d-BHC               | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | < 0.1       | <0.1          |
|                                 | DDD                 | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | < 0.1       | < 0.1         |
|                                 | DDT                 | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | < 0.1       | < 0.1         |
|                                 | Dieldrin            | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | < 0.1         |
|                                 | Endosulfan I        | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | < 0.1         |
|                                 | Endosulfan II       | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | Endosulfan sulphate | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | 1-         | -          | -          | -          | -          | -          | 1-          | <0.1        | < 0.1         |
|                                 | Endrin              | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | 1-         | -          | -          | -          | -          | -          | 1-          | <0.1        | < 0.1         |
|                                 | Endrin aldehyde     | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | 1-         | -          | -          | -          | -          | -          | 1-          | <0.1        | < 0.1         |
|                                 | Endrin ketone       | mg/kg     | 0.1  |               |                   | -           | -           |             | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | g-BHC (Lindane)     | mg/kg     | 0.1  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | Heptachlor          | mg/kg     | 0.1  |               | 10                | _           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.1        | <0.1          |
|                                 | Heptachlor epoxide  | mg/kg     | 0.1  |               |                   |             | -           | 1.          | 1.          | 1.         | 1.         | - I.       |            | -          | - I.       | 1.          | <0.1        | <0.1          |
|                                 | Hexachlorobenzene   | mg/kg     | 0.1  |               |                   |             | -           | 1.          | 1.          | 1.         | 1.         | - I.       |            | -          | - I.       | 1.          | <0.1        | <0.1          |
|                                 | Methoxychlor        | mg/kg     | 0.1  |               |                   |             | -           | 1.          | 1.          | 1.         | 1.         | - I.       |            | -          | - I.       | 1.          | <0.1        | <0.1          |
|                                 | o,p'-DDD            | mg/kg     | 0.1  |               |                   | _           | -           | _           | 1.          | 1_         | _          |            | _          | _          | _          | 1_          | <0.1        | <0.1          |
|                                 | o,p'-DDE            | mg/kg     | 0.1  |               |                   |             | -           | 1.          | 1.          | 1.         | 1.         | - I.       |            | -          | - I.       | 1.          | <0.1        | <0.1          |
|                                 | trans-chlordane     | mg/kg     | 0.1  |               |                   |             | -           | 1.          | 1.          | 1.         | 1.         | - I.       |            | -          | - I.       | 1.          | <0.1        | <0.1          |
|                                 | trans-Nonachlor     | mg/kg     | 0.1  |               |                   | _           | -           | -           | -           | -          | -          | _          | -          | -          | -          | -           | <0.1        | <0.1          |
| ESDAT Combined Compounds        | Aldrin + Dieldrin   | mg/kg     | 0.1  |               | 10                | -           | -           | -           |             | -          | -          | -          | -          | -          | -          | -           | <0.2        | <0.2          |
| ECD/11 COMBINED COMPOUNDS       | DDT+DDE+DDD         | mg/kg     | 1    |               | 200               | _           | -           | -           | -           | -          | -          | _          | -          | -          | -          | -           | <0.3        | < 0.3         |
|                                 | DUTTUUETUUU         | IIIg/kg   |      |               | 200               | -           | 1-          | -           | +           | +          | -          |            |            | -          |            | +           | NU.3        | -0.3          |
| OP Pesticides in Soil by GCMS   | Azinophos methyl    | mg/kg     | 0.2  |               |                   |             | +           |             | +           |            |            | -          | +          | -          |            |             | <0.2        | <0.2          |
| OP Pesticides in Soil by GCIVIS | Bromophos-ethyl     | mg/kg     | 0.2  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.2        | <0.2          |
|                                 |                     |           |      |               |                   | -           | -           | -           | +           | +          | -          | -          | -          | -          | -          | +           | <0.2        | <0.2          |
|                                 | Chlorpyrifos        | mg/kg     | 0.2  |               |                   | -           | -           | -           | -           | +-         | -          | -          | -          | -          | +-         | +           | <0.2        | <0.2          |
|                                 | Diazinon            | mg/kg     | 0.5  |               |                   | -           | -           | -           | 1-          | -          | -          | -          | -          | -          | -          | -           | <0.5        | <0.5          |
|                                 | Dichlorvos          | mg/kg     | Ľ    |               |                   | -           | -           | -           | 1-          | -          | -          | -          | -          | -          | -          | -           |             |               |
|                                 | Dimethoate          | mg/kg     | 1    |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <1          | <1            |
|                                 | Ethion              | mg/kg     | 0.2  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.2        | <0.2          |
|                                 | Fenitrothion        | mg/kg     | 0.2  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.2        | <0.2          |
|                                 | Malathion           | mg/kg     | 0.2  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.2        | <0.2          |
|                                 | Methidathion        | mg/kg     | 0.5  |               |                   | -           | -           | -           | -           | -          | -          | -          | -          | -          | -          | -           | <0.5        | <0.5          |
| i                               | Parathion           | mg/kg     | 0.2  |               |                   | -           | -           | -           | 1           |            | -          |            | -          |            |            | 1           | <0.2        | < 0.2         |

|                                |                                  |                |      |               | Sample # and Depth | OS17 0 0.0 2 | OS18 0 0 <sub>2</sub> 0 2 | OS19 0.0-0.2 | OS20 0 0-0 2 | OS20-a     | OS20-b     | OS20-c     | OS20-d     | RF24 0 0-0 2 | RE30 0 0-0 2 | RE31 0.0-0.2 | RE32 0 0.0 2 | RE33 0 0.0 2 | RE35 0 0-0 2 | SP1     | SP2            | SP3       | SP4       |
|--------------------------------|----------------------------------|----------------|------|---------------|--------------------|--------------|---------------------------|--------------|--------------|------------|------------|------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|----------------|-----------|-----------|
|                                |                                  |                |      |               | Sampled Date-Time  | 24/07/2009   | 24/07/2009                | 24/07/2009   | 24/07/2009   | 28/04/2010 | 28/04/2010 | 28/04/2010 | 28/04/2010 | 24/07/2009   | 24/07/2009   | 24/07/2009   | 24/07/2009   | 24/07/2009   | 24/07/2009   |         | 5/08/2009      | 5/08/2009 | 5/08/2009 |
|                                |                                  |                |      |               | Area               |              | Open Space                | Open Space   | Open Space   |            | Open Space | Open Space | Open Space | Resiodential | Resiodential | Resiodential | Residential  | Resiodential | Residential  | Clay SP | Clay SP        | Clay SP   | Clay SP   |
|                                |                                  |                |      |               |                    |              |                           |              |              |            | 1-1        |            | 1-1        | TI.          | 1            | 1            | 1            | 1            | 1            |         | ,              |           |           |
| Method_Type                    | ChemName                         | Units          | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A    |              |                           |              |              |            |            |            |            |              |              |              |              |              |              |         |                |           |           |
| Cyanide                        | Cyanide Total                    | mg/kg          | 0.1  |               | 500                | -            | -                         | -            | -            | -          | -          | -          | -          | -            | -            | -            | -            | -            | -            | -       | -              | 1-        | T- '      |
|                                |                                  |                |      |               |                    |              |                           |              |              |            |            |            |            |              |              |              |              |              |              |         |                |           |           |
| Inorganics                     | pH (Field)                       | pH_Units       | s 0  |               |                    | -            | -                         | -            | -            | -          | -          | -          | -          | -            | -            | -            | -            | -            | -            | -       | -              |           |           |
| Matala ia Cail bu ICD OFC      | Accorde                          |                | 2    | 00            | 400                | 0            |                           | -0           | 00           | -          | c          | 4          | 4          |              | 44           | -            | 7            | 5            | -0           | 47      | 44             | 12        | 40        |
| Metals in Soil by ICP-OES      | Arsenic<br>Cadmium               | mg/kg<br>mg/kg | 0.3  |               | 100<br>20          | 3            | 4                         | <3           | <0.3         | 0.3        | 0.3        | 4          | 4          | 3            | 0.5          | 0.4          | 7            | <0.3         | <3           | 0.7     | 0.7            | 12        | 12<br>0.6 |
|                                | Chromium (III+VI)                | mg/kg          | 0.3  | 3             | 20                 | 14           | 12                        | 13           | 15           |            | 17         | <0.3       | 13         | 17           | 16           | 18           | 14           | 16           | 16           | 21      | 21             | 10.0      | 22        |
|                                | Copper                           | mg/kg          | 0.5  | 100           | 1000               | 9.3          | 9.4                       | 12           | 12           |            | 17         | 14         | 15         | 3.6          | 12           | 10           | 11           | 11           | 11           | 23      | 17             | 18        | 17        |
|                                | Lead                             | mg/kg          | 1    |               | 300                | 13           | 8                         | 9.5          | 15           |            | 17         | 14         | 13         | 25           | 99           | 36           | 24           | 21           | 12           | 90      | 62             | 60        | 60        |
| Mercury Cold Vapor/Hg Analyser |                                  | mg/kg          | 0.05 |               | 15                 | <0.05        | < 0.05                    | < 0.05       | < 0.05       | <0.05      | < 0.05     | < 0.05     | < 0.05     | < 0.05       | <0.05        | <0.05        | < 0.05       | <0.05        | <0.05        | < 0.05  | < 0.05         | < 0.05    | < 0.05    |
|                                | Nickel                           | mg/kg          | 0.5  | 60            | 600                | 12           | 17                        | 13           | 19           | 19         | 20         | 16         | 17         | 4.3          | 11           | 14           | 15           | 12           | 11           | 31      | 25             | 23        | 24        |
|                                | Zinc                             | mg/kg          | 0.5  |               | 7000               | 21           | 20                        | 22           | 48           | 68         | 79         | 60         | 69         | 31           | 160          | 70           | 60           | 61           | 38           | 450     | 200            | 210       | 180       |
|                                |                                  |                |      |               |                    |              |                           |              |              |            |            |            |            |              |              |              |              |              |              | 1       |                |           | 1         |
| Moisture                       | Moisture                         | %              | 1    |               |                    | 15           | 10                        | 7            | 13           | 8          | 14         | 9          | 12         | 7            | 10           | 14           | 9            | 12           | 7            | 11      | 6              | 5         | 4         |
|                                | 1                                |                | 1    |               |                    |              |                           | 1            |              |            |            | 1          | 1          | 1            |              |              | 1            |              |              | 1       |                |           |           |
| OC Pesticides in Soil          | 2,4-DDT                          | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | 4,4-DDE<br>a-BHC                 | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | < 0.1   | < 0.1          | <0.1      | <0.1      |
|                                | Aldrin                           | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | b-BHC                            | mg/kg<br>mg/kg | 0.1  |               |                    | -            | -                         | <0.1         | -            |            | 1          | -          | -          | <0.1         | <0.1         | -            | -            | 1            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | cis-Chlordane                    | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            |            | -          | 1          | -          | <0.1         | <0.1         | -            | 1            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | d-BHC                            | mg/kg          | 0.1  |               |                    |              |                           | <0.1         |              |            |            |            | -          | <0.1         | <0.1         |              |              |              | <0.1         | <0.1    | < 0.1          | <0.1      | <0.1      |
|                                | DDD                              | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | < 0.1          | <0.1      | < 0.1     |
|                                | DDT                              | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | < 0.1   | < 0.1          | <0.1      | < 0.1     |
|                                | Dieldrin                         | mg/kg          | 0.1  |               |                    | -            | -                         | < 0.1        | -            | -          | -          | -          | -          | < 0.1        | < 0.1        | -            | -            | -            | < 0.1        | < 0.1   | < 0.1          | < 0.1     | < 0.1     |
|                                | Endosulfan I                     | mg/kg          | 0.1  |               |                    | -            | -                         | < 0.1        | -            | -          | -          | -          | -          | < 0.1        | < 0.1        | -            | -            | -            | < 0.1        | < 0.1   | < 0.1          | < 0.1     | < 0.1     |
|                                | Endosulfan II                    | mg/kg          | 0.1  |               |                    | -            | -                         | < 0.1        | -            | -          | -          | -          | -          | <0.1         | < 0.1        | -            | -            | -            | < 0.1        | < 0.1   | < 0.1          | < 0.1     | <0.1      |
|                                | Endosulfan sulphate              | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | < 0.1   | < 0.1          | <0.1      | <0.1      |
|                                | Endrin                           | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | < 0.1   | < 0.1          | < 0.1     | < 0.1     |
|                                | Endrin aldehyde                  | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | Endrin ketone                    | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | < 0.1     | <0.1      |
|                                | g-BHC (Lindane)                  | mg/kg          | 0.1  |               | 10                 | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | Heptachlor<br>Heptachlor epoxide | mg/kg          | 0.1  |               | 10                 | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | Hexachlorobenzene                | mg/kg<br>mg/kg | 0.1  |               |                    |              | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | Methoxychlor                     | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | o.p'-DDD                         | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | 1-         | -          | <0.1         | <0.1         | -            | 1-           | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | o,p'-DDE                         | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | 1-           | -            | <0.1         | <0.1    | <0.1           | <0.1      | <0.1      |
|                                | trans-chlordane                  | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | < 0.1        | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | < 0.1     |
|                                | trans-Nonachlor                  | mg/kg          | 0.1  |               |                    | -            | -                         | <0.1         | -            | -          | -          | -          | -          | <0.1         | <0.1         | -            | -            | -            | <0.1         | <0.1    | <0.1           | <0.1      | < 0.1     |
| ESDAT Combined Compounds       | Aldrin + Dieldrin                | mg/kg          |      |               | 10                 | -            | -                         | <0.2         | -            | -          | -          | -          | -          | <0.2         | <0.2         | -            | -            | -            | <0.2         | <0.2    | <0.2           | <0.2      | < 0.2     |
|                                | DDT+DDE+DDD                      | mg/kg          | 1    |               | 200                | -            | -                         | < 0.3        | -            | -          | -          | -          | -          | < 0.3        | <0.3         | -            | -            | -            | <0.3         | <0.3    | <0.3           | <0.3      | <0.3      |
|                                | 1                                |                | 1    |               |                    |              |                           | 1            |              |            |            | 1          | 1          | 1            |              |              | 1            |              |              | 1       |                | +         | +         |
| OP Pesticides in Soil by GCMS  |                                  | mg/kg          | 0.2  |               |                    | -            | -                         | <0.2         | -            | -          | 1-         | -          | -          | <0.2         | <0.2         | -            | -            | -            | <0.2         | 1-      | -              | +         | +         |
|                                | Bromophos-ethyl Chlorovrifos     | mg/kg          | 0.2  |               |                    | -            | -                         | <0.2         | -            | -          | -          | -          | -          | <0.2         | <0.2         | -            | -            | -            | <0.2         | 1-      | -              | +         | +         |
|                                | Chlorpyrifos<br>Diazinon         | mg/kg<br>mg/kg | 0.2  |               |                    | -            | -                         | <0.2         | 1            | -          | -          | 1          | +          | <0.2         | <0.2         | 1            | 1            | 1-           | < 0.2        | +1      | +              | +         | +1        |
| l                              | Dichloryos                       | mg/kg          | 1    |               |                    |              | 1                         | <1           | 1            | 1          | -          | 1          | 12         | <1           | <1           | 1            | 12           | 1            | <1           | 12      | +              | +:        | 1:        |
| 1                              | Dimethoate                       | mg/kg          | 1    |               |                    | _            | 1_                        | <1           | 1_           | 1.         | 1          | 1.         | 1.         | <1           | <1           | 1_           | 1.           | 1_           | <1           | 1.      | <del> </del> - | +         | 1         |
|                                | Ethion                           | mg/kg          | 0.2  |               |                    | -            | -                         | <0.2         | -            | -          | -          | 1-         | 1-         | <0.2         | <0.2         | -            | 1-           | -            | <0.2         | -       | 1-             | 1-        | 1-        |
|                                | Fenitrothion                     | mg/kg          | 0.2  |               |                    | -            | -                         | <0.2         | -            | -          | -          | 1-         | 1-         | <0.2         | <0.2         | -            | 1-           | -            | <0.2         | -       | 1-             | 1-        | 1-        |
|                                | Malathion                        | mg/kg          | 0.2  |               |                    | -            | -                         | <0.2         | -            | -          | -          | 1-         | 1-         | <0.2         | <0.2         | -            | 1-           | -            | <0.2         | 1-      |                | 1-        | 1-        |
|                                | Methidathion                     | mg/kg          | 0.5  |               |                    | -            | -                         | <0.5         | -            | -          | -          | -          | -          | <0.5         | < 0.5        | -            | -            | -            | < 0.5        | -       | -              | 1-        | 1-        |
|                                | Parathion                        | mg/kg          | 0.2  |               |                    | -            | -                         | < 0.2        | -            | -          | -          | -          | -          | < 0.2        | < 0.2        | -            | -            | -            | <0.2         | -       | -              | -         | 1-        |



|                                |                     |       |      |               | Field ID          | OS05 0.0-0.2 | OS07 0.0-0.2 | OS08 0.0-0.2 | OS10 0.0-0.2 | RE02 0.0-0.2 | RE05 0.0-0.2 | RE06 0.0-0.2 | RE10 0.0-0.2 | RE13 0.0-0.2 | RE14 0.0-0.2 | RE14 0.5-0.6 | RE15 0.0-0.2 |
|--------------------------------|---------------------|-------|------|---------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                |                     |       |      |               | Sampled Date-Time | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009   |
|                                |                     |       |      |               | SampleComments    | Open Space   | Open Space   | Open Space   | Open Space   | Residential  |
| Method Type                    | ChemName            | Units | FOI  | NEPM 1999 EIL | NEPM 1999 HIL A   |              |              |              |              |              |              |              |              |              |              |              |              |
| Metals in Soil by ICP-OES      | Arsenic             | ma/ka | 3    | 20            | 100               | 5            | <3           | <3           | 16           | 6            | 6            | la           | 15           | 7            | 6            | 7            | 8            |
| Wicklis III Golf by Tor -GEG   | Cadmium             | mg/kg | 0.3  |               | 20                | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         | <0.3         |
|                                | Chromium (III+VI)   | mg/kg | 0.3  | _             | 20                | 9.6          | 17           | 18           | 15           | 16           | 19           | 18           | 15           | 19           | 18           | 19           | 18           |
|                                | Copper              | mg/kg |      | 100           | 1000              | 12           | 11           | 11           | 8.8          | 29           | 19           | 15           | 5.5          | 21           | 16           | 18           | 38           |
|                                | Lead                | ma/ka | 1    | 0*            | 300               | 6            | 4            | 5            | 5            | 6            | 8            | 7            | 6            | 11           | 14           | 15           | 4            |
| Mercury Cold Vapor/Hg Analyser | Mercury             | mg/kg | 0.05 | 1             | 15                | <0.05        | <0.05        | < 0.05       | < 0.05       | <0.05        | < 0.05       | < 0.05       | < 0.05       | <0.05        | < 0.05       | < 0.05       | < 0.05       |
| noroaly cold vapoling relayout | Nickel              | mg/kg | 0.5  |               | 600               | 16           | 18           | 21           | 19           | 18           | 22           | 20           | 13           | 22           | 20           | 21           | 20           |
|                                | Zinc                | mg/kg | 0.5  | 200           | 7000              | 18           | 29           | 35           | 30           | 24           | 38           | 31           | 17           | 62           | 59           | 60           | 24           |
|                                |                     |       |      |               |                   |              |              |              |              |              |              |              |              |              |              |              |              |
| Organics                       | pH (Field)          |       |      |               |                   | -            | -            | _            | -            | -            | -            | -            | -            | -            | -            | -            | T-           |
| - 3                            |                     |       |      |               |                   |              |              |              |              |              |              |              |              |              |              |              |              |
| OC Pesticides in Soil          | 2.4-DDT             | mg/kg | 0.1  |               |                   | <0.1         | 1-           | _            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | 4,4-DDE             | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | a-BHC               | mg/kg | 0.1  |               |                   | <0.1         | -            | 1-           | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Aldrin              | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | b-BHC               | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | cis-Chlordane       | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | d-BHC               | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | DDD                 | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | DDT                 | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Dieldrin            | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Endosulfan I        | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Endosulfan II       | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Endosulfan sulphate | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Endrin              | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Endrin aldehyde     | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Endrin ketone       | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | g-BHC (Lindane)     | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Heptachlor          | mg/kg | 0.1  |               | 10                | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Heptachlor epoxide  | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Hexachlorobenzene   | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | Methoxychlor        | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | o,p'-DDD            | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | o,p'-DDE            | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | trans-chlordane     | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
|                                | trans-Nonachlor     | mg/kg | 0.1  |               |                   | <0.1         | -            | -            | <0.1         | <0.1         | -            | -            | <0.1         | -            | -            | -            | <0.1         |
| ESDAT Combined Compounds       | Aldrin + Dieldrin   | mg/kg |      |               | 10                | <0.2         | -            | -            | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | DDT+DDE+DDD         | mg/kg |      |               | 200               | <0.3         | -            | -            | <0.3         | <0.3         | -            | -            | <0.3         | -            | -            | -            | <0.3         |
|                                |                     |       |      |               |                   |              |              |              |              |              |              |              |              |              |              |              |              |
| OP Pesticides in Soil by GCMS  | Azinophos methyl    | mg/kg | 0.2  |               |                   | <0.2         | -            | -            | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | Bromophos-ethyl     | mg/kg | 0.2  |               |                   | <0.2         | -            | -            | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | Chlorpyrifos        | mg/kg | 0.2  |               |                   | <0.2         | -            | -            | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | Diazinon            | mg/kg | 0.5  |               |                   | <0.5         | -            | 1-           | <0.5         | <0.5         | -            | -            | <0.5         | -            | -            | -            | <0.5         |
|                                | Dichlorvos          | mg/kg | 1    |               |                   | <1           | -            | ļ-           | <1           | <1           | -            | -            | <1           | -            | -            | -            | <1           |
|                                | Dimethoate          | mg/kg | 1    |               |                   | <1           | -            | ļ-           | <1           | <1           | -            | -            | <1           | -            | -            | -            | <1           |
|                                | Ethion              | mg/kg | 0.2  |               |                   | <0.2         | -            | -            | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | Fenitrothion        | mg/kg | 0.2  |               |                   | <0.2         | -            | ļ-           | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | Malathion           | mg/kg | 0.2  |               |                   | <0.2         | -            | ļ-           | <0.2         | <0.2         | -            | -            | <0.2         | -            | -            | -            | <0.2         |
|                                | Methidathion        | mg/kg | 0.5  |               |                   | <0.5         | -            | ļ-           | <0.5         | <0.5         | -            | -            | <0.5         | -            | -            | -            | <0.5         |
|                                | Parathion           | mg/kg | 0.2  |               |                   | <0.2         | <u> -</u>    | 1            | <0.2         | <0.2         | 1            | 1-           | <0.2         |              | <u> </u> -   |              | <0.2         |

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence

Italics = HILA exceedence



|                                  |                                      |                |      |               | Field_ID          | RE19_0.0-0.2 | RE19 0.5-0.6 | RE20 0.0-0.2 | RE20 0.5-0.6   | RE22 0.0-0.2 | RE25 0.0-0.2                                                                                    | RE26 0.0-0.2  | RE26_0.5-0.6  | RE28 0.0-0.2                                              | RE28 0.5-0.6 | RE29 0.0-0.2   | RE41_0.0-0.2        |
|----------------------------------|--------------------------------------|----------------|------|---------------|-------------------|--------------|--------------|--------------|----------------|--------------|-------------------------------------------------------------------------------------------------|---------------|---------------|-----------------------------------------------------------|--------------|----------------|---------------------|
|                                  |                                      |                |      |               | Sampled Date-Time | 23/07/2009   | 23/07/2009   | 23/07/2009   | 23/07/2009     | 23/07/2009   | 24/07/2009                                                                                      | 23/07/2009    | 23/07/2009    | 23/07/2009                                                | 23/07/2009   | 24/07/2009     | 24/07/2009          |
|                                  |                                      |                |      |               | SampleComments    | Residential  | Residential  | Residential  | Residential    | Residential  | Residential                                                                                     | Residential   | Residential   | Residential                                               | Residential  | Residential    | Residential         |
| Method Type                      | ChemName                             | Units          | IFOL | NEPM 1999 EIL | NEPM 1999 HIL A   |              |              |              |                |              |                                                                                                 |               |               |                                                           |              |                |                     |
| Metals in Soil by ICP-OES        | Arsenic                              | ma/ka          | 2    | 20            | 100               | 4            | 14           | 17           | T <sub>4</sub> | To .         | 3                                                                                               | 2             | 2             | 10                                                        | In           | T <sub>E</sub> | 6                   |
| ivietals III 30II by ICF-OE3     | Cadmium                              | mg/kg          | 0.3  | 3             | 20                | <0.3         | <0.3         | <0.3         | <0.3           | <0.3         | <0.3                                                                                            | <0.3          | <0.3          | <0.3                                                      | <0.3         | <0.3           | 0.3                 |
|                                  | Chromium (III+VI)                    | mg/kg          | 0.3  | 3             | 20                | 17           | 18           | 18           | 19             | 17           | 13                                                                                              | 16            | 16            | 16                                                        | 21           | 21             | 18                  |
|                                  | Copper                               | mg/kg          |      | 100           | 1000              | 10           | 10           | 18           | 20             | 7.9          | 12                                                                                              | 6.2           | 6.5           | 9.7                                                       | 11           | 9.9            | 15                  |
|                                  | Lead                                 | mg/kg          | 0.5  | 0*            | 300               | 0            | 7            | 10           | 11             | 7.9<br>E     | 13                                                                                              | 6.2           | 0.0           | 9.7                                                       | 11           | 14             | 16                  |
| Mercury Cold Vapor/Hg Analyser   | Mercury                              | mg/kg          | 0.05 | 1             | 15                | <0.05        | < 0.05       | < 0.05       | < 0.05         | <0.05        | <0.05                                                                                           | <0.05         | < 0.05        | <0.05                                                     | < 0.05       | < 0.05         | <0.05               |
| Mercury Cold Vapor/flg Arialyser | Nickel                               | ma/ka          |      | 60            | 600               | 18           | 19           | 27           | 28             | 17           | 14                                                                                              | 12            | 12            | 20                                                        | 25           | 19             | 23                  |
|                                  | Zinc                                 | ma/ka          |      | 200           | 7000              | 37           | 35           | 60           | 61             | 27           | 58                                                                                              | 19            | 17            | 41                                                        | 46           | 56             | 63                  |
|                                  | ZIIIC                                | mg/kg          | 0.5  | 200           | 7000              | 31           | 33           | 00           | 01             | 21           | 36                                                                                              | 19            | 17            | 41                                                        | 40           | 30             | 03                  |
| Organics                         | pH (Field)                           |                | +    |               |                   |              |              |              |                |              |                                                                                                 |               |               |                                                           | 1            |                | +                   |
| Organics                         | pri (rield)                          |                | +    |               |                   | -            | 1            | -            | -              | -            | +                                                                                               |               |               | -                                                         | 1            | -              | +                   |
| OC Pesticides in Soil            | 2,4-DDT                              | mg/kg          | 0.1  |               |                   | _            | +            | < 0.1        | 1              | -            | <0.1                                                                                            | +-            | +-            | <0.1                                                      | +_           | 1_             | <0.1                |
| OO I CONCINES III OOII           | 4,4-DDE                              | mg/kg          | 0.1  |               |                   |              | 1            | <0.1         | 1              | 1            | <0.1                                                                                            | 1_            | 1_            | <0.1                                                      | 1            |                | <0.1                |
|                                  | a-BHC                                | mg/kg          | 0.1  |               |                   |              | 1            | <0.1         | 1              | 1            | <0.1                                                                                            | 1_            | 1_            | <0.1                                                      | 1            |                | <0.1                |
|                                  | Aldrin                               | mg/kg          | 0.1  |               |                   | -            | 1            | <0.1         | -              | -            | <0.1                                                                                            |               |               | <0.1                                                      | 1            | -              | <0.1                |
|                                  | b-BHC                                | mg/kg          | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            | +             | +             | <0.1                                                      | +            | +              | <0.1                |
|                                  | cis-Chlordane                        | mg/kg          | 0.1  |               |                   | -            | 1            | <0.1         | -              | -            | <0.1                                                                                            |               |               | <0.1                                                      | 1            | -              | <0.1                |
|                                  | d-BHC                                | ma/ka          | 0.1  |               |                   | -            | 1            | <0.1         | -              | -            | <0.1                                                                                            |               |               | <0.1                                                      | 1            | -              | <0.1                |
|                                  | DDD                                  | mg/kg          | 0.1  |               |                   | -            | 1            | <0.1         | -              | -            | <0.1                                                                                            | -             | -             | <0.1                                                      | 1            | -              | <0.1                |
|                                  | DDT                                  | mg/kg          | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | Dieldrin                             | mg/kg          | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | Endosulfan I                         | mg/kg          | 0.1  |               | _                 | -            | +            | <0.1         | +              | +-           | <0.1                                                                                            | +             | -             | <0.1                                                      | +            | +              | <0.1                |
|                                  | Endosulfan II                        |                | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | Endosulfan sulphate                  | mg/kg<br>mg/kg | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | Endrin                               | ma/ka          | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               |                                                           | ļ-           | -              | <0.1                |
|                                  | Endrin aldehvde                      | mg/kg          | 0.1  |               | _                 | -            | 1-           | <0.1         | -              | -            | <0.1                                                                                            | -             | -             | <0.1<br><0.1                                              | -            | -              | <0.1                |
|                                  | Endrin ketone                        | mg/kg          | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | g-BHC (Lindane)                      | mg/kg          | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | Heptachlor                           | mg/kg          | 0.1  |               | 10                | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  |                                      | mg/kg          | 0.1  |               | 10                | -            | -            | <0.1         | -              | -            | <0.1                                                                                            | -             | -             | <0.1                                                      | -            | -              | <0.1                |
|                                  | Heptachlor epoxide Hexachlorobenzene |                | 0.1  |               |                   | -            | -            | <0.1         | <u> </u>       | +            | <0.1                                                                                            | -             | -             | <0.1                                                      | -            | <u> </u>       | <0.1                |
|                                  | Methoxychlor                         | mg/kg<br>ma/ka | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
|                                  | o.p'-DDD                             |                | 0.1  |               |                   | -            | 1-           |              | +              | +-           | <0.1                                                                                            | -             | -             |                                                           | -            | -              | <0.1                |
|                                  | o,p'-DDE                             | mg/kg<br>mg/kg | 0.1  |               |                   | -            | -            | <0.1         | <u> </u>       | +            | <0.1                                                                                            | -             | -             | <0.1                                                      | -            | <u> </u>       | <0.1                |
|                                  | trans-chlordane                      | mg/kg          | 0.1  |               |                   | -            | -            | <0.1         | -              | -            | <0.1                                                                                            | -             | -             | <0.1                                                      | -            | -              | <0.1                |
|                                  | trans-Nonachlor                      |                | 0.1  |               |                   | -            | +            | <0.1         | +              | +            | <0.1                                                                                            |               |               | <0.1                                                      | ļ-           | -              | <0.1                |
| ESDAT Combined Compounds         | Aldrin + Dieldrin                    | mg/kg<br>mg/kg | 0.1  |               | 10                | -            | -            | <0.2         | -              | -            | <0.1                                                                                            | -             | -             | <0.1                                                      | -            | -              | <0.1                |
| ESDAT Combined Compounds         | DDT+DDE+DDD                          | mg/kg          | +    |               | 200               | -            | +            | <0.3         | +              | +-           | <0.3                                                                                            |               |               | <0.2                                                      | ļ-           | -              | <0.2                |
|                                  | DD1+DDE+DDD                          | mg/kg          | +    |               | 200               | -            | +            | VU.3         | +              | +-           | <u.3< td=""><td>+</td><td>-</td><td><b>\0.3</b></td><td>+</td><td>+</td><td>&lt;0.3</td></u.3<> | +             | -             | <b>\0.3</b>                                               | +            | +              | <0.3                |
| OP Pesticides in Soil by GCMS    | Azinophos methyl                     | ma/ka          | 0.2  |               |                   |              |              | < 0.2        |                |              | < 0.2                                                                                           |               |               | <0.2                                                      | 1            |                | < 0.2               |
| OP Pesticides in Soil by GCMS    | Bromophos-ethyl                      | mg/kg<br>mg/kg | 0.2  |               |                   | -            | -            | <0.2         | -              | -            | <0.2                                                                                            | -             | -             | <0.2                                                      | -            | -              | <0.2                |
|                                  | Chlorpyrifos                         | mg/kg          | 0.2  |               |                   | -            | +            | <0.2         | +              | +-           | <0.2                                                                                            |               |               | <0.2                                                      | ļ-           | -              | <0.2                |
|                                  |                                      |                | 0.2  |               |                   | -            | +            | <0.5         | +              | +-           | <0.5                                                                                            |               |               | <0.5                                                      | ļ-           | -              | <0.5                |
|                                  | Diazinon<br>Dichlorvos               | mg/kg<br>mg/kg | 0.5  |               |                   | -            | +            | <0.5         | +              | +            | <0.5                                                                                            | +             | +             | <0.5                                                      | +            | <del></del>    | ~U.D                |
|                                  | Direthoate                           |                | +    |               |                   | -            | +            | <1           | +              | +            | <1                                                                                              | +             | +             | >1                                                        | +            | <del></del>    | -1                  |
|                                  | Ethion                               | mg/kg<br>ma/ka | 0.2  |               |                   | -            | 1-           | <0.2         | +              | +-           | <0.2                                                                                            |               |               | ~ n 2                                                     | +            | +-             | <0.2                |
|                                  |                                      |                |      |               |                   | -            | +            | <0.2         | +              | +            | <0.2                                                                                            | +             | +             | <0.2                                                      | +-           | +              | <0.2                |
|                                  | Fenitrothion<br>Malathian            | mg/kg          | 0.2  |               |                   | -            | 1-           |              | -              | +            |                                                                                                 | <del> -</del> | <del> -</del> |                                                           | +            | -              | <0.2                |
|                                  | Malathion                            | mg/kg          | 0.2  |               |                   | -            | 1-           | <0.2         | +              | 1-           | <0.2                                                                                            | 1-            | -             | <0.2                                                      | 1-           | 1-             | <u.z< td=""></u.z<> |
|                                  | Methidathion                         | mg/kg          | 0.5  |               |                   | -            | 1-           | <0.5         | +              | 1-           | <0.5                                                                                            | 1-            | -             | <u.5< td=""><td>1-</td><td>1-</td><td>&lt;0.5</td></u.5<> | 1-           | 1-             | <0.5                |
|                                  | Parathion                            | mg/kg          | 0.2  |               |                   | -            | -            | <0.2         | 1-             | 1-           | <0.2                                                                                            | 1-            | ]-            | <0.2                                                      | 1-           | 1-             | <0.2                |

Notes

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence

Italics = HILA exceedence



|                                |                                  |                |      |               | Field ID          | MS1-10 0.5-0 | 0.6 MS1-11 0.0-0 | 0.2 MS1-11 0.5-0 | .6 MS1-11 0.9-1 | .0 MS1-12 0.0-0 | .2 MS1-12 0.5-0.                                 | 6 MS1-13 0.0-0 | .2 MS1-13 0.5-0 | .6 MS1-14 0.0-0 | 0.2 MS1-14 0.5-0 | 0.6 MS1-15 0.0-0 | .2 MS1-15 0.5-0 | 0.6 MS1-16 0.0-0.2 |
|--------------------------------|----------------------------------|----------------|------|---------------|-------------------|--------------|------------------|------------------|-----------------|-----------------|--------------------------------------------------|----------------|-----------------|-----------------|------------------|------------------|-----------------|--------------------|
|                                |                                  |                |      |               | Sampled Date-Time | 30/07/2009   | 30/07/2009       | 30/07/2009       | 30/07/2009      | 30/07/2009      | 30/07/2009                                       | 30/07/2009     | 30/07/2009      | 30/07/2009      | 30/07/2009       | 30/07/2009       | 30/07/2009      | 30/07/2009         |
|                                |                                  |                |      |               | SampleComments    | Mine Site 1  | Mine Site 1      | Mine Site 1      | Mine Site 1     | Mine Site 1     | Mine Site 1                                      | Mine Site 1    | Mine Site 1     | Mine Site 1     | Mine Site 1      | Mine Site 1      | Mine Site 1     | Mine Site 1        |
|                                | To:                              | Tree to        | I    |               |                   |              |                  |                  |                 |                 |                                                  |                |                 |                 |                  |                  |                 |                    |
| Method_Type                    | ChemName                         | Units          | _    | NEPM 1999 EIL | NEPM 1999 HIL A   |              | 1.0              | 10               | 1               | 10              | 10                                               | 10             |                 |                 | _                |                  | La              | -                  |
| Metals in Soil by ICP-OES      | Arsenic                          | mg/kg          | 3    | 20            | 100               | 11           | 10               | 9                | 11              | 6               | 6                                                | 6              | 6               | 8               | 7                | 6                | 10              | 8                  |
|                                | Cadmium                          | mg/kg          | 0.3  | 3             | 20                | 0.4          | 0.4              | 0.3              | 0.5             | 0.3             | 0.3                                              | 0.3            | <0.3            | 0.5             | 0.4              | <0.3             | <0.3            | 0.4                |
|                                | Chromium (III+VI)                | mg/kg          | 0.3  |               |                   | 23           | 24               | 21               | 31              | 22              | 21                                               | 20             | 20              | 20              | 28               | 17               | 22              | 25                 |
|                                | Copper                           | mg/kg          | 0.5  | 100           | 1000              | 31           | 21               | 20               | 19              | 14              | 15                                               | 32             | 50              | 15              | 27               | 21               | 26              | 25                 |
|                                | Lead                             | mg/kg          | 1    | 0*            | 300               | 11           | 20               | 22               | 17              | 9               | 6                                                | 13             | 13              | 21              | 15               | 13               | 10              | 11                 |
| Mercury Cold Vapor/Hg Analyser | Mercury                          | mg/kg          | 0.05 |               | 15                | <0.05        | <0.05            | <0.05            | <0.05           | <0.05           | <0.05                                            | <0.05          | <0.05           | <0.05           | <0.05            | <0.05            | <0.05           | <0.05              |
|                                | Nickel                           | mg/kg          |      | 60            | 600               | 19           | 32               | 29               | 19              | 26              | 25                                               | 25             | 25              | 33              | 19               | 16               | 21              | 27                 |
|                                | Zinc                             | mg/kg          | 0.5  | 200           | 7000              | 45           | 80               | 87               | 51              | 55              | 51                                               | 62             | 51              | 150             | 62               | 52               | 53              | 60                 |
| Organics                       | pH (Field)                       |                |      |               |                   | _            | +_               | 6.1              | +               |                 |                                                  | 1_             | +               | 6.2             | +                | _                | +               | 6.1                |
| Organics                       | pri (ricia)                      |                | 1    |               |                   |              |                  | 0.1              |                 |                 |                                                  |                | -               | 0.2             |                  |                  |                 | 0.1                |
| OC Pesticides in Soil          | 2,4-DDT                          | mg/kg          | 0.1  |               |                   | -            | -                | -                |                 | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | 4,4-DDE                          | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | a-BHC                            | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | Aldrin                           | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | 1-                                               | -              | -               | -               | -                | -                | -               | -                  |
|                                | b-BHC                            | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | T-                 |
|                                | cis-Chlordane                    | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | T-                 |
|                                | d-BHC                            | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | _                | 1-               | -               | 7-                 |
|                                | DDD                              | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | _               | -               | -                | -                | -               | T-                 |
|                                | DDT                              | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | 1-              | <b>—</b>           |
|                                | Dieldrin                         | mg/kg          | 0.1  |               |                   | _            | 1.               | -                | 1-              | 1.              | 1.                                               | -              | -               | -               | 1.               | -                | -               | T-                 |
|                                | Endosulfan I                     | mg/kg          | 0.1  |               |                   | _            | 1_               | 1_               | 1_              | 1_              | 1_                                               | 1_             | 1_              | 1_              | 1.               | 1_               | 1_              | <del></del>        |
|                                | Endosulfan II                    | mg/kg          | 0.1  |               |                   |              |                  |                  | _               |                 |                                                  |                |                 |                 |                  |                  | _               | +                  |
|                                | Endosulfan sulphate              | mg/kg          | 0.1  |               |                   | _            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | _                |                 | +                  |
|                                | Endrin                           | mg/kg          | 0.1  |               |                   | _            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | _                |                 | +                  |
|                                |                                  | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | +-                                               | -              | -               | -               | -                | -                | -               | <del>-  </del>     |
|                                | Endrin aldehyde<br>Endrin ketone |                | 0.1  |               |                   | -            | <u> </u>         | -                | -               | +               | +                                                | -              | -               | -               | <u> </u>         | -                | -               | <del></del>        |
|                                | g-BHC (Lindane)                  | mg/kg<br>mg/kg | 0.1  |               |                   | -            | <u> </u>         | -                | -               | +               | +                                                | -              | -               | -               | <u> </u>         | -                | -               | +                  |
|                                |                                  |                |      |               | 10                | -            | <u> </u>         | -                | -               | +               | +                                                | -              | -               | -               | <u> </u>         | -                | -               | +                  |
|                                | Heptachlor                       | mg/kg          | 0.1  |               | 10                | -            | -                | -                | -               | -               | -                                                | -              | -               | -               |                  | -                | -               | _ <del> </del>     |
|                                | Heptachlor epoxide               | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               |                  | -                | -               | _ <del> </del>     |
|                                | Hexachlorobenzene                | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | _ -                |
|                                | Methoxychlor                     | mg/kg          | 0.1  |               |                   | -            |                  | -                |                 | -               |                                                  | <u> -</u>      | -               |                 |                  |                  | -               |                    |
|                                | o,p'-DDD                         | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | o,p'-DDE                         | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               |                 | 1-                                               | 1-             | 1-              | 1-              | -                | -                | -               | <del> -</del>      |
|                                | trans-chlordane                  | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               |                 | 1-                                               | 1-             | 1-              | 1-              | -                | -                | -               | <del> -</del>      |
|                                | trans-Nonachlor                  | mg/kg          | 0.1  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
| ESDAT Combined Compounds       | Aldrin + Dieldrin                | mg/kg          |      |               | 10                | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | DDT+DDE+DDD                      | mg/kg          |      |               | 200               | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                |                                  |                |      |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
| OP Pesticides in Soil by GCMS  | Azinophos methyl                 | mg/kg          | 0.2  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
| •                              | Bromophos-ethyl                  | mg/kg          | 0.2  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | Chlorpyrifos                     | mg/kg          | 0.2  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | Diazinon                         | mg/kg          | 0.5  |               |                   | -            | -                | -                | -               | -               | -                                                | -              | -               | -               | -                | -                | -               | -                  |
|                                | Dichlorvos                       | mg/kg          | 1    |               |                   | -            | -                | 1-               | -               | 1-              | 1-                                               | 1-             | 1-              | 1-              | -                | -                | -               | <b>-</b>           |
|                                | Dimethoate                       | mg/kg          | 1    |               |                   | -            | -                | 1-               | -               | 1-              | 1-                                               | 1-             | 1-              | 1-              | -                | -                | -               | <b>1</b> -         |
|                                | Ethion                           | mg/kg          | 0.2  |               |                   | -            | 1-               | 1-               | -               | 1-              | 1-                                               | 1-             | 1-              | 1-              | 1-               | 1-               | 1-              | 1-                 |
|                                | Fenitrothion                     | mg/kg          | 0.2  |               |                   | -            | 1_               | 1-               | 1-              | 1-              | 1-                                               | 1-             | 1-              | 1-              | 1-               | 1-               | 1-              | T-                 |
|                                | Malathion                        | mg/kg          | 0.2  |               |                   | -            | 1-               | 1-               | 1-              | 1-              | 1-                                               | 1-             | 1-              | 1-              | 1-               | 1-               | 1-              | <del> </del> -     |
|                                | Methidathion                     | mg/kg          | 0.5  |               |                   | -            | -t               | <b>-</b> 1-      | 1_              | <b>+</b> -      | <del>                                     </del> | 1-             | <del> </del> -  | +               | -t               | -t               | 1-              | <del></del>        |
|                                | Parathion                        | mg/kg          | 0.2  |               |                   |              | +                | +                | +               | +               | +                                                | +              | +               | +               | +                | +                |                 | +                  |

Notes

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence

Italics = HILA exceedence



| r                              |                     |       |      |               | Field ID                            | MS1 16 0 5 0 6 | MS1-2 0.0-0.2 | MS12 0506     | MS13 0002     | MS1 3 0 5 0 6 | MS1 4 0 0 0 2 | MS1 / 0506    | MS1 5 0 0 0 1 | MS1-5 0.5-0.6 | MS1-6 0.0-0.2 | MS1-6 0.5-0.6 | MS1-7 0.0-0.2                                  | MS1-7 0.5-0.6  |
|--------------------------------|---------------------|-------|------|---------------|-------------------------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------------------------------------------------|----------------|
|                                |                     |       |      |               |                                     | 30/07/2009     | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009    | 30/07/2009                                     | 30/07/2009     |
|                                |                     |       |      |               | Sampled_Date-Time<br>SampleComments | Mine Site 1    | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1   | Mine Site 1                                    | Mine Site 1    |
|                                |                     |       |      |               | SampleComments                      | Willie Site I  | Willie Site I | Willie Site 1 | Willie Site 1 | Willie Site I | Willie Site 1 | Willie Site 1 | Willie Site 1 | IVIII OILE I  | Willie Site I | Willie Site I | Willie Site 1                                  | IVIII e Site i |
| Method Type                    | ChemName            | Units | EQL  | NEPM 1999 EIL | NEPM 1999 HIL A                     |                | ı             |               | ı             | 1             | 1             | 1             | 1             | ı             | 1             | ı             | ı                                              |                |
| Metals in Soil by ICP-OES      | Arsenic             | mg/kg | 3    | 20            | 100                                 | 7              | 10            | 9             | 12            | 12            | 4             | <3            | 4             | 5             | 6             | 9             | 11                                             | 8              |
| •                              | Cadmium             | mg/kg | 0.3  | 3             | 20                                  | 0.3            | 0.3           | 0.3           | 0.3           | 0.3           | 0.4           | 0.3           | 0.3           | 0.3           | 0.4           | 0.4           | 0.9                                            | 0.5            |
|                                | Chromium (III+VI)   | mg/kg | 0.3  |               |                                     | 22             | 22            | 21            | 24            | 25            | 18            | 21            | 18            | 18            | 17            | 19            | 20                                             | 18             |
|                                | Copper              | mg/kg | 0.5  | 100           | 1000                                | 22             | 19            | 27            | 9.1           | 8.1           | 14            | 16            | 13            | 17            | 11            | 23            | 14                                             | 14             |
|                                | Lead                | mg/kg | 1    | 0*            | 300                                 | 11             | 4             | 4             | 7             | 6             | 20            | 12            | 17            | 7             | 42            | 27            | 28                                             | 19             |
| Mercury Cold Vapor/Hg Analyser | Mercury             | mg/kg | 0.05 | 1             | 15                                  | <0.05          | <0.05         | <0.05         | <0.05         | <0.05         | < 0.05        | <0.05         | < 0.05        | <0.05         | <0.05         | <0.05         | <0.05                                          | <0.05          |
|                                | Nickel              | mg/kg |      | 60            | 600                                 | 27             | 39            | 34            | 28            | 38            | 25            | 23            | 26            | 24            | 32            | 57            | 28                                             | 27             |
|                                | Zinc                | mg/kg |      | 200           | 7000                                | 62             | 40            | 30            | 37            | 41            | 71            | 47            | 69            | 46            | 120           | 84            | 220                                            | 210            |
|                                | Zino                | mg/kg | 0.0  | 200           | 7000                                | U.E.           | 10            | 00            | 01            | 71            | -             | 77            | 00            | 10            | 120           | 0-7           | 220                                            | 110            |
| Organics                       | pH (Field)          | _     | 1    |               |                                     | _              | _             | _             | 1_            | <u> </u>      | 6.8           | -             | 1_            | 1_            | _             | l_            | 1_                                             | 6.3            |
| o iganio o                     | pri (riola)         | -     |      |               |                                     |                |               |               |               |               | 0.0           |               |               |               |               |               |                                                | -0.0           |
| OC Pesticides in Soil          | 2,4-DDT             | mg/kg | 0.1  |               |                                     | _              | l_            | t             | 1_            | t             | 1_            | 1             | 1_            | 1_            | 1_            | l_            | l_                                             | +              |
| COT COLICIOS III COII          | 4,4-DDE             | mg/kg | 0.1  |               |                                     |                | _             |               | 1_            | 1             | 1             | 1             | 1             | 1             | [_            | -<br> -       | -<br> -                                        | +              |
| <u> </u>                       | a-BHC               | mg/kg | 0.1  |               |                                     |                | † <u>-</u>    | _             | 1             | 1_            | 1             | 1             | 1             | 1             | l-            | t_            | 1_                                             | +              |
| <u> </u>                       | Aldrin              | mg/kg | 0.1  |               |                                     | _              | f -           | -             | +             | -             | 1             | +             | +             | -             | 1             | ļ -           | f -                                            | +              |
|                                | b-BHC               | mg/kg | 0.1  |               |                                     | -              | -             | -             | ļ-            | -             | -             | +             | +             | +             | -             | -             | -                                              | +              |
|                                | cis-Chlordane       | mg/kg | 0.1  |               |                                     | -              | -             | -             | ļ-            | -             | -             | +             | +             | +             | -             | -             | -                                              | +              |
|                                | d-BHC               | mg/kg | 0.1  |               |                                     | -              | -             | -             | ļ-            | -             | -             | +             | +             | +             | -             | -             | -                                              | +              |
|                                | DDD<br>a-BHC        |       |      |               |                                     | -              | -             | -             | -             | -             | -             | +             | 1-            | -             | -             | -             | -                                              | +              |
|                                |                     | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | DDT                 | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | Dieldrin            | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | ļ-            | ļ-            | -             | -             | -             | -                                              | <u> </u>       |
|                                | Endosulfan I        | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | <u>-</u>       |
|                                | Endosulfan II       | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             |               | -             | -             | -                                              |                |
|                                | Endosulfan sulphate | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             |               | -             | -             | -                                              |                |
|                                | Endrin              | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             |               | <u> </u> -    |               | -             | -             | -                                              | <u> </u>       |
|                                | Endrin aldehyde     | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | Endrin ketone       | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | g-BHC (Lindane)     | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | Heptachlor          | mg/kg | 0.1  |               | 10                                  | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | Heptachlor epoxide  | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | Hexachlorobenzene   | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | Methoxychlor        | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | o,p'-DDD            | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | o,p'-DDE            | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | trans-chlordane     | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | ]-            | -             | -             | -             | -             | -                                              | -              |
|                                | trans-Nonachlor     | mg/kg | 0.1  |               |                                     | -              | -             | -             | -             | -             | -             | 1-            | -             | -             | -             | -             | -                                              | -              |
| ESDAT Combined Compounds       | Aldrin + Dieldrin   | mg/kg |      |               | 10                                  | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                | DDT+DDE+DDD         | mg/kg |      |               | 200                                 | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
|                                |                     |       |      |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
| OP Pesticides in Soil by GCMS  | Azinophos methyl    | mg/kg | 0.2  |               |                                     | -              | -             | -             | -             | -             | -             | -             | -             | -             | -             | -             | -                                              | -              |
| •                              | Bromophos-ethyl     | mg/kg | 0.2  |               |                                     | -              | -             | -             | -             | -             | 1-            | 1-            | -             | -             | -             | -             | -                                              | 1-             |
|                                | Chlorpyrifos        | mg/kg | 0.2  |               |                                     | -              | -             | -             | -             | -             | 1-            | 1-            | -             | -             | -             | -             | -                                              | 1-             |
|                                | Diazinon            | mg/kg | 0.5  |               |                                     | -              | -             | -             | -             | -             | 1-            | 1-            | -             | -             | -             | -             | -                                              | 1-             |
|                                | Dichlorvos          | mg/kg | 1    |               |                                     | -              | -             | -             | -             | 1-            | 1-            | 1-            | 1-            | -             | -             | -             | -                                              | 1-             |
|                                | Dimethoate          | mg/kg | 1    |               |                                     | -              | -             | -             | -             | 1-            | 1-            | 1-            | 1-            | -             | -             | -             | -                                              | 1-             |
|                                | Ethion              | mg/kg | 0.2  |               |                                     | -              | 1-            | -             | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | -             | -                                              | 1-             |
|                                | Fenitrothion        | mg/kg | 0.2  |               |                                     | -              | 1-            | -             | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | -             | -                                              | 1-             |
|                                | Malathion           | mg/kg | 0.2  |               |                                     | -              | 1_            | -             | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | 1-            | 1_                                             | †-             |
|                                | Methidathion        | mg/kg | 0.5  |               |                                     | -              | t <u>.</u>    | -             | 1.            | t. —          | t.            | 1.            | +             | +-            | 1-            | t <u>.</u>    | t <u>.                                    </u> | +              |
|                                | Parathion           | mg/kg | 0.2  |               |                                     | _              | t             | -             | +_            | t             | t             | 1             | +             | 1_            | 1_            | t             | t                                              | +              |
| L                              | i diddilon          | mg/kg | U.Z  |               |                                     | _              | 1-            |               | 1-            | 1-            | 1             | 1-            | 1-            | 1-            | I -           | 1-            | 1-                                             | .1-            |

Notes

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence

Italics = HILA exceedence



|                                |                     |                |                                                  |               | T==               |             |             |               |             |               |             |                                                |             |
|--------------------------------|---------------------|----------------|--------------------------------------------------|---------------|-------------------|-------------|-------------|---------------|-------------|---------------|-------------|------------------------------------------------|-------------|
|                                |                     |                |                                                  |               | Field_ID          |             |             | MS1-8_0.0-0.2 |             | MS1-9_0.0-0.2 |             |                                                | MS1SP3      |
|                                |                     |                |                                                  |               | Sampled_Date-Time | 30/07/2009  | 30/07/2009  | 30/07/2009    | 30/07/2009  | 30/07/2009    | 30/07/2009  | 13/08/2009                                     | 13/08/2009  |
|                                |                     |                |                                                  |               | SampleComments    | Mine Site 1 | Mine Site 1 | Mine Site 1   | Mine Site 1 | Mine Site 1   | Mine Site 1 | Mine Site 1                                    | Mine Site 1 |
| Method_Type                    | ChemName            | Units          | EQL                                              | NEPM 1999 EIL | NEPM 1999 HIL A   |             | 1           | l             |             |               |             |                                                | l           |
| Metals in Soil by ICP-OES      | Arsenic             | mg/kg          | 2                                                | 20            | 100               | 11          | 8           | lo.           | 7           | lg .          | 17          | 10                                             | 10          |
| ivietals iii 30ii by ICF-CE3   | Cadmium             |                | 0.3                                              | 20            | 20                | 0.4         | 0.3         | 0.5           | 0.4         | <0.3          | <0.3        | 0.4                                            | 0.4         |
|                                |                     | mg/kg          | 0.3                                              | 3             | 20                | 25          | 20          |               | 29          | 20            | 17          | 20                                             | 23          |
|                                | Chromium (III+VI)   | mg/kg          |                                                  | 100           | 1000              |             |             |               |             |               |             |                                                |             |
|                                | Copper              | mg/kg          | 0.5                                              | 100           | 1000              | 16          | 12          |               | 14          | 20            | 19          | 14                                             | 25          |
|                                | Lead                | mg/kg          | 1                                                | 0*            | 300               | 12          | 6           |               | 32          | /             | 9           | 23                                             | 8           |
| Mercury Cold Vapor/Hg Analyser | Mercury             | mg/kg          | 0.05                                             | 1             | 15                | <0.05       | <0.05       |               | 0.05        | <0.05         | <0.05       | <0.05                                          | <0.05       |
|                                | Nickel              | mg/kg          | 0.5                                              | 60            | 600               | 30          | 33          |               | 34          | 34            | 31          | 39                                             | 33          |
|                                | Zinc                | mg/kg          | 0.5                                              | 200           | 7000              | 80          | 55          | 90            | 81          | 52            | 52          | 59                                             | 60          |
|                                |                     |                |                                                  |               |                   |             |             |               |             |               |             |                                                |             |
| Organics                       | pH (Field)          |                |                                                  |               |                   | -           | 6.7         | -             | -           | 6.9           | -           | -                                              | -           |
|                                |                     |                |                                                  |               |                   |             |             |               |             |               |             |                                                |             |
| OC Pesticides in Soil          | 2,4-DDT             | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | 4,4-DDE             | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | a-BHC               | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Aldrin              | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           |               |             | -                                              | -           |
|                                | b-BHC               | mg/kg          | 0.1                                              |               |                   | -           | -           | 1-            | -           | -             | -           | 1-                                             | 1-          |
|                                | cis-Chlordane       | mg/kg          | 0.1                                              |               |                   | i           | -           | 1.            | -           | -             | -           | 1_                                             | 1_          |
|                                | d-BHC               | mg/kg          | 0.1                                              |               |                   |             |             |               |             |               |             |                                                |             |
|                                | DDD                 | mg/kg          | 0.1                                              |               |                   | -           | -           | -             |             |               | -           | ļ -                                            | l -         |
|                                | DDT                 |                | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | ļ-          |
|                                | Dieldrin            | mg/kg<br>mg/kg | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                |                     |                |                                                  |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Endosulfan I        | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Endosulfan II       | mg/kg          | 0.1                                              |               |                   | <u>-</u>    | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Endosulfan sulphate | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Endrin              | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Endrin aldehyde     | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Endrin ketone       | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | g-BHC (Lindane)     | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Heptachlor          | mg/kg          | 0.1                                              |               | 10                | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Heptachlor epoxide  | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Hexachlorobenzene   | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Methoxychlor        | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | _           | -                                              | -           |
|                                | o,p'-DDD            | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | o,p'-DDE            | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | _             | _           | -                                              | -           |
|                                | trans-chlordane     | mg/kg          | 0.1                                              |               |                   | -           | -           | -             | -           | -             | _           | -                                              | -           |
|                                | trans-Nonachlor     | mg/kg          | 0.1                                              |               |                   | 1.          | -           | 1-            | -           | l <u>.</u>    | t <u>.</u>  | i                                              | 1.          |
| ESDAT Combined Compounds       | Aldrin + Dieldrin   | mg/kg          | J. 1                                             |               | 10                | l           | -           | 1-            | -           | -             | l           | t <u>.                                    </u> | l-          |
| 2007 1. Sombined Compodition   | DDT+DDE+DDD         | mg/kg          | <del>                                     </del> |               | 200               | l _         | 1_          | 1_            | _           | <u> </u>      | <u> </u>    | t                                              | t           |
|                                | DDTTDDLTDDD         | ilig/kg        | 1                                                |               | 200               | -           | -           | 1-            | -           | -             | -           | f -                                            | -           |
| OP Pesticides in Soil by GCMS  | Azinanhaa mathul    | pog/kg         | 0.2                                              |               |                   | -           | -           | -             | -           | -             | -           | † -                                            | -           |
| OP Pesticides in Soil by GCMS  | Azinophos methyl    | mg/kg          |                                                  |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Bromophos-ethyl     | mg/kg          | 0.2                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Chlorpyrifos        | mg/kg          | 0.2                                              |               |                   | -           | -           | -             | -           | -             | -           | ļ-                                             | -           |
|                                | Diazinon            | mg/kg          | 0.5                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Dichlorvos          | mg/kg          | 1                                                |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Dimethoate          | mg/kg          | 1                                                |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Ethion              | mg/kg          | 0.2                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Fenitrothion        | mg/kg          | 0.2                                              |               |                   | -           | -           | -             | -           | -             | <u> </u>    | -                                              | -           |
|                                | Malathion           | mg/kg          | 0.2                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Methidathion        | mg/kg          | 0.5                                              |               |                   | -           | -           | -             | -           | -             | -           | -                                              | -           |
|                                | Parathion           | mg/kg          | 0.2                                              |               |                   |             |             | İ             |             |               |             |                                                |             |

### Notes

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence Italics = HILA exceedence



| S | ample # and Depth | OS02_0.0-0.2 | OS03_0.0-0.2 | OS04_0.0-0.2 | OS06_0.0-0.2 | RE01_0.0-0.2 | RE03_0.0-0.2 | RE04_0.0-0.2 | RE09_0.0-0.2 | RE12_0.0-0.2 |
|---|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| S | ampled_Date-Time  | 28/07/2009   | 24/07/2009   | 24/07/2009   | 24/07/2009   | 28/07/2009   | 28/07/2009   | 28/07/2009   | 28/07/2009   | 27/07/2009   |
| Α | rea               | Open Space   | Open Space   | Open Space   | Open Space   | Residential  | Residential  | Residential  | Residential  | Residential  |

| Method_Type                      | ChemName            | Units | FOI  | NEPM 1999 EIL | NEPM 1999 HIL A |       |       |       |        |       |       |       |        |       |
|----------------------------------|---------------------|-------|------|---------------|-----------------|-------|-------|-------|--------|-------|-------|-------|--------|-------|
| Metals in Soil by ICP-OES        | Arsenic             | mg/kg |      | 20            | 100             | 3     | 6     | 3     | q      | 8     | 5     | 4     | 4      | 4     |
| Modale in compy for old          | Cadmium             | mg/kg |      | 3             | 20              | <0.3  | 0.4   | 0.91  | <0.3   | 0.4   | < 0.3 | 0.4   | <0.3   | 0.3   |
|                                  | Chromium (III+VI)   | mg/kg |      |               |                 | 14    | 25    | 37    | 21     | 28    | 18    | 16    | 17     | 17    |
|                                  | Copper              | mg/kg | 0.5  | 100           | 1000            | 5.5   |       | 8.6   | 30     | 13    | 10    | 15    | 11     | 16    |
|                                  | Lead                | mg/kg | 1    | 0*            | 300             | 18    | 7     | 11    | 130    | 68    | 30    | 20    | 25     | 13    |
| Mercury Cold Vapor/Hg Analyser   | Mercury             | mg/kg | 0.05 | 1             | 15              | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 | <0.05 | <0.05 | < 0.05 | <0.05 |
| Wichelly Cold Vapolinig Analysei | Nickel              | mg/kg | 0.5  | 60            | 600             | 14    | 23    | 15    | 24     | 20    | 17    | 26    | 11     | 28    |
|                                  | Zinc                | mg/kg |      | 200           | 7000            | 51    | 34    | 36    | 56     | 170   | 65    | 66    | 60     | 78    |
|                                  | ZIIIO               | mg/kg | 0.0  | 200           | 7000            | 01    | 04    | 50    | 50     | 170   | 00    | 00    | 00     | 70    |
| OC Pesticides in Soil            | 2.4-DDT             | mg/kg | 0.1  |               |                 |       | -     | -     | <0.1   | -     | -     | -     | -      | <0.1  |
|                                  | 4,4-DDE             | mg/kg | 0.1  |               |                 |       |       | -     | <0.1   | -     |       |       | -      | <0.1  |
|                                  | a-BHC               | mg/kg |      |               |                 | -     | -     | -     | <0.1   | -     | -     | -     | -      | <0.1  |
|                                  | Aldrin              | mg/kg | 0.1  |               |                 | -     | -     | -     | <0.1   | -     |       | -     | -      | <0.1  |
|                                  | b-BHC               | mg/kg | 0.1  |               |                 |       |       | -     | < 0.1  | -     |       |       | -      | <0.1  |
|                                  | cis-Chlordane       | mg/kg | 0.1  |               |                 | -     | -     | -     | <0.1   | -     | -     | -     | -      | <0.1  |
|                                  | d-BHC               | mg/kg | 0.1  |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | DDD                 | mg/kg | 0.1  |               |                 |       |       | -     | <0.1   | -     |       |       | -      | <0.1  |
|                                  | DDT                 | mg/kg |      |               |                 |       |       | -     | <0.1   | -     |       |       | -      | <0.1  |
|                                  | Dieldrin            | mg/kg | 0.1  |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Endosulfan I        | mg/kg | 0.1  |               |                 |       |       | -     | <0.1   | -     |       |       | -      | <0.1  |
|                                  | Endosulfan II       | mg/kg | 0.1  |               |                 |       |       | -     | <0.1   | -     |       |       | -      | <0.1  |
|                                  | Endosulfan sulphate | mg/kg | 0.1  |               |                 | l _   | _     | _     | <0.1   | _     | _     | _     | _      | <0.1  |
|                                  | Endrin              | mg/kg |      |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Endrin aldehyde     | mg/kg | 0.1  |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Endrin ketone       | mg/kg | 0.1  |               |                 | l _   | _     | _     | <0.1   | _     | _     | _     | _      | <0.1  |
|                                  | g-BHC (Lindane)     | mg/kg |      |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Heptachlor          | ma/ka |      |               | 10              |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Heptachlor epoxide  | mg/kg |      |               | 70              |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Hexachlorobenzene   | mg/kg |      |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | Methoxychlor        | mg/kg |      |               |                 | l _   | _     | _     | <0.1   | _     | _     | _     | _      | <0.1  |
|                                  | o,p'-DDD            | mg/kg |      |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | o.p'-DDE            | mg/kg |      |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
|                                  | trans-chlordane     | mg/kg |      |               |                 | l _   | _     | _     | <0.1   | _     | _     | _     | _      | <0.1  |
|                                  | trans-Nonachlor     | mg/kg |      |               |                 |       |       |       | <0.1   |       |       |       |        | <0.1  |
| ESDAT Combined Compounds         | Aldrin + Dieldrin   | mg/kg | 0.1  |               | 10              |       |       | -     | <0.2   | -     |       |       | -      | <0.2  |
| EGD/TT COMBINED COMPOSITO        | DDT+DDE+DDD         | mg/kg | +    |               | 200             | l _   | _     | _     | <0.3   | _     | _     | _     | _      | <0.3  |
|                                  | 00110021000         | mgmg  |      |               | 200             |       |       |       | 10.0   |       |       |       |        | .0.0  |
| OP Pesticides in Soil by GCMS    | Azinophos methyl    | mg/kg | 0.2  |               |                 | l _   | _     | _     | < 0.2  | _     | _     | _     | _      | <0.2  |
| Of 1 caticides in con by cowo    | Bromophos-ethyl     | mg/kg |      |               |                 |       |       |       | < 0.2  |       |       |       |        | < 0.2 |
|                                  | Chlorpyrifos        | mg/kg |      |               |                 |       |       |       | <0.2   |       |       |       |        | <0.2  |
|                                  | Diazinon            | mg/kg | 0.5  |               |                 | l _   | _     | _     | <0.5   | _     | _     | _     | _      | <0.5  |
|                                  | Dichlorvos          | mg/kg |      |               |                 | l     | 1.    |       | <1     | 1.    | 1.    | 1.    |        | <1    |
|                                  | Dimethoate          | mg/kg |      |               |                 | l     | 1.    |       | <1     | 1.    | 1.    | 1.    |        | <1    |
|                                  | Ethion              | mg/kg |      |               |                 | l     |       |       | <0.2   | 1.    | 1.    |       |        | <0.2  |
|                                  | Fenitrothion        | mg/kg |      |               |                 | [     |       |       | < 0.2  | 10    | 1     |       |        | <0.2  |
|                                  | Malathion           | mg/kg |      |               |                 | l     | 1.    |       | <0.2   | 1.    | 1.    | 1.    |        | <0.2  |
|                                  | Methidathion        |       |      |               |                 | l     | 1_    | -     | <0.5   | 1.    | 1.    | 1_    | -      | <0.5  |
|                                  | Parathion           | mg/kg |      |               |                 | 1     | 1     |       | <0.2   | 1     | 1     | 1     |        | <0.2  |
|                                  | p araunon           | my/kg | U.Z  |               |                 | -     | 1 -   | 1 -   | ~V.Z   | 1 -   | 1-    | 1 -   | 1 -    | 70.4  |

Notes:

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence Italics = HILA exceedence
-' indicates Not Analysed



| Sample # and Depth | OS01_0.0-0.2 | OS09_0.0-0.2 | OS11_0.0-0.2 | OS12_0.0-0.2 | RE07_0.0-0.2 | RE08_0.0-0.2 | RE11_0.0-0.2 | RE16_0.0-0.2 | RE17_0.0-0.2 | RE18_0.0-0.2 | RE21_0.0-0.2 | RE23_0.0-0.2 | RE27_0.0-0.2 |
|--------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Sampled_Date-Time  | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   | 27/07/2009   |
| Area               | Open Space   | Open Space   | Open Space   | Open Space   | Residential  |

| Method_Type                       | ChemName            | Units | FOI  | NEPM 1999 EIL | NEPM 1999 HIL A |        |       |       |           |       |        |       |        |        |        |        |                |        |
|-----------------------------------|---------------------|-------|------|---------------|-----------------|--------|-------|-------|-----------|-------|--------|-------|--------|--------|--------|--------|----------------|--------|
| Metals in Soil by ICP-OES         | Arsenic             | ma/ka | 3    | 20            | 100             | 12     | 5     | <3    | <b>~3</b> | 7     | 7      | <3    | 3      | -3     | 10     | -3     | -3             | -3     |
| Wetais III Soli by ICI -OLS       | Cadmium             | mg/kg | 0.3  |               | 20              | 0.3    | 0.5   | <0.3  | <0.3      | <0.3  | <0.3   | <0.3  | <0.3   |        | 2.1    | <0.3   | <0.3           | <0.3   |
|                                   | Chromium (III+VI)   | ma/ka |      | 3             | 20              | 18     | 21    | 20    | 14        |       | 20     | 18    | 17     |        | 19     | 14     | 23             | 21     |
|                                   | Copper              | mg/kg |      | 100           | 1000            | 12     | 14    | 6.4   | 9.8       |       |        | 7.3   | 14     |        | 16     | 8.1    | 15             | 7.5    |
|                                   | Lead                | mg/kg |      | 600           | 300             | 26     | 24    | 13    | 11        |       | 34     | 7.3   | 20     |        | 280    | 12     | 54             | 9.6    |
| Mercury Cold Vapor/Hg Analyser    | Mercury             |       | 0.05 | 4             | 15              | < 0.05 | <0.05 | <0.05 | <0.05     | <0.05 | < 0.05 | <0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05         | <0.05  |
| iviercury Cold Vapor/ng Arialyser | Nickel              | mg/kg |      | 1             | 600             | 21     | 23    | 12    | 13        |       |        | 9.7   | 18     |        | 18     | 8.7    | 16             | 14     |
|                                   | Zinc                | mg/kg |      |               | 7000            | 84     |       | 43    |           |       |        | 36    | 62     |        | 1100   | 40     | 69             | 48     |
|                                   | ZINC                | mg/kg | 0.5  | 200           | 7000            | 04     | 120   | 43    | 20        | 20    | 52     | 30    | 02     | 52     | 1100   | 40     | 09             | 46     |
| OC Pesticides in Soil             | 2,4-DDT             | mg/kg | 0.1  |               |                 | <0.1   |       |       | -         |       |        |       | <0.1   | <0.1   |        |        | 1              | <0.1   |
| OC Pesticides in Soil             | 4.4-DDE             | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | a-BHC               | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | ļ-             | <0.1   |
|                                   | Aldrin              | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | b-BHC               |       |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   |                     | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              |        |
|                                   | cis-Chlordane       | mg/kg |      |               |                 |        | -     | -     | -         | -     | -      | -     |        |        | -      | -      | -              | <0.1   |
|                                   | d-BHC               | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | DDD                 | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     |        |        | -      | -      | <del>  -</del> |        |
| <b> </b>                          | DDT<br>Dieldrin     | mg/kg |      |               |                 | <0.1   | -     | 1-    | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | 1-             | <0.1   |
|                                   |                     | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Endosulfan I        | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Endosulfan II       | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Endosulfan sulphate | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Endrin              | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Endrin aldehyde     | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Endrin ketone       | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | g-BHC (Lindane)     | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Heptachlor          | mg/kg |      |               | 10              | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Heptachlor epoxide  | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Hexachlorobenzene   | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | Methoxychlor        | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | o,p'-DDD            | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | o,p'-DDE            | mg/kg |      |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | -              | <0.1   |
|                                   | trans-chlordane     |       | 0.1  |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | ļ              | <0.1   |
|                                   | trans-Nonachlor     | mg/kg | 0.1  |               |                 | <0.1   | -     | -     | -         | -     | -      | -     | <0.1   | <0.1   | -      | -      | ļ              | <0.1   |
| ESDAT Combined Compounds          | Aldrin + Dieldrin   | mg/kg |      |               | 10              | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | DDT+DDE+DDD         | mg/kg |      |               | 200             | <0.3   | -     | -     | -         | -     | -      | -     | <0.3   | <0.3   | -      | -      | -              | <0.3   |
|                                   |                     |       |      |               |                 |        |       |       |           |       |        |       |        |        |        |        |                | $\bot$ |
| OP Pesticides in Soil by GCMS     | Azinophos methyl    | mg/kg |      |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | Bromophos-ethyl     | mg/kg |      |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | Chlorpyrifos        | mg/kg |      |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | Diazinon            |       | 0.5  |               |                 | <0.5   | -     | -     | -         | -     | -      | -     | <0.5   | <0.5   | -      | -      | -              | <0.5   |
|                                   | Dichlorvos          | mg/kg | 1    |               |                 | <1     | -     | -     | -         | -     | -      | -     | <1     | <1     | -      | -      | -              | <1     |
|                                   | Dimethoate          | mg/kg | 1    |               |                 | <1     | -     | -     | -         | -     | -      | -     | <1     | <1     | -      | -      | -              | <1     |
|                                   | Ethion              | mg/kg |      |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | Fenitrothion        | mg/kg | 0.2  |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | Malathion           | mg/kg | 0.2  |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |
|                                   | Methidathion        | mg/kg | 0.5  |               |                 | <0.5   | -     | -     | -         | -     | -      | -     | <0.5   | < 0.5  | -      | -      | -              | <0.5   |
| •                                 | Parathion           | mg/kg | 0.2  |               |                 | <0.2   | -     | -     | -         | -     | -      | -     | <0.2   | <0.2   | -      | -      | -              | <0.2   |

\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence Italics = HILA exceedence
-' indicates Not Analysed



### Table LR6 - Drainage Channels Sediment Analytical Results Jumping Creek ENVICANB00233AA

| Field_ID          | DC1         | DC2         | DC3         | DC4         | DC5         | DC6         | DC7         | DC8         | DC9         | DC10        | DC12        | DC13        | QC14        |
|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sampled_Date-Time | 7/08/2009   | 7/08/2009   | 10/08/2009  | 10/08/2009  | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 10/08/2009  | 10/08/2009  | 7/08/2009   |
| Area              | Drainage C. |

| Method Type                       | ChemName            | Units | ΕOI | NEPM 1999 EIL | NEPM 1999 HIL A |       |       |        |       |       |                |                |       |       |       |       |       |        |
|-----------------------------------|---------------------|-------|-----|---------------|-----------------|-------|-------|--------|-------|-------|----------------|----------------|-------|-------|-------|-------|-------|--------|
| Metals in Soil by ICP-OES         | Arsenic             | ma/ka |     | 20            | 100             | 0     | T/a   | I c    | E     | To .  | T <sub>E</sub> | T <sub>E</sub> | 6     | To    | 5     | <3    | 33    | 6      |
| Metals in Soil by ICP-OES         | Cadmium             | mg/kg |     | 20            | 20              | <0.3  | 0.4   | <0.3   | <0.3  | 0.3   | 0.3            | 0.3            | <0.3  | 0.4   | 0.3   | <0.3  | 0.7   | <0.3   |
|                                   | Chromium (III+VI)   |       | 0.3 | 3             | 20              | 23    | 14    | 20     | 17    | 15    | 16             | 19             | 17    | 20    | 16    | 12    | 19    | 20     |
|                                   |                     |       | 0.0 | 100           | 1000            | 17    | 15    | 17     | 7.8   | 15    | 11             | 8.9            | 8.1   | 18    | 10    | 6.9   | 24    | 10     |
|                                   | Copper<br>Lead      | ma/ka |     | 0*            | 300             | 26    | 130   | 12     | 7.0   | 13    | 9.4            | 13             | 11    | 12    | 12    | 9     | 94    | 13     |
| Mercury Cold Vapor/Hg Analyser    | Mercury             | mg/kg |     | 0"<br>1       | 15              | <0.05 | <0.05 | < 0.05 | <0.05 | <0.05 | <0.05          | <0.05          | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | < 0.05 |
| iviercury Cold Vapor/ng Arialyser | Nickel              |       |     | 60            | 600             | 18    | 15    | 23     | 18    | 13    | 17             | 18             | 17    | 19    | 18    | 9.1   | 26    | 17     |
|                                   | Zinc                | mg/kg |     |               | 7000            | 56    | 210   | 52     | 36    | 61    | 68             | 76             | 46    | 67    | 61    | 18    | 180   | 49     |
|                                   | ZINC                | mg/kg | 0.5 | 200           | 7000            | 50    | 210   | 52     | 36    | 01    | 00             | 76             | 46    | 07    | 01    | 10    | 160   | 49     |
| OC Pesticides in Soil             | 2.4-DDT             | mg/kg | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | < 0.1          | < 0.1 | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
| OC F esticides III Juli           | 4.4-DDE             | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | a-BHC               | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Aldrin              | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | b-BHC               |       | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | cis-Chlordane       | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | d-BHC               | ma/ka |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | DDD                 |       | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | DDT                 | ma/ka |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Dieldrin            | , ,   | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Endosulfan I        | ma/ka |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Endosulfan II       | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Endosulfan sulphate | ma/ka |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Endrin              | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Endrin aldehyde     | ma/ka |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Endrin ketone       | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | g-BHC (Lindane)     | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Heptachlor          | mg/kg |     |               | 10              | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Heptachlor epoxide  | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Hexachlorobenzene   | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | Methoxychlor        | mg/kg |     |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | o.p'-DDD            | mg/kg | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | < 0.1          | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | o,p'-DDE            |       | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | trans-chlordane     | mg/kg | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
|                                   | trans-Nonachlor     | mg/kg | 0.1 |               |                 | <0.1  | <0.1  | <0.1   | <0.1  | <0.1  | <0.1           | <0.1           | <0.1  | <0.1  | <0.1  | <0.1  | <0.1  | <0.1   |
| ESDAT Combined Compounds          | Aldrin + Dieldrin   | mg/kg |     |               | 10              | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | DDT+DDE+DDD         | mg/kg |     |               | 200             | < 0.3 | < 0.3 | < 0.3  | < 0.3 | < 0.3 | < 0.3          | < 0.3          | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3  |
|                                   |                     |       |     |               |                 |       |       |        |       |       |                |                |       |       |       |       |       |        |
| OP Pesticides in Soil by GCMS     | Azinophos methyl    | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | Bromophos-ethyl     | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | Chlorpyrifos        | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | Diazinon            | mg/kg | 0.5 |               |                 | <0.5  | <0.5  | <0.5   | <0.5  | <0.5  | <0.5           | <0.5           | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5   |
|                                   | Dichlorvos          | mg/kg | 1   |               |                 | <1    | <1    | <1     | <1    | <1    | <1             | <1             | <1    | <1    | <1    | <1    | <1    | <1     |
|                                   | Dimethoate          | mg/kg | 1   |               |                 | <1    | <1    | <1     | <1    | <1    | <1             | <1             | <1    | <1    | <1    | <1    | <1    | <1     |
|                                   | Ethion              | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | Fenitrothion        | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | Malathion           | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |
|                                   | Methidathion        | mg/kg | 0.5 |               |                 | <0.5  | <0.5  | <0.5   | <0.5  | <0.5  | <0.5           | <0.5           | <0.5  | <0.5  | <0.5  | <0.5  | <0.5  | <0.5   |
|                                   | Parathion           | mg/kg | 0.2 |               |                 | <0.2  | <0.2  | <0.2   | <0.2  | <0.2  | <0.2           | <0.2           | <0.2  | <0.2  | <0.2  | <0.2  | <0.2  | <0.2   |

Notes

\*\*Only lead concentrations exceeding HILA have been shaded Bold = EIL exceedence Italics = HILA exceedence



# Table LR7 Groundwater and Surface Water Analytical Results Jumping Creek ENVICANB00233AA

| Field_ID          | MW1       | MW2       | MW3       | MW4       | MW5       | MW6       | MW7       | MW8       | SW1         | SW2         | SW3         |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|-------------|-------------|
| Sampled_Date-Time | 8/10/2009 | 8/10/2009 | 8/10/2009 | 8/10/2009 | 8/10/2009 | 8/10/2009 | 8/10/2009 | 8/10/2009 | 13/08/2009  | 13/08/2009  | 13/08/2009  |
| SampleComments    | DOI1      | DOI1      | DOI1      | DOI2      | DOI2      | DOI2      | DOI2      | DOI4      | Drainage C. | Drainage C. | Drainage C. |

| Method_Type                       | ChemName                         | Units        | EQL    | ANZECC & ARMCANZ |         |          |                                                |          |                                                |                                                |                                                  |             |              |              |              |
|-----------------------------------|----------------------------------|--------------|--------|------------------|---------|----------|------------------------------------------------|----------|------------------------------------------------|------------------------------------------------|--------------------------------------------------|-------------|--------------|--------------|--------------|
| T                                 | A                                |              | 0.004  | 2000             | 0.045   | 10.004   | 10.000                                         | -0.004   | 10.000                                         | 10.000                                         | 10.000                                           | 0.044       | -0.004       | -0.004       | -0.004       |
| Trace HM (ICP-MS)-Dissolved       | Arsenic                          | mg/L         | 0.001  |                  | 0.015   | 0.001    | 0.002                                          | <0.001   | 0.006                                          | 0.002                                          | 0.038                                            | 0.014       | <0.001       | <0.001       | <0.001       |
|                                   | Cadmium                          | mg/L         |        | 0.0002           | <0.0001 | <0.0001  | <0.0001                                        | <0.0001  | 0.0001                                         | <0.0001                                        | <0.0001                                          | <0.0001     | < 0.0001     | <0.0001      | <0.0001      |
|                                   | Chromium (III+VI)                | mg/L         | 0.001  | 0.0014           | <0.001  | <0.001   | 0.002                                          | < 0.001  | < 0.001                                        | < 0.001                                        | <0.001                                           | < 0.001     | < 0.001      | <0.001       | <0.001       |
|                                   | Copper                           | mg/L         | 0.001  | 0.0014           | 0.002   | 0.003    | 0.002                                          | 0.001    | 0.001                                          | 0.003                                          | 0.001                                            | <0.001      | 0.001        | 0.004        | 0.005        |
|                                   | Lead                             | mg/L         | 0.001  | 0.0034           | 0.006   | 0.2      | 0.009                                          | 0.03     | 0.003                                          | 0.042                                          | <0.001                                           | 0.009       | <0.001       | < 0.001      | <0.001       |
|                                   | Nickel                           | mg/L         | 0.001  | 0.011            | 0.001   | 0.001    | <0.001                                         | 0.005    | 0.002                                          | 0.002                                          | 0.001                                            | 0.004       | <0.001       | <0.001       | <0.001       |
|                                   | Zinc                             | mg/L         | 0.001  | 0.008            | 0.006   | 0.01     | 0.005                                          | 0.008    | 0.011                                          | 0.014                                          | 0.003                                            | 0.008       | 0.008        | 0.016        | 0.01         |
|                                   |                                  |              |        |                  |         |          |                                                |          | 150                                            | 100                                            |                                                  |             |              | 4.0          |              |
| Anions in water                   | Sulphate                         | mg/L         | 0.1    | 400              | 62      | 25       | 35                                             | 81       | 150                                            | 130                                            | 22                                               | 200         | 19           | 18           | 11           |
| FORATO LINE IO                    | ALLES - DISTRICT                 |              |        |                  | .0.4    | .0.4     | .0.4                                           | -0.4     | .0.4                                           | -0.4                                           | -0.4                                             | -0.4        | -0.4         | -0.4         | -0.4         |
| ESDAT Combined Compounds          | Aldrin + Dieldrin                | μg/L         |        |                  | <0.4    | <0.4     | <0.4                                           | <0.4     | <0.4                                           | <0.4                                           | <0.4                                             | <0.4        | <0.4         | <0.4         | <0.4         |
|                                   | DDT+DDE+DDD                      | μg/L         |        |                  | <0.6    | <0.6     | <0.6                                           | <0.6     | <0.6                                           | <0.6                                           | <0.6                                             | <0.6        | <0.6         | <0.6         | <0.6         |
|                                   |                                  |              |        |                  |         |          |                                                | _        |                                                | _                                              |                                                  |             |              |              |              |
| Inorganics                        | pH (Lab)                         | pH_Units     | 0      |                  | 7.4     | 7.4      | 7.3                                            | 1        | 7.2                                            | /                                              | 8.1                                              | 7.4         | -            | -            |              |
| M                                 | M                                |              | 0.0004 | 2 2222           | -0.0004 | -0.0004  | -0.0004                                        | -0.0004  | -0.0004                                        | -0.0004                                        | -0.0004                                          | -0.0004     |              |              |              |
| Mercury Cold Vapor/Hg Analyser    | Mercury (Filtered)               | mg/L         | 0.0001 | 0.0006           | <0.0001 | <0.0001  | <0.0001                                        | <0.0001  | <0.0001                                        | <0.0001                                        | <0.0001                                          | <0.0001     | -            | -            |              |
| 00.0                              | 0.4.007                          |              | 0.0    |                  | .0.0    | .0.0     | .0.0                                           | -0.0     | .0.0                                           | .0.0                                           | .0.0                                             | .0.0        | -0.0         | -0.0         | -0.0         |
| OC Pesticides in Water            | 2,4-DDT                          | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | 4,4-DDE                          | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | a-BHC                            | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | Aldrin                           | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | b-BHC                            | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | cis-Chlordane                    | μg/L         | 0.2    |                  | <0.2    |          | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | d-BHC                            | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | DDD                              | μg/L         | 0.2    | 0.04             | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | DDT                              | μg/L         | 0.2    | 0.01             | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | Dieldrin                         | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | Endosulfan I                     | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2<br><0.2                                   | <0.2<br><0.2                                   | <0.2                                             | <0.2        | <0.2         | <0.2<br><0.2 | <0.2         |
|                                   | Endosulfan II                    | μg/L         | 0.2    |                  |         | <0.2     |                                                |          |                                                | <0.2                                           | <0.2                                             |             | <0.2         | <0.2         | <0.2         |
|                                   | Endosulfan sulphate              | μg/L         |        | 2.22             | <0.2    |          | <0.2                                           | <0.2     | <0.2                                           |                                                |                                                  | <0.2        |              |              | <0.2         |
|                                   | Endrin                           | μg/L         | 0.2    | 0.02             | <0.2    | <0.2     | <0.2                                           | <0.2     |                                                | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         |              |
|                                   | Endrin aldehyde                  | μg/L         | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2<br><0.2 | <0.2         |
|                                   | Endrin ketone                    | μg/L         | 0.2    |                  | <0.2    |          | <0.2                                           | <0.2     | <0.2                                           |                                                |                                                  |             | <0.2         | <0.2         |              |
|                                   | g-BHC (Lindane)                  | μg/L         | 0.2    | 0.2<br>0.09      |         | <0.2     |                                                |          | <0.2                                           | <0.2                                           | <0.2<br><0.2                                     | <0.2        |              |              | <0.2<br><0.2 |
|                                   | Heptachlor<br>Heptachlor epoxide | μg/L<br>μg/L | 0.2    | 0.09             | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2<br><0.2 | <0.2         | <0.2         |
|                                   | Hexachlorobenzene                | μg/L<br>μg/L | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | Methoxychlor                     | μg/L<br>μg/L | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | o.p'-DDD                         | μg/L<br>mg/L | 0.2    |                  | <0.2    | <0.2     | <0.2                                           | <0.2     | <0.2                                           | <0.2                                           | <0.2                                             | <0.2        | <0.2         | <0.2         | <0.2         |
|                                   | o.p'-DDE                         | mg/L         | 0.0002 |                  | <0.0002 | <0.0002  | <0.0002                                        | <0.0002  | <0.0002                                        | <0.0002                                        | <0.0002                                          | <0.0002     | <0.0002      | <0.0002      | <0.0002      |
|                                   | trans-chlordane                  | µg/L         | 0.0002 |                  | <0.2    | < 0.2    | < 0.2                                          | < 0.2    | < 0.2                                          | < 0.2                                          | < 0.2                                            | < 0.2       | <0.0002      | < 0.2        | <0.0002      |
|                                   | trans-Nonachlor                  | mg/L         | 0.0002 |                  | <0.0002 | <0.0002  | <0.0002                                        | <0.0002  | <0.0002                                        | <0.0002                                        | <0.0002                                          | <0.0002     | <0.0002      | <0.0002      | <0.0002      |
|                                   | trans-Nonacriioi                 | IIIg/L       | 0.0002 |                  | <0.000Z | <0.000Z  | <0.000Z                                        | <0.0002  | <0.000Z                                        | <0.0002                                        | <0.0002                                          | <0.000Z     | <0.0002      | <0.0002      | <0.0002      |
| OP Pesticides in Water by GCMS    | Azinophos methyl                 | μg/L         | 0.2    | 0.02             |         | 1        | 1                                              |          | 1                                              | 1                                              | 1                                                |             | <0.2         | <0.2         | <0.2         |
| OF Festicides III Water by GCIVIS | Bromophos-ethyl                  | μg/L         | 0.2    | 0.02             | -       | -        | <del> </del>                                   | +        | <del> </del>                                   | <del> -</del>                                  | <del>                                     </del> | -           | <0.2         | <0.2         | <0.2         |
|                                   | Chlorpyrifos                     | μg/L         | 0.2    | 0.01             | -       | -        | -                                              | -        | <del>-</del>                                   | -                                              | <del>-</del>                                     | -           | <0.2         | <0.2         | <0.2         |
|                                   | Diazinon                         | μg/L<br>μg/L | 0.5    | 0.01             | -       | 1        | 1                                              | +        | 1                                              | 1                                              | 1                                                | 1           | <0.5         | <0.5         | <0.5         |
|                                   | Dichlorvos                       | μg/L         | 1      | 0.01             |         | -        |                                                | -        |                                                |                                                |                                                  | <del></del> | <1           | <1           | <1           |
|                                   | Dimethoate                       | μg/L<br>μg/L | 1      | 0.15             |         |          | †                                              | t        | †                                              | t                                              | t                                                | t           | _1           | <1           | -1           |
|                                   | Ethion                           | μg/L<br>μg/L | 0.2    |                  | l .     | t        | t <u>.                                    </u> | t-       | t <u>.                                    </u> | t <u>.                                    </u> | t <u>.                                    </u>   | t           | <0.2         | <0.2         | <0.2         |
|                                   | Fenitrothion                     | μg/L<br>μg/L | 0.2    | 0.2              | l       | t-       | t <u>.                                    </u> | t-       | t <u>.                                    </u> | t <u>.                                    </u> | t <u>.                                    </u>   | t           | <0.2         | <0.2         | <0.2         |
|                                   | Malathion                        | μg/L<br>μg/L | 0.2    | 0.05             | l .     | <u> </u> | t                                              | t -      | t                                              | t                                              | t                                                | <u> </u>    | <0.2         | <0.2         | <0.2         |
|                                   | Methidathion                     | μg/L<br>μg/L | 0.5    | 0.00             |         | -        | 1                                              |          | 1                                              | 1                                              | 1                                                | 1           | <0.2         | <0.5         | <0.5         |
|                                   | Parathion                        | μg/L<br>μg/L | 0.2    | 0.004            | l       | t-       | 1-                                             | t-       | t <u>.                                    </u> | t <u>.                                    </u> | t <u>.                                    </u>   | t           | <0.2         | <0.2         | <0.2         |
|                                   | , aradilon                       | r3/ ∟        | ٠.۷    |                  |         | <b>-</b> | <b>†</b>                                       | <b>-</b> | <b>†</b>                                       | <b>†</b>                                       | <b>†</b>                                         | <b>-</b>    | ~J.L         | -0.2         | -J.L         |
|                                   | l                                | l            |        |                  |         | 1        | į.                                             | 1        | į.                                             | 1                                              | 1                                                | 1           | 1            | <u> </u>     |              |

Notes:

<sup>-&#</sup>x27; denotes Not Analysed



Table LR8
TCLP Analytical Results
Jumping Creek
ENVICANB00233AA

| Field_ID           | MP15_0.0-0.2 | MS3-8_0.0-0.2 | MS4-26A_0.5-0.6 | MS4-27_0.0-0.2 | MS4SP1     | MS4SP9     | RE34_0.0-0.2 |
|--------------------|--------------|---------------|-----------------|----------------|------------|------------|--------------|
| LocCode            | MP15_0.0-0.2 | MS3-8_0.0-0.2 | MS4-26A_0.5-0.6 | MS4-27_0.0-0.2 | MS4SP1     | MS4SP9     | RE34_0.0-0.2 |
| Sample_Depth_Range |              |               |                 |                |            |            |              |
| Sampled_Date-Time  | 5/08/2009    | 28/07/2009    | 6/08/2009       | 6/08/2009      | 13/08/2009 | 13/08/2009 | 27/07/2009   |
| Matrix Description |              |               |                 |                |            |            |              |

| Method_Type    | ChemName | Units |       |      | NSW 2008 Restricted<br>Solid Waste (leached) |      |      |        |     |        |     |        |
|----------------|----------|-------|-------|------|----------------------------------------------|------|------|--------|-----|--------|-----|--------|
| Metals in TCLP | Arsenic  | mg/L  | 0.05  | 5.02 | 20                                           | -    | 0.44 | < 0.05 | -   | < 0.05 | -   | < 0.05 |
|                | Cadmium  | mg/L  | 0.005 | 1.02 | 4                                            | -    | 0.18 | -      | -   | 1.7    | -   | -      |
|                | Lead     | mg/L  | 0.02  | 5    | 20                                           | 0.07 | 0.16 | -      | 370 | -      | 500 | -      |
|                | Zinc     | mg/L  | 0.01  |      |                                              | -    | -    | -      | -   | 490    | -   | -      |

Notes:

-' denotes Not Analysed



# Table LR9 Soil - NAPG NAGG Analytical Results Jumping Creek ENVICANB00233AA

| Field_ID          | MS1SP1      | MS1SP1      | MS1SP2      | MS1SP3      | MS1SP4      | MS3SP1      | MS3SP2      | MS3SP3      | MS4SP1      | MS4SP2      | MS4SP3      |
|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sampled_Date-Time | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  |
| Sample Comments   | Mine site 1 | Mine site 3 | Mine site 3 | Mine site 3 | Mine site 4 | Mine site 4 | Mine site 4 |

| Method_Type       | ChemName                       | Units                                    | EQL     |        |        |        |        |        |           |           |           |        |       |         |
|-------------------|--------------------------------|------------------------------------------|---------|--------|--------|--------|--------|--------|-----------|-----------|-----------|--------|-------|---------|
| AN106             | Aged EC (1:2)                  | mS/cm                                    | <5      | 65     | 64     | 64     | 91     | 34     | 110       | 100       | 73        | 230    | 420   | 180     |
| AN212 CEI-400     | pH (Paste)                     | pH Units                                 | <0.1    | 7      | 7      | 7.2    | 7.1    | 6.9    | 8.8       | 8.9       | 9         | 8.1    | 8.1   | 8.4     |
| ASSMAC_20A        | Total Sulfur #                 | % w/w                                    | < 0.005 | <0.005 | <0.005 | <0.005 | 0.006  | <0.005 | 0.031     | 0.023     | 66        | 0.025  | 0.033 | < 0.005 |
| ASSMAC_20B        | S <sub>HCI</sub> #             | % w/w                                    | < 0.005 | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | 0.006     | <0.005    | <0.005    | <0.005 | 0.024 | <0.005  |
| Calculation       | Total Oxidisable Sulfur, TOS # | % w/w                                    | <0.005  | <0.005 | <0.005 | <0.005 | <0.005 | <0.005 | 0.025     | 0.02      | 0.062     | 0.021  | 0.009 | <0.005  |
| ASSMAC_19A1/AN214 | Acid Neutralisation Capacity   | % CaCO₃                                  | <0.1    | 0.3    | 0.3    | 0.3    | 0.3    | 0.3    | 90        | 75        | 89        | 0.4    | 1.5   | 8.3     |
| ASSMAC_19A1/AN214 | Acid Neutralisation Capacity   | kgH <sub>2</sub> SO <sub>4</sub> /tonne  | <0.5    | 2.5    | 2.5    | 2.5    | 2.5    | 2.5    | 880       | 730       | 870       | 3.7    | 15    | 81      |
| AN215 CEI-043     | NAGP#                          | kg H <sub>2</sub> SO <sub>4</sub> /tonne | <0.5    | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | 0.7       | 0.6       | 1.9       | 0.6    | <0.5  | <0.5    |
| Calculation       | NAGP (inc ANC) #               | kg H <sub>2</sub> SO <sub>4</sub> /tonne |         | -2     | -2     | -2     | -2     | -2     | -9.00E+02 | -8.00E+02 | -9.00E+02 | -3     | -10   | -80     |
| AN212 CEI-400     | pH <sub>Ox</sub>               | pH Units                                 | <0.1    | 5.8    | 5.7    | 6.2    | 6.1    | 5.5    | 10.2      | 12        | 12        | 7.5    | 8.1   | 10.4    |
| AN212 CEI-400     | Net Acid Generation pH7        | kg H <sub>2</sub> SO <sub>4</sub> /tonne | <0.5    | <0.5   | <0.5   | <0.5   | <0.5   | <0.5   | <0.5      | <0.5      | <0.5      | <0.5   | <0.5  | <0.5    |

Notes:

<sup>-&#</sup>x27; denotes Not Analysed



# Table LR9 Soil - NAPG NAGG Analytical Results Jumping Creek ENVICANB00233AA

| Field_ID          | MS1SP1      | MS4SP4      | MS4SP4      | MS4SP5      | MS4SP6      | MS4SP7      | MS4SP8      | MS4SP9      | MS4SP10     |
|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sampled_Date-Time | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  | 13/08/2009  |
| Sample Comments   | Mine site 1 | Mine site 4 |

| Method_Type       | ChemName                       | Units                                    | EQL    |        |        |        |         |           |         |       |       |        |
|-------------------|--------------------------------|------------------------------------------|--------|--------|--------|--------|---------|-----------|---------|-------|-------|--------|
| AN106             | Aged EC (1:2)                  | mS/cm                                    | <5     | 65     | 200    | 200    | 150     | 160       | 250     | 210   | 200   | 290    |
| AN212 CEI-400     | pH (Paste)                     | pH Units                                 | <0.1   | 7      | 8.3    | 8.3    | 8.2     | 8.7       | 8.4     | 8.2   | 7.4   | 8      |
| ASSMAC_20A        | Total Sulfur #                 | % w/w                                    | <0.005 | <0.005 | 0.021  | 0.021  | <0.005  | 0.028     | 0.016   | 0.015 | 0.037 | <0.005 |
| ASSMAC_20B        | S <sub>HCI</sub> #             | % w/w                                    | <0.005 | <0.005 | <0.005 | <0.005 | <0.005  | 0.012     | < 0.005 | 0.007 | 0.013 | <0.005 |
| Calculation       | Total Oxidisable Sulfur, TOS # | % w/w                                    | <0.005 | <0.005 | 0.018  | 0.018  | < 0.005 | 0.015     | 0.012   | 0.008 | 0.021 | <0.005 |
| ASSMAC_19A1/AN214 | Acid Neutralisation Capacity   | % CaCO <sub>3</sub>                      | <0.1   | 0.3    | 2.3    | 2.1    | 0.4     | 19        | 0.3     | 0.4   | 0.9   | 6.8    |
| ASSMAC_19A1/AN214 | Acid Neutralisation Capacity   | kgH <sub>2</sub> SO <sub>4</sub> /tonne  | <0.5   | 2.5    | 22     | 21     | 3.7     | 190       | 2.5     | 3.7   | 8.6   | 66     |
| AN215 CEI-043     | NAGP#                          | kg H <sub>2</sub> SO <sub>4</sub> /tonne | <0.5   | <0.5   | 0.5    | 0.5    | <0.5    | <0.5      | <0.5    | <0.5  | 0.6   | <0.5   |
| Calculation       | NAGP (inc ANC) #               | kg H <sub>2</sub> SO <sub>4</sub> /tonne |        | -2     | -20    | -20    | -4      | -2.00E+02 | -2      | -3    | -8    | -70    |
| AN212 CEI-400     | pH <sub>Ox</sub>               | pH Units                                 | <0.1   | 5.8    | 8.9    | 9      | 7.4     | 10.1      | 7.4     | 7.7   | 7.8   | 8.7    |
| AN212 CEI-400     | Net Acid Generation pH7        | kg H <sub>2</sub> SO <sub>4</sub> /tonne | <0.5   | <0.5   | <0.5   | <0.5   | <0.5    | <0.5      | <0.5    | <0.5  | <0.5  | <0.5   |

Notes:

<sup>-&#</sup>x27; denotes Not Analysed



| SDG               | SE70874      | SE70874    |     | SE70984      | SE70984    |     | SE70984      | SE70984    |     | SE70984    | SE70984    |     | SE70984       |
|-------------------|--------------|------------|-----|--------------|------------|-----|--------------|------------|-----|------------|------------|-----|---------------|
| Field_ID          | RE10_0.0-0.2 | QC1        | RPD | RE41_0.0-0.2 | QC2        | RPD | RE34_0.0-0.2 | QC3        | RPD | K1_0.0-0.2 | QC4        | RPD | MS3-1_0.0-0.2 |
| Sampled_Date-Time | 23/07/2009   | 23/07/2009 |     | 24/07/2009   | 24/07/2009 |     | 27/07/2009   | 27/07/2009 |     | 28/07/2009 | 28/07/2009 |     | 28/07/2009    |

|                                  |                     |           | oumpieu_bate rime            |               | 20/01/2000   |    | 24/01/2000    | 2-1/01/12000 |   | 2170172000   | 2110112000                                       |                                                  | 20/01/2000   | 20/01/2000                                       |     | 20/01/2000  |
|----------------------------------|---------------------|-----------|------------------------------|---------------|--------------|----|---------------|--------------|---|--------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-----|-------------|
| Method_Type                      | ChemName            | Units     | EQL                          |               | 1            |    |               | I            | T |              | I                                                |                                                  | l            |                                                  | 1   |             |
| Cyanide                          | Cyanide Total       | mg/kg     | 0.1 (Primary): 5 (Interlab   | 1             |              |    |               |              | 1 |              |                                                  |                                                  |              |                                                  |     |             |
| Cyanico                          | Oyanide Total       | mg/kg     | 0.1 (Filliary): 5 (interials |               |              |    |               |              | 1 |              |                                                  |                                                  |              |                                                  | -   |             |
| Inorganics                       | pH (Field)          | pH Units  | 0                            |               |              |    |               |              | 1 |              |                                                  |                                                  | 8.2          | 7.9                                              | 4   |             |
| morganico                        | pri (riola)         | pri_onito |                              |               |              |    |               |              | 1 |              |                                                  |                                                  | 0.2          | 7.0                                              |     |             |
| Mercury Cold Vapor/Hg Analyser   | Mercury             | mg/kg     | 0.05 (Primary): 0.1 (Inter   | <0.05         | <0.05        | 0  | <0.05         | <0.05        | 0 | <0.05        | <0.05                                            | 0                                                |              |                                                  | -   | 0.13        |
| Mercury Cold Vapol/rig Allarysel | iviercury           | ilig/kg   | 0.03 (Filliary). 0.1 (line)  | <b>~</b> 0.03 | <b>~0.03</b> | -  | <b>~</b> 0.03 | <b>~0.03</b> | 0 | <b>~0.03</b> | <b>~</b> 0.03                                    | - 0                                              |              |                                                  | -   | 0.13        |
| Metals in Soil by ICP-OES        | Arsenic             | mg/kg     | 3 (Primary): 2 (Interlab)    | 5.0           | 5.0          | 0  | 6.0           | 6.0          | 0 | 130.0        | 110.0                                            | 17                                               |              |                                                  | -   | 1700.0      |
| Metals III 30II by ICF-0E3       | Cadmium             | mg/kg     | 0.3 (Primary): 0.5 (Interla  | <0.3          | <0.3         | 0  | 0.3           | 0.0          | 0 | 0.5          | 0.4                                              | 22                                               |              |                                                  | -   | 12.0        |
|                                  | Chromium (III+VI)   | mg/kg     | 0.3 (Primary): 5 (Interlab   | 15.0          | 17.0         | 13 | 18.0          | 19.0         | 5 | 20.0         | 20.0                                             | 0                                                |              |                                                  |     | 21.0        |
|                                  | Copper Copper       | mg/kg     | 0.5 (Primary): 5 (Interlab   | 5.5           | 5.8          | 5  | 15.0          | 16.0         | 6 | 40.0         | 34.0                                             | 16                                               |              |                                                  | -   | 110.0       |
|                                  | Lead                | mg/kg     | 1 (Primary): 5 (Interlab)    | 6.0           | 6.0          | 0  | 16.0          | 16.0         | 0 | 85.0         | 76.0                                             | 11                                               |              |                                                  | -   | 1600.0      |
|                                  | Nickel              |           | 0.5 (Primary): 5 (Interlab)  | 13.0          | 13.0         | 0  | 23.0          | 22.0         | 4 | 32.0         | 28.0                                             | 13                                               |              |                                                  | -   | 18.0        |
|                                  |                     | mg/kg     |                              |               |              |    |               |              |   |              |                                                  |                                                  |              |                                                  | -   |             |
|                                  | Zinc                | mg/kg     | 0.5 (Primary): 5 (Interlab   | 17.0          | 18.0         | 6  | 63.0          | 66.0         | 5 | 140.0        | 130.0                                            | 7                                                |              |                                                  | -   | 2200.0      |
| N 4 - 1 - 4                      | M - : - t           | %         | 4                            | 9.0           | 40.0         | 44 | 40.0          | 47.0         | _ | 0.0          | 0.0                                              | 0                                                | 00.0         | 00.0                                             | 0   | 47.0        |
| Moisture                         | Moisture            | %         | 1                            | 9.0           | 10.0         | 11 | 16.0          | 17.0         | 6 | 8.0          | 8.0                                              | U                                                | 26.0         | 26.0                                             | U   | 17.0        |
| 00 0 - 4 - 4 - 5 - 0 - 1         | 0.4.007             |           | 0.4                          | -0.4          | -0.4         | _  | 10.4          | -0.4         | - |              | <del>                                     </del> | <u> </u>                                         | 1            | ļ                                                | -   | <b></b>     |
| OC Pesticides in Soil            | 2,4-DDT             | mg/kg     | 0.1                          | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  | 1                                                | 1            |                                                  |     | igwdot      |
|                                  | 4,4-DDE             | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | a-BHC               | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Aldrin              | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | b-BHC               | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | cis-Chlordane       | mg/kg     | 0.1                          | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | d-BHC               | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | DDD                 | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | DDT                 | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Dieldrin            | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Endosulfan I        | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Endosulfan II       | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Endosulfan sulphate | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Endrin              | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Endrin aldehyde     | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Endrin ketone       | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | g-BHC (Lindane)     | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Heptachlor          | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Heptachlor epoxide  | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Hexachlorobenzene   | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Methoxychlor        | mg/kg     | 0.1 (Primary): 0.05 (Inter   | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | o,p'-DDD            | mg/kg     | 0.1                          | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | o,p'-DDE            | mg/kg     | 0.1                          | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | trans-chlordane     | mg/kg     | 0.1                          | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  | 1                                                |              |                                                  |     |             |
|                                  | trans-Nonachlor     | mg/kg     | 0.1                          | <0.1          | <0.1         | 0  | <0.1          | <0.1         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  |                     |           |                              |               |              |    |               |              |   |              |                                                  |                                                  |              |                                                  |     |             |
| OP Pesticides in Soil by GCMS    | Azinophos methyl    | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              |                                                  |                                                  |              |                                                  | i i |             |
| 7                                | Bromophos-ethyl     | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              |                                                  |                                                  |              |                                                  |     |             |
|                                  | Chlorpyrifos        | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              |                                                  |                                                  |              |                                                  | 1   |             |
|                                  | Diazinon            | mg/kg     | 0.5 (Primary): 0.2 (Interla  | <0.5          | <0.5         | 0  | <0.5          | <0.5         | 0 |              |                                                  |                                                  | İ            | İ                                                |     |             |
|                                  | Dichlorvos          | mg/kg     | 1 (Primary): 0.2 (Interlab   | <1.0          | <1.0         | 0  | <1.0          | <1.0         | 0 |              | İ                                                |                                                  | İ            | İ                                                |     |             |
|                                  | Dimethoate          | mg/kg     | 1                            | <1.0          | <1.0         | 0  | <1.0          | <1.0         | 0 |              |                                                  |                                                  | İ            | İ                                                |     |             |
|                                  | Ethion              | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              | 1                                                | 1                                                | İ            | 1                                                | 1   |             |
|                                  | Fenitrothion        | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              | 1                                                |                                                  | 1            | 1                                                | 1 - | <del></del> |
|                                  | Malathion           | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              |                                                  | <del>                                     </del> | 1            |                                                  | +   | <del></del> |
|                                  | Methidathion        | mg/kg     | 0.5                          | <0.5          | <0.5         | 0  | <0.5          | <0.5         | 0 |              | <del> </del>                                     | <u> </u>                                         | <del> </del> | <del>                                     </del> | -   | <del></del> |
|                                  | Parathion           | mg/kg     | 0.2                          | <0.2          | <0.2         | 0  | <0.2          | <0.2         | 0 |              |                                                  |                                                  | 1            |                                                  | +   |             |
|                                  | r aratilion         | mg/kg     | 0.4                          | <b>~</b> U.Z  | <u> </u>     | U  | <b>\U.Z</b>   | <b>~</b> U.Z | U |              |                                                  |                                                  | 1            |                                                  | +   |             |
| DAHe in Ceil                     | 1 Methylpephtheless | malka     | 0.1                          |               | 1            | 1  |               | -            | 1 |              | <del> </del>                                     | <b>!</b>                                         | <0.1         | <b>-01</b>                                       | -   |             |
| PAHs in Soil                     | 1-Methylnaphthalene | mg/kg     | 0.1                          |               |              |    |               |              | İ |              |                                                  |                                                  | <0.1         | <0.1                                             | 0   |             |



| eld Duplicates (soil)<br>ter: SDG in('SE71167','SE7103 | 6','SE70984','SE70874')  |       | SDG<br>Field_ID<br>Sampled_Date-Time | SE70874<br>RE10_0.0-0.2<br>23/07/2009 | SE70874<br>QC1<br>23/07/2009 | RPD | SE70984<br>RE41_0.0-0.2<br>24/07/2009 | SE70984<br>QC2<br>24/07/2009 | RPD | SE70984<br>RE34_0.0-0.2<br>27/07/2009 | SE70984<br>QC3<br>27/07/2009 | RPD | SE70984<br>K1_0.0-0.2<br>28/07/2009 | SE70984<br>QC4<br>28/07/2009 | RPD | SE70984<br>MS3-1_0.0-0.2<br>28/07/2009 |
|--------------------------------------------------------|--------------------------|-------|--------------------------------------|---------------------------------------|------------------------------|-----|---------------------------------------|------------------------------|-----|---------------------------------------|------------------------------|-----|-------------------------------------|------------------------------|-----|----------------------------------------|
|                                                        | 2-methylnaphthalene      | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Acenaphthene             | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Acenaphthylene           | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Anthracene               | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Benz(a)anthracene        | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Benzo(a) pyrene          | mg/kg | 0.05 (Primary): 0.1 (Inte            | rlab)                                 |                              |     |                                       |                              |     |                                       |                              |     | < 0.05                              | < 0.05                       | 0   |                                        |
|                                                        | Benzo(b)&(k)fluoranthene | mg/kg | 0.2                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.2                                | <0.2                         | 0   |                                        |
|                                                        | Benzo(g,h,i)perylene     | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Chrysene                 | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Dibenz(a,h)anthracene    | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Fluoranthene             | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Fluorene                 | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Indeno(1,2,3-c,d)pyrene  | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Naphthalene              | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | PAHs (Sum of total)      | mg/kg | 1.75 (Primary): 0.1 (Inte            | rlab)                                 |                              |     |                                       |                              |     |                                       |                              |     | <1.75                               | <1.75                        | 0   |                                        |
|                                                        | Phenanthrene             | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |
|                                                        | Pyrene                   | mg/kg | 0.1                                  |                                       |                              |     |                                       |                              |     |                                       |                              |     | <0.1                                | <0.1                         | 0   |                                        |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 5 times the EQL.

\*\*High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 100 (5-10 x EQL); 50 (10-30 x EQL); 30 (> 30 x EQL))

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory



| SDG               | SE70984    |     | SE71036       | SE71036    |     | SE71036        | SE71036    |     | SE71167     | SE71167   |     | SE71167      | SE71167   |     |
|-------------------|------------|-----|---------------|------------|-----|----------------|------------|-----|-------------|-----------|-----|--------------|-----------|-----|
| Field_ID          | QC5        | RPD | MS1-1_0.0-0.2 | QC6        | RPD | MS1-14_0.0-0.2 | QC7        | RPD | MP1_0.0-0.2 | QC8       | RPD | MP14_0.0-0.2 | QC9       | RPD |
| Sampled_Date-Time | 28/07/2009 |     | 30/07/2009    | 30/07/2009 |     | 30/07/2009     | 30/07/2009 |     | 4/08/2009   | 4/08/2009 |     | 5/08/2009    | 5/08/2009 |     |

| Method_Type                    | ChemName                           | Units          | EQL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          |          |        |        |          |        |        |          |        |              |                                                  |
|--------------------------------|------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-------|----------|----------|--------|--------|----------|--------|--------|----------|--------|--------------|--------------------------------------------------|
| Cyanide                        | Cyanide Total                      | mg/kg          | 0.1 (Primary): 5 (Interlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        |          | 0.2    | 0.2    | 0        | 0.5    | 0.4          | 22                                               |
|                                |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |       |          |          |        |        |          |        |        |          |        |              |                                                  |
| Inorganics                     | pH (Field)                         | pH_Units       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                | 6.6   | 6.2      | 6        | 6.2    | 7.2    | 15       |        |        |          |        |              |                                                  |
|                                |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |       |          |          |        |        |          |        |        |          |        |              |                                                  |
| Mercury Cold Vapor/Hg Analyser | Mercury                            | mg/kg          | 0.05 (Primary): 0.1 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1    | 26             | <0.05 | < 0.05   | 0        | < 0.05 | < 0.05 | 0        | < 0.05 | < 0.05 | 0        | < 0.05 | < 0.05       | 0                                                |
|                                |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |       |          |          |        |        |          |        |        |          |        |              |                                                  |
| Metals in Soil by ICP-OES      | Arsenic                            | mg/kg          | 3 (Primary): 2 (Interlab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1700.0 | 0              | 7.0   | 8.0      | 13       | 8.0    | 6.0    | 29       | 12.0   | 10.0   | 18       | 33.0   | 32.0         | 3                                                |
|                                | Cadmium                            | mg/kg          | 0.3 (Primary): 0.5 (Interla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.0   | 18             | 0.4   | 0.3      | 29       | 0.5    | 0.4    | 22       | 0.5    | 0.4    | 22       | 2.2    | 1.9          | 15                                               |
|                                | Chromium (III+VI)                  | mg/kg          | 0.3 (Primary): 5 (Interlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.0   | 5              | 21.0  | 18.0     | 15       | 20.0   | 20.0   | 0        | 26.0   | 23.0   | 12       | 25.0   | 24.0         | 4                                                |
|                                | Copper                             | mg/kg          | 0.5 (Primary): 5 (Interlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.0  | 0              | 12.0  | 12.0     | 0        | 15.0   | 17.0   | 13       | 14.0   | 12.0   | 15       | 22.0   | 20.0         | 10                                               |
|                                | Lead                               | mg/kg          | 1 (Primary): 5 (Interlab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1300.0 | 21             | 6.0   | 6.0      | 0        | 21.0   | 15.0   | 33       | 120.0  | 100.0  | 18       | 300.0  | 300.0        | 0                                                |
|                                | Nickel                             | mg/kg          | 0.5 (Primary): 5 (Interlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.0   | 6              | 31.0  | 29.0     | 7        | 33.0   | 25.0   | 28       | 14.0   | 12.0   | 15       | 20.0   | 19.0         | 5                                                |
|                                | Zinc                               | mg/kg          | 0.5 (Primary): 5 (Interlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2000.0 | 10             | 40.0  | 39.0     | 3        | 150.0  | 91.0   | 49       | 160.0  | 140.0  | 13       | 610.0  | 580.0        | 5                                                |
|                                |                                    | J J            | 7/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                |       |          |          |        |        |          |        |        |          |        |              |                                                  |
| Moisture                       | Moisture                           | %              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.0   | 6              | 6.0   | 14.0     | 80       | 9.0    | 9.0    | 0        | 13.0   | 12.0   | 8        | 10.0   | 8.0          | 22                                               |
|                                |                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |       |          |          |        |        |          |        |        |          |        |              |                                                  |
| OC Pesticides in Soil          | 2,4-DDT                            | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          |          |        |        |          | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
| <del> :</del>                  | 4.4-DDE                            | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1 1            |       |          |          |        | 1      | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | a-BHC                              | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Aldrin                             | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1 1            |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | b-BHC                              | ma/ka          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        |          | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | cis-Chlordane                      | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          |          |        |        |          | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | d-BHC                              | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        |          | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | DDD                                | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | DDT                                | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Dieldrin                           | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Endosulfan I                       | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | <b>-</b> | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Endosulfan II                      | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Endosulfan sulphate                | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Endrin                             | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          | +        |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Endrin aldehyde                    | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          | +        |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Endrin ketone                      | mg/kg          | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          |          |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | g-BHC (Lindane)                    |                | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1              |       |          | 1        |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Heptachlor                         | mg/kg<br>mg/kg | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -              |       |          |          |        |        | +        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Heptachlor epoxide                 |                | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1              |       |          | 1        |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Hexachlorobenzene                  | mg/kg<br>mg/kg | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1              |       |          | 1        |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                |                                    |                | 0.1 (Primary): 0.05 (Inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                |       |          | -        |        |        | -        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | Methoxychlor<br>o.p'-DDD           | mg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |       |          | -        |        |        | -        | <0.1   | <0.1   | 0        | <0.1   | <0.1         |                                                  |
|                                | o.p'-DDE                           | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          | -        |        |        | -        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                |                                    | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          | -        |        |        | -        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | trans-chlordane<br>trans-Nonachlor | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1              |       |          | 1        |        |        | 1        | <0.1   | <0.1   | 0        | <0.1   | <0.1         | 0                                                |
|                                | trans-Nonachior                    | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          | -        |        |        | -        | <0.1   | <0.1   | U        | <0.1   | <0.1         | U                                                |
| OP Pesticides in Soil by GCMS  | Azinophos methyl                   | malka          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1              |       | 1        | $\vdash$ |        | 1      | +        |        |        | <b>!</b> |        |              | -                                                |
| OF Festicides in Soil by GCMS  |                                    | mg/kg          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1              |       | <b> </b> | 1        |        | 1      | +        |        |        | <u> </u> |        |              | -                                                |
|                                | Bromophos-ethyl                    | mg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 1              |       | -        | +-       |        | -      | 1        |        |        | 1        |        | <del> </del> | 1                                                |
|                                | Chlorpyrifos                       | mg/kg          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1              |       |          | $\vdash$ |        |        | 1        |        |        | <u> </u> |        |              | 1                                                |
|                                | Diazinon                           | mg/kg          | 0.5 (Primary): 0.2 (Interlated Association of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the C |        |                |       | <b> </b> | 1        |        | 1      | +        |        |        | <u> </u> |        |              | -                                                |
|                                | Dichlorvos                         | mg/kg          | 1 (Primary): 0.2 (Interlab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | <del>   </del> |       |          | $\vdash$ |        |        | 1        |        |        | <u> </u> |        |              | 1                                                |
|                                | Dimethoate                         | mg/kg          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | <del>   </del> |       |          | 1        |        |        | 1        |        |        | <u> </u> |        |              | 1                                                |
|                                | Ethion                             | mg/kg          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | $\vdash$       |       | 1        | $\vdash$ |        | 1      | 1        |        |        | <u> </u> |        | -            | -                                                |
|                                | Fenitrothion                       | mg/kg          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          | $\vdash$ |        |        | ₽        |        |        | <u> </u> |        |              | 1                                                |
|                                | Malathion                          | mg/kg          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          | 1        |        |        | <b> </b> |        |        | <u> </u> |        |              | 1                                                |
| }                              | Methidathion                       | mg/kg          | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       | ļ        | 1        |        |        | 1        |        |        | 1        |        | ļ            | Н—                                               |
| <del> </del>                   | Parathion                          | mg/kg          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                |       |          | 1        |        |        | <b> </b> |        |        | <u> </u> |        |              | <u> </u>                                         |
|                                | 1                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                |       | ļ        | 1        |        |        | 1        |        |        | 1        |        | ļ            | <del>                                     </del> |
| PAHs in Soil                   | 1-Methylnaphthalene                | mg/kg          | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 1 1            |       | 1        | 1        |        | 1      | 1        | Ī      |        | 1        |        | 1            | 1                                                |



| Field Duplicates (soil) Filter: SDG in('SE71167','SE71036','SE70984','SE70874') |       | SDG<br>Field_ID<br>Sampled_Date-Time | SE70984<br>QC5<br>28/07/2009 | SE71036<br>MS1-1_0.0-0.2<br>30/07/2009 | SE71036<br>QC6<br>30/07/2009 | SE71036<br>MS1-14_0.0-0.2<br>30/07/2009 | SE71036<br>QC7<br>30/07/2009 | SE71167<br>MP1_0.0-0.2<br>4/08/2009 |  | SE71167<br>MP14_0.0-0.2<br>5/08/2009 | SE71167<br>QC9<br>5/08/2009 | RPD    |
|---------------------------------------------------------------------------------|-------|--------------------------------------|------------------------------|----------------------------------------|------------------------------|-----------------------------------------|------------------------------|-------------------------------------|--|--------------------------------------|-----------------------------|--------|
| 2-methylnaphthalene                                                             | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             | $\Box$ |
| Acenaphthene                                                                    | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Acenaphthylene                                                                  | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Anthracene                                                                      | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Benz(a)anthracene                                                               | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Benzo(a) pyrene                                                                 | mg/kg | 0.05 (Primary): 0.1 (Inter           |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Benzo(b)&(k)fluoranthene                                                        | mg/kg | 0.2                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Benzo(g,h,i)perylene                                                            | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Chrysene                                                                        | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Dibenz(a,h)anthracene                                                           | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Fluoranthene                                                                    | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Fluorene                                                                        | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Indeno(1,2,3-c,d)pyrene                                                         | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Naphthalene                                                                     | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| PAHs (Sum of total)                                                             | mg/kg | 1.75 (Primary): 0.1 (Inter           |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Phenanthrene                                                                    | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |
| Pyrene                                                                          | mg/kg | 0.1                                  |                              |                                        |                              |                                         |                              |                                     |  |                                      |                             |        |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 5 times the EQL.

\*\*High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 100 (5-10 x EQL); 50 (10-3

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any



| SDO  | G               | SE71167   | SE71167   |     | SE71167     | Interlab_D |     | SE71167      | Interlab_D |     | SE71167   | Interlab_D |     | SE71036       | Interlab_D |     |
|------|-----------------|-----------|-----------|-----|-------------|------------|-----|--------------|------------|-----|-----------|------------|-----|---------------|------------|-----|
| Fiel | ld_ID           | SP1       | QC10      | RPD | MP1_0.0-0.2 | QC8A       | RPD | MP14_0.0-0.2 | QC9A       | RPD | SP1       | QC10A      | RPD | MS1-1_0.0-0.2 | QC6A       | RPD |
| San  | npled_Date-Time | 5/08/2009 | 5/08/2009 |     | 4/08/2009   | 4/08/2009  |     | 5/08/2009    | 5/08/2009  |     | 5/08/2009 | 5/08/2009  |     | 30/07/2009    | 30/07/2009 |     |

|                                  |                     |          | oumpieu_bute Time             |              |              |          |              |                | -            |              |                |          |             |                |    |       |                                                  |    |
|----------------------------------|---------------------|----------|-------------------------------|--------------|--------------|----------|--------------|----------------|--------------|--------------|----------------|----------|-------------|----------------|----|-------|--------------------------------------------------|----|
| Method Type                      | ChemName            | Units    | EQL                           |              |              |          |              |                |              |              |                |          |             |                |    |       |                                                  | T  |
| Cyanide                          | Cyanide Total       | mg/kg    | 0.1 (Primary): 5 (Interlab    |              |              |          | 0.2          | <5.0           | 0            | 0.5          | <5.0           | 0        |             |                |    |       |                                                  |    |
| - James                          | Oyumus rotai        | g/itg    | or (r miary): o (mioriae      |              |              |          | 0.2          | 0.0            | Ť            | 0.0          | 0.0            | Ť        |             |                |    |       |                                                  |    |
| Inorganics                       | pH (Field)          | pH Units | 0                             |              |              |          |              |                |              |              |                |          |             |                |    | 6.6   |                                                  |    |
| gaco                             | p (o.a)             | pri_omic |                               |              |              |          |              |                |              |              |                |          |             |                |    | 0.0   |                                                  |    |
| Mercury Cold Vapor/Hg Analyser   | Mercury             | mg/kg    | 0.05 (Primary): 0.1 (Inter    | <0.05        | <0.05        | 0        | <0.05        | <0.1           | 0            | <0.05        | <0.1           | 0        | <0.05       | <0.1           | 0  | <0.05 | <0.1                                             | 0  |
| Moreary cold vapoliting thatycol | Microary            | mg/kg    | 0.00 (i iiiiaiy). 0.1 (iiitoi | -0.00        | -0.00        | Ŭ        | -0.00        | -0.1           | ŭ            | -0.00        | -0.1           | Ŭ        | -0.00       | -0.1           | Ū  | -0.00 | -0.1                                             | Ŭ  |
| Metals in Soil by ICP-OES        | Arsenic             | mg/kg    | 3 (Primary): 2 (Interlab)     | 17.0         | 15.0         | 13       | 12.0         | 8.3            | 36           | 33.0         | 37.0           | 11       | 17.0        | 16.0           | 6  | 7.0   | 6.4                                              | 9  |
| Motale III con by Ioi CEC        | Cadmium             | mg/kg    | 0.3 (Primary): 0.5 (Interla   | 0.7          | 0.8          | 13       | 0.5          | <0.5           | 0            | 2.2          | 1.9            | 15       | 0.7         | <0.5           | 33 | 0.4   | <0.5                                             | 0  |
|                                  | Chromium (III+VI)   | mg/kg    | 0.3 (Primary): 5 (Interlab    | 21.0         | 22.0         | 5        | 26.0         | 28.0           | 7            | 25.0         | 29.0           | 15       | 21.0        | 22.0           | 5  | 21.0  | 19.0                                             | 10 |
|                                  | Copper              | mg/kg    | 0.5 (Primary): 5 (Interlab    | 23.0         | 24.0         | 4        | 14.0         | 11.0           | 24           | 22.0         | 23.0           | 4        | 23.0        | 28.0           | 20 | 12.0  | 22.0                                             | 59 |
|                                  | Lead                | mg/kg    | 1 (Primary): 5 (Interlab)     | 90.0         | 73.0         | 21       | 120.0        | 97.0           | 21           | 300.0        | 350.0          | 15       | 90.0        | 75.0           | 18 | 6.0   | 5.6                                              | 7  |
|                                  | Nickel              | mg/kg    | 0.5 (Primary): 5 (Interlab)   | 31.0         | 30.0         | 3        | 14.0         | 16.0           | 13           | 20.0         | 26.0           | 26       | 31.0        | 33.0           | 6  | 31.0  | 32.0                                             | 3  |
|                                  | Zinc                | mg/kg    | 0.5 (Primary): 5 (Interlab    | 450.0        | 460.0        | 2        | 160.0        | 150.0          | 6            | 610.0        | 750.0          | 21       | 450.0       | 380.0          | 17 | 40.0  | 38.0                                             | 5  |
|                                  | ZIIIC               | mg/kg    | 0.5 (Filliary). 5 (interial   | 430.0        | 400.0        |          | 100.0        | 130.0          | U            | 010.0        | 730.0          | 21       | 450.0       | 300.0          | 17 | 40.0  | 30.0                                             | J  |
| Moisture                         | Moisture            | %        | 1                             | 11.0         | 12.0         | 9        | 13.0         |                |              | 10.0         |                |          | 11.0        |                |    | 6.0   |                                                  |    |
| Worstard                         | Wioistare           | 70       |                               | 11.0         | 12.0         | 9        | 10.0         |                |              | 10.0         |                |          | 11.0        |                |    | 0.0   |                                                  |    |
| OC Pesticides in Soil            | 2,4-DDT             | mg/kg    | 0.1                           |              |              |          | <0.1         |                |              | <0.1         |                |          |             |                | -  |       |                                                  | +  |
| OO I COLICIOES III OOII          | 4,4-DDE             | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         | <del> </del> | $\vdash$ | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       | <del>                                     </del> | 1  |
|                                  | a-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  |    |
|                                  | Aldrin              | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         | 1            |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       | 1                                                | 1  |
|                                  | b-BHC               | ma/ka    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  | +  |
|                                  | cis-Chlordane       | mg/kg    | 0.1 (Filmary), 0.05 (inter    | <b>\0.1</b>  |              |          | <0.1         | <0.05          | U            | <0.1         | <0.05          | U        | <b>\0.1</b> | <b>~</b> 0.05  | U  |       |                                                  |    |
|                                  | d-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  | +  |
|                                  | DDD                 | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  | +  |
|                                  | DDT                 |          |                               | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  | -  |
|                                  |                     | mg/kg    | 0.1 (Primary): 0.05 (Inter    |              |              |          |              |                |              |              |                |          |             |                |    |       |                                                  | -  |
|                                  | Dieldrin            | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1<br><0.1 |              |          | <0.1         | <0.05          | 0            | <0.1<br><0.1 | <0.05<br><0.05 | 0        | <0.1        | <0.05          | 0  |       |                                                  | -  |
|                                  | Endosulfan I        | mg/kg    | 0.1 (Primary): 0.05 (Inter    |              |              |          | <0.1<br><0.1 | <0.05<br><0.05 | 0            |              |                | 0        | <0.1        | <0.05<br><0.05 | 0  |       |                                                  | -  |
|                                  | Endosulfan II       | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          |              |                | 0            | <0.1         | < 0.05         |          | <0.1        |                | 0  |       |                                                  | -  |
|                                  | Endosulfan sulphate | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | < 0.05         | 0        | <0.1        | <0.05          | 0  |       |                                                  | -  |
|                                  | Endrin              | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | < 0.05         | 0        | <0.1        | <0.05          | 0  |       |                                                  | -  |
|                                  | Endrin aldehyde     | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | < 0.05         | 0        | <0.1        | <0.05          | 0  |       |                                                  | +  |
|                                  | Endrin ketone       | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | < 0.05         | 0        | <0.1        | <0.05          | 0  |       |                                                  | -  |
|                                  | g-BHC (Lindane)     | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | < 0.05         | 0        | <0.1        | <0.05          | 0  |       |                                                  |    |
|                                  | Heptachlor          | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | < 0.05         | 0            | <0.1         | < 0.05         | 0        | <0.1        | <0.05          | 0  |       |                                                  | -  |
|                                  | Heptachlor epoxide  | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  |    |
|                                  | Hexachlorobenzene   | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  |    |
|                                  | Methoxychlor        | mg/kg    | 0.1 (Primary): 0.05 (Inter    | <0.1         |              |          | <0.1         | <0.05          | 0            | <0.1         | <0.05          | 0        | <0.1        | <0.05          | 0  |       |                                                  |    |
|                                  | o,p'-DDD            | mg/kg    | 0.1                           |              |              |          | <0.1         |                |              | <0.1         |                |          |             |                |    |       |                                                  |    |
|                                  | o,p'-DDE            | mg/kg    | 0.1                           |              |              |          | <0.1         |                |              | <0.1         |                |          |             |                |    |       |                                                  |    |
|                                  | trans-chlordane     | mg/kg    | 0.1                           |              |              |          | <0.1         |                |              | <0.1         |                |          |             |                |    |       |                                                  |    |
|                                  | trans-Nonachlor     | mg/kg    | 0.1                           |              |              |          | <0.1         |                |              | <0.1         |                |          |             |                |    |       |                                                  |    |
| OD D - # - # - # - 0 - # 1       | A                   |          | 0.0                           |              |              |          |              |                |              |              |                |          |             |                |    |       |                                                  |    |
| OP Pesticides in Soil by GCMS    | Azinophos methyl    | mg/kg    | 0.2                           |              | 1            | $\vdash$ |              | -              | $\vdash$     |              | 1              |          |             |                | -  |       | 1                                                | -  |
|                                  | Bromophos-ethyl     | mg/kg    | 0.2                           |              | -            |          |              |                | $\vdash$     |              | -              |          |             |                |    |       | 1                                                | -  |
|                                  | Chlorpyrifos        | mg/kg    | 0.2                           |              | -            |          |              |                | -            |              | -              |          |             |                |    |       | 1                                                | -  |
|                                  | Diazinon            | mg/kg    | 0.5 (Primary): 0.2 (Interla   |              | 1            | $\vdash$ |              | -              | $\vdash$     |              | 1              |          |             |                | -  |       | 1                                                | -  |
|                                  | Dichlorvos          | mg/kg    | 1 (Primary): 0.2 (Interlab    |              | -            |          |              |                | $\vdash$     |              | -              |          |             |                |    |       | 1                                                | -  |
|                                  | Dimethoate          | mg/kg    | 1                             |              | -            |          |              |                | -            |              | -              |          |             |                |    |       | 1                                                | -  |
|                                  | Ethion              | mg/kg    | 0.2                           |              | ļ            |          |              | 1              | $\vdash$     |              | ļ              |          |             |                |    |       | <b>.</b>                                         | -  |
|                                  | Fenitrothion        | mg/kg    | 0.2                           |              |              |          |              |                |              |              |                | <b>.</b> |             |                | -  |       |                                                  |    |
|                                  | Malathion           | mg/kg    | 0.2                           |              |              |          |              |                |              |              |                |          |             |                |    |       |                                                  | 4  |
|                                  | Methidathion        | mg/kg    | 0.5                           |              |              |          |              |                | $oxed{oxed}$ |              |                |          |             |                |    |       |                                                  | 4  |
|                                  | Parathion           | mg/kg    | 0.2                           |              |              |          |              |                |              |              |                |          |             |                |    |       |                                                  | 1  |
|                                  |                     |          |                               |              | ļ            |          |              |                |              |              | ļ              |          |             |                |    |       | ļ                                                |    |
| PAHs in Soil                     | 1-Methylnaphthalene | mg/kg    | 0.1                           |              |              |          |              |                |              |              |                |          |             |                |    |       |                                                  |    |



| Field Duplicates (soil)                | 70004105700740           |       | SDG                           | SE71167          | SE71167 |     |                          | Interlab_D | SE71167                   | Interlab_D        |     | SE71167          | Interlab_D |     | SE71036                     | Interlab_D         |     |
|----------------------------------------|--------------------------|-------|-------------------------------|------------------|---------|-----|--------------------------|------------|---------------------------|-------------------|-----|------------------|------------|-----|-----------------------------|--------------------|-----|
| Filter: SDG in('SE71167','SE71036','SE | 70984','SE70874')        |       | Field_ID<br>Sampled_Date-Time | SP1<br>5/08/2009 |         | RPD | MP1_0.0-0.2<br>4/08/2009 | 4/08/2009  | MP14_0.0-0.2<br>5/08/2009 | QC9A<br>5/08/2009 | RPD | SP1<br>5/08/2009 |            | RPD | MS1-1_0.0-0.2<br>30/07/2009 | QC6A<br>30/07/2009 | RPI |
|                                        |                          |       |                               |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
|                                        | 2-methylnaphthalene      | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| Į.                                     | Acenaphthene             | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| A                                      | Acenaphthylene           | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| A                                      | Anthracene               | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | T   |
| E                                      | Benz(a)anthracene        | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | T   |
| E                                      | Benzo(a) pyrene          | mg/kg | 0.05 (Primary): 0.1 (Inte     | r                |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | T   |
|                                        | Benzo(b)&(k)fluoranthene | mg/kg | 0.2                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
|                                        | Benzo(g,h,i)perylene     | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | 1   |
| (                                      | Chrysene                 | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| ]                                      | Dibenz(a,h)anthracene    | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| F                                      | luoranthene              | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| F                                      | luorene                  | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
|                                        | ndeno(1,2,3-c,d)pyrene   | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    |     |
| 1                                      | Naphthalene              | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | T   |
|                                        | PAHs (Sum of total)      | mg/kg | 1.75 (Primary): 0.1 (Inte     | r                |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | 1   |
|                                        | Phenanthrene             | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             | İ                  | 1   |
|                                        | Pyrene                   | mg/kg | 0.1                           |                  |         |     |                          |            |                           |                   |     |                  |            |     |                             |                    | 1   |

<sup>\*\*</sup>RPDs have only been considered where a concentration is greater than 5 times the EQL.

\*\*High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 100 (5-10 x EQL); 50 (10-3

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any



| SDG               | SE71036        | Interlab_D | SE70984      | Interlab_D |    | SE70984      | Interlab_D |     | SE70984    | Interlab_D |     | SE70984       |
|-------------------|----------------|------------|--------------|------------|----|--------------|------------|-----|------------|------------|-----|---------------|
| Field_ID          | MS1-14_0.0-0.2 | QC7A RPI   | RE41_0.0-0.2 | QC2A R     | PD | RE34_0.0-0.2 | QC3A       | RPD | K1_0.0-0.2 | QC4A       | RPD | MS3-1_0.0-0.2 |
| Sampled_Date-Time | 30/07/2009     | 30/07/2009 | 24/07/2009   | 24/07/2009 |    | 27/07/2009   | 27/07/2009 |     | 28/07/2009 | 28/07/2009 |     | 28/07/2009    |

| Method_Type                    | ChemName            | Units    | EQL                          |        |      |     |       |        |    |        |          |    |      |                                                  |   |                                                  |
|--------------------------------|---------------------|----------|------------------------------|--------|------|-----|-------|--------|----|--------|----------|----|------|--------------------------------------------------|---|--------------------------------------------------|
| Cyanide                        | Cyanide Total       | mg/kg    | 0.1 (Primary): 5 (Interlab)  |        |      |     |       |        |    |        |          |    |      |                                                  |   |                                                  |
| 1                              |                     |          | , , ,                        |        |      |     |       |        |    |        |          |    |      |                                                  |   |                                                  |
| Inorganics                     | pH (Field)          | pH Units | 0                            | 6.2    |      |     |       |        |    |        |          |    | 8.2  |                                                  |   |                                                  |
| 9                              | , ,                 | <u> </u> |                              |        |      |     |       |        |    |        |          |    |      |                                                  |   |                                                  |
| Mercury Cold Vapor/Hg Analyser | Mercury             | mg/kg    | 0.05 (Primary): 0.1 (Inter   | < 0.05 | <0.1 | 0   | <0.05 | <0.1   | 0  | < 0.05 | <0.1     | 0  |      |                                                  |   | 0.13                                             |
| , , , , ,                      | ,                   | J J      | 7/                           |        |      |     |       |        |    |        |          |    |      |                                                  |   |                                                  |
| Metals in Soil by ICP-OES      | Arsenic             | mg/kg    | 3 (Primary): 2 (Interlab)    | 8.0    | 4.9  | 48  | 6.0   | 8.4    | 33 | 130.0  | 160.0    | 21 |      |                                                  |   | 1700.0                                           |
|                                | Cadmium             | mg/kg    | 0.3 (Primary): 0.5 (Interla  | 0.5    | <0.5 | 0   | 0.3   | <0.5   | 0  | 0.5    | 0.7      | 33 |      |                                                  |   | 12.0                                             |
|                                | Chromium (III+VI)   | mg/kg    | 0.3 (Primary): 5 (Interlab   | 20.0   | 25.0 | 22  | 18.0  | 19.0   | 5  | 20.0   | 23.0     | 14 |      |                                                  |   | 21.0                                             |
|                                | Copper              | mg/kg    | 0.5 (Primary): 5 (Interlab   | 15.0   | 13.0 | 14  | 15.0  | 20.0   | 29 | 40.0   | 39.0     | 3  |      |                                                  |   | 110.0                                            |
|                                | Lead                | mg/kg    | 1 (Primary): 5 (Interlab)    | 21.0   | 15.0 | 33  | 16.0  | 16.0   | 0  | 85.0   | 240.0    | 95 |      |                                                  |   | 1600.0                                           |
|                                | Nickel              | mg/kg    | 0.5 (Primary): 5 (Interlab   | 33.0   | 30.0 | 10  | 23.0  | 24.0   | 4  | 32.0   | 25.0     | 25 |      |                                                  |   | 18.0                                             |
|                                | Zinc                | mg/kg    | 0.5 (Primary): 5 (Interlab   | 150.0  | 86.0 | 54  | 63.0  | 63.0   | 0  | 140.0  | 390.0    | 94 |      |                                                  |   | 2200.0                                           |
|                                | ZITIC               | mg/kg    | 0.5 (Fillinary). 5 (Interlab | 130.0  | 00.0 | 77  | 00.0  | 00.0   | -  | 140.0  | 330.0    | 37 |      |                                                  |   | 2200.0                                           |
| Moisture                       | Moisture            | %        | 1                            | 9.0    | 1    | + + | 16.0  | -      |    | 8.0    |          |    | 26.0 |                                                  |   | 17.0                                             |
| Worstare                       | Worstare            | 70       | i e                          | 3.0    | -    | 1 1 | 10.0  |        |    | 0.0    |          |    | 20.0 |                                                  |   | 17.0                                             |
| OC Pesticides in Soil          | 2.4-DDT             | mg/kg    | 0.1                          |        | †    | + + | <0.1  | 1      | 1  |        | 1        | 1  |      | †                                                | 1 | <del></del>                                      |
| OO I Calloides III OOII        | 4.4-DDE             | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        | 1    | + + | <0.1  | <0.05  | 0  |        | <b>†</b> |    |      | <b>†</b>                                         | 1 | <del>                                     </del> |
|                                | a-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        | 1    | + + | <0.1  | <0.05  | 0  |        | 1        | 1  |      | 1                                                | 1 | <del>                                     </del> |
|                                | Aldrin              | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        | +    | + + | <0.1  | <0.05  | 0  |        |          |    |      |                                                  | + | <b>-</b>                                         |
|                                | b-BHC               |          | 0.1 (Primary): 0.05 (Inter   |        |      | +   | <0.1  | <0.05  | 0  |        |          |    |      |                                                  | - | <b>-</b>                                         |
|                                | cis-Chlordane       | mg/kg    | 0.1 (Primary): 0.05 (inter   |        | +    | + + | <0.1  | <0.05  | U  |        |          |    |      |                                                  | + | <b>-</b>                                         |
|                                |                     | mg/kg    |                              |        |      |     |       | -0.05  |    |        |          | _  |      |                                                  |   | <del></del>                                      |
|                                | d-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        | +    |     | <0.1  | < 0.05 | 0  |        |          |    |      |                                                  |   | <del></del>                                      |
|                                | DDD                 | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      | -   | <0.1  | < 0.05 | 0  |        |          |    |      |                                                  |   | <del></del>                                      |
|                                | DDT                 | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | < 0.05 | 0  |        |          |    |      |                                                  |   | <b></b>                                          |
|                                | Dieldrin            | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Endosulfan I        | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | < 0.05 | 0  |        |          |    |      |                                                  |   | <b></b>                                          |
|                                | Endosulfan II       | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Endosulfan sulphate | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Endrin              | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Endrin aldehyde     | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Endrin ketone       | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | g-BHC (Lindane)     | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   | <u> </u>                                         |
|                                | Heptachlor          | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Heptachlor epoxide  | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Hexachlorobenzene   | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | <0.05  | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Methoxychlor        | mg/kg    | 0.1 (Primary): 0.05 (Inter   |        |      |     | <0.1  | < 0.05 | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | o,p'-DDD            | mg/kg    | 0.1                          |        |      |     | <0.1  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                | o,p'-DDE            | mg/kg    | 0.1                          | ·      |      |     | <0.1  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                | trans-chlordane     | mg/kg    | 0.1                          |        |      |     | <0.1  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                | trans-Nonachlor     | mg/kg    | 0.1                          | ·      |      |     | <0.1  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                |                     |          |                              |        |      |     | -     |        |    |        |          |    |      |                                                  |   |                                                  |
| OP Pesticides in Soil by GCMS  | Azinophos methyl    | mg/kg    | 0.2                          |        |      |     | <0.2  | <0.5   | 0  |        |          |    |      |                                                  |   |                                                  |
| -                              | Bromophos-ethyl     | mg/kg    | 0.2                          |        |      |     | <0.2  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                | Chlorpyrifos        | mg/kg    | 0.2                          |        |      |     | <0.2  | <0.2   | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Diazinon            | mg/kg    | 0.5 (Primary): 0.2 (Interla  |        |      |     | <0.5  | <0.2   | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Dichlorvos          | mg/kg    | 1 (Primary): 0.2 (Interlab   |        |      |     | <1.0  | <0.2   | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Dimethoate          | mg/kg    | 1                            |        |      |     | <1.0  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                | Ethion              | mg/kg    | 0.2                          |        |      |     | <0.2  | <0.2   | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Fenitrothion        | mg/kg    | 0.2                          |        |      |     | <0.2  | <0.2   | 0  |        |          |    |      |                                                  |   |                                                  |
|                                | Malathion           | mg/kg    | 0.2                          |        |      |     | <0.2  |        |    |        |          |    |      |                                                  |   |                                                  |
|                                | Methidathion        | mg/kg    | 0.5                          |        | 1    | 1 1 | <0.5  | 1      |    |        |          |    |      | 1                                                | 1 |                                                  |
|                                | Parathion           | mg/kg    | 0.2                          |        | 1    | 1 1 | <0.2  |        |    |        |          |    |      |                                                  | 1 |                                                  |
|                                |                     |          | 1                            |        | 1    | 1 1 |       |        |    |        |          |    |      |                                                  | 1 |                                                  |
| PAHs in Soil                   | 1-Methylnaphthalene | mg/kg    | 0.1                          |        | 1    | +   |       | t      | 1  |        | <b>t</b> | 1  | <0.1 | <del>                                     </del> | + |                                                  |



| Field Duplicates (soil) Filter: SDG in("SE71167", "SE71036", "SE70984", | 'SE70874')          |       | SDG<br>Field_ID<br>Sampled_Date-Time | SE71036<br>MS1-14_0.0-0.2<br>30/07/2009 | Interlab_D<br>QC7A<br>30/07/2009 | SE70984<br>RE41_0.0-0.2<br>24/07/2009 |  | SE70984<br>RE34_0.0-0.2<br>27/07/2009 | Interlab_D<br>QC3A<br>27/07/2009 | SE70984<br>K1_0.0-0.2<br>28/07/2009 |      |   | SE70984<br>MS3-1_0.0-0.2<br>28/07/2009 |
|-------------------------------------------------------------------------|---------------------|-------|--------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------|--|---------------------------------------|----------------------------------|-------------------------------------|------|---|----------------------------------------|
| 2-methy                                                                 | Inaphthalene m      | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                |      |   |                                        |
| Acenaph                                                                 | nthene m            | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Acenaph                                                                 | nthylene m          | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Anthrace                                                                | ene m               | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Benz(a)a                                                                | anthracene m        | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Benzo(a                                                                 | ) pyrene m          | ng/kg | 0.05 (Primary): 0.1 (Inter           |                                         |                                  |                                       |  |                                       |                                  | < 0.05                              | <0.1 | 0 |                                        |
| Benzo(b                                                                 | )&(k)fluoranthene m | ng/kg | 0.2                                  |                                         |                                  |                                       |  |                                       |                                  | <0.2                                |      |   |                                        |
| Benzo(g                                                                 | ,h,i)perylene m     | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Chrysen                                                                 | e m                 | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Dibenz(a                                                                | a,h)anthracene m    | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Fluorant                                                                | hene m              | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Fluorene                                                                | e m                 | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Indeno(1                                                                | 1,2,3-c,d)pyrene m  | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Naphtha                                                                 | ilene m             | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| PAHs (S                                                                 | Sum of total) m     | ng/kg | 1.75 (Primary): 0.1 (Inter           |                                         |                                  |                                       |  |                                       |                                  | <1.75                               | <0.1 | 0 |                                        |
| Phenant                                                                 | threne m            | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |
| Pyrene                                                                  | m                   | ng/kg | 0.1                                  |                                         |                                  |                                       |  |                                       |                                  | <0.1                                | <0.1 | 0 |                                        |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 5 times the EQL.

\*\*High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 100 (5-10 x EQL); 50 (10-3

\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any



| SDG               | Interlab_D |     |
|-------------------|------------|-----|
| Field_ID          | QC5A       | RPD |
| Sampled_Date-Time | 28/07/2009 |     |

| Method_Type                    | ChemName            | Units    | EQL                         |        |          |
|--------------------------------|---------------------|----------|-----------------------------|--------|----------|
| Cyanide                        | Cyanide Total       | mg/kg    | 0.1 (Primary): 5 (Interlab  |        |          |
| -                              |                     |          | ` '''                       |        |          |
| Inorganics                     | pH (Field)          | pH Units | 0                           |        | 1        |
|                                | ,                   | i -      |                             |        |          |
| Mercury Cold Vapor/Hg Analyser | Mercury             | mg/kg    | 0.05 (Primary): 0.1 (Inter  | <0.1   | 26       |
|                                | ,                   |          | ()                          |        | 1        |
| Metals in Soil by ICP-OES      | Arsenic             | mg/kg    | 3 (Primary): 2 (Interlab)   | 1800.0 | 6        |
| Wetals III cell by let 'e.e.   | Cadmium             | mg/kg    | 0.3 (Primary): 0.5 (Interla | 14.0   | 15       |
|                                | Chromium (III+VI)   | mg/kg    | 0.3 (Primary): 5 (Interlab  | 25.0   | 17       |
|                                | Copper              | mg/kg    | 0.5 (Primary): 5 (Interlab  | 93.0   | 17       |
|                                | Lead                | mg/kg    | 1 (Primary): 5 (Interlab)   | 1600.0 | 0        |
|                                | Nickel              | mg/kg    | 0.5 (Primary): 5 (Interlab  | 17.0   | 6        |
|                                |                     |          |                             |        | 24       |
|                                | Zinc                | mg/kg    | 0.5 (Primary): 5 (Interlab  | 2800.0 | 24       |
| ** * *                         |                     | 0/       |                             |        | 1        |
| Moisture                       | Moisture            | %        | 1                           |        |          |
|                                |                     |          |                             |        |          |
| OC Pesticides in Soil          | 2,4-DDT             | mg/kg    | 0.1                         |        |          |
|                                | 4,4-DDE             | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | a-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Aldrin              | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | b-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | cis-Chlordane       | mg/kg    | 0.1                         |        |          |
|                                | d-BHC               | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | DDD                 | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        | 1        |
|                                | DDT                 | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Dieldrin            | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        | 1        |
|                                | Endosulfan I        | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Endosulfan II       | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Endosulfan sulphate | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        | 1        |
|                                | Endrin              | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        | -        |
|                                | Endrin aldehyde     | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        | 1        |
|                                |                     |          |                             |        | +        |
|                                | Endrin ketone       | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        | -        |
|                                | g-BHC (Lindane)     | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Heptachlor          | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Heptachlor epoxide  | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Hexachlorobenzene   | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | Methoxychlor        | mg/kg    | 0.1 (Primary): 0.05 (Inter  |        |          |
|                                | o,p'-DDD            | mg/kg    | 0.1                         |        |          |
|                                | o,p'-DDE            | mg/kg    | 0.1                         |        |          |
|                                | trans-chlordane     | mg/kg    | 0.1                         |        |          |
|                                | trans-Nonachlor     | mg/kg    | 0.1                         |        |          |
|                                |                     |          |                             |        |          |
| OP Pesticides in Soil by GCMS  | Azinophos methyl    | mg/kg    | 0.2                         |        |          |
| -                              | Bromophos-ethyl     | mg/kg    | 0.2                         |        |          |
|                                | Chlorpyrifos        | mg/kg    | 0.2                         |        |          |
|                                | Diazinon            | mg/kg    | 0.5 (Primary): 0.2 (Interla |        |          |
|                                | Dichlorvos          | mg/kg    | 1 (Primary): 0.2 (Interlab  |        |          |
|                                | Dimethoate          | mg/kg    | 1                           |        | 1        |
|                                | Ethion              | mg/kg    | 0.2                         |        | 1        |
|                                | Fenitrothion        | mg/kg    | 0.2                         |        | 1        |
|                                | Malathion           | mg/kg    | 0.2                         |        | 1        |
|                                | Methidathion        |          | 0.5                         |        | +        |
| <u> </u>                       |                     | mg/kg    |                             |        | 1        |
| <u> </u>                       | Parathion           | mg/kg    | 0.2                         |        | 1        |
| PAHs in Soil                   | 1-Methylnaphthalene | mg/kg    | 0.1                         |        | <u> </u> |



| SDG               | Interlab_D |     |
|-------------------|------------|-----|
| Field_ID          | QC5A       | RPD |
| Sampled_Date-Time | 28/07/2009 |     |

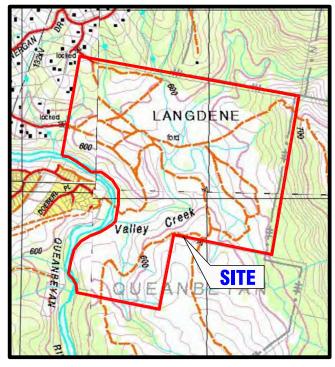
|   | 2-methylnaphthalene      | mg/kg | 0.1                        |  |
|---|--------------------------|-------|----------------------------|--|
|   | Acenaphthene             | mg/kg | 0.1                        |  |
|   | Acenaphthylene           | mg/kg | 0.1                        |  |
|   | Anthracene               | mg/kg | 0.1                        |  |
|   | Benz(a)anthracene        | mg/kg | 0.1                        |  |
|   | Benzo(a) pyrene          | mg/kg | 0.05 (Primary): 0.1 (Inter |  |
|   | Benzo(b)&(k)fluoranthene | mg/kg | 0.2                        |  |
|   | Benzo(g,h,i)perylene     | mg/kg | 0.1                        |  |
|   | Chrysene                 | mg/kg | 0.1                        |  |
|   | Dibenz(a,h)anthracene    | mg/kg | 0.1                        |  |
|   | Fluoranthene             | mg/kg | 0.1                        |  |
|   | Fluorene                 | mg/kg | 0.1                        |  |
|   | Indeno(1,2,3-c,d)pyrene  | mg/kg | 0.1                        |  |
|   | Naphthalene              | mg/kg | 0.1                        |  |
|   | PAHs (Sum of total)      | mg/kg | 1.75 (Primary): 0.1 (Inter |  |
|   | Phenanthrene             | mg/kg | 0.1                        |  |
| _ | Pyrene                   | mg/kg | 0.1                        |  |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 5 times the EQL.


\*\*High RPDs are in bold (Acceptable RPDs for each EQL multiplier range are: 100 (5-10 x EQL); 50 (10-3

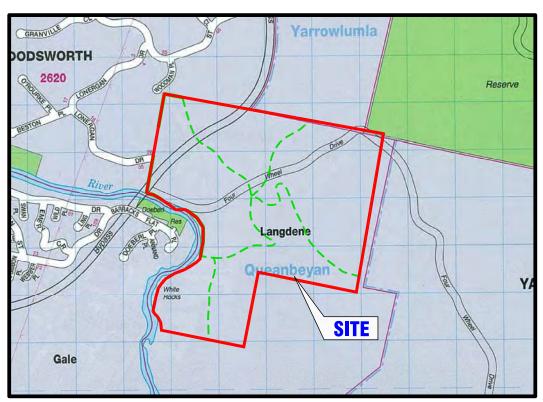
\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any

### **Figures**


Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW



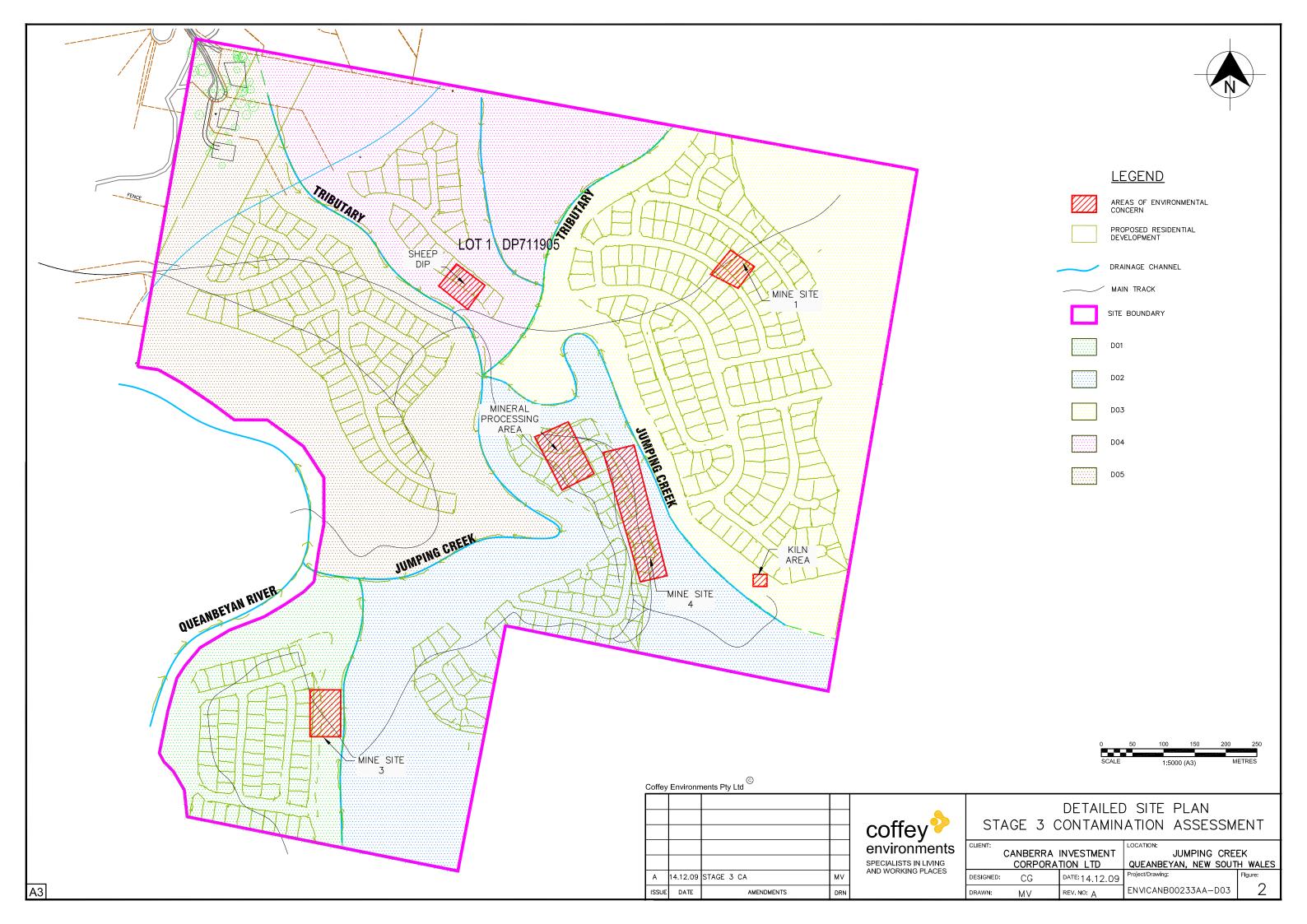


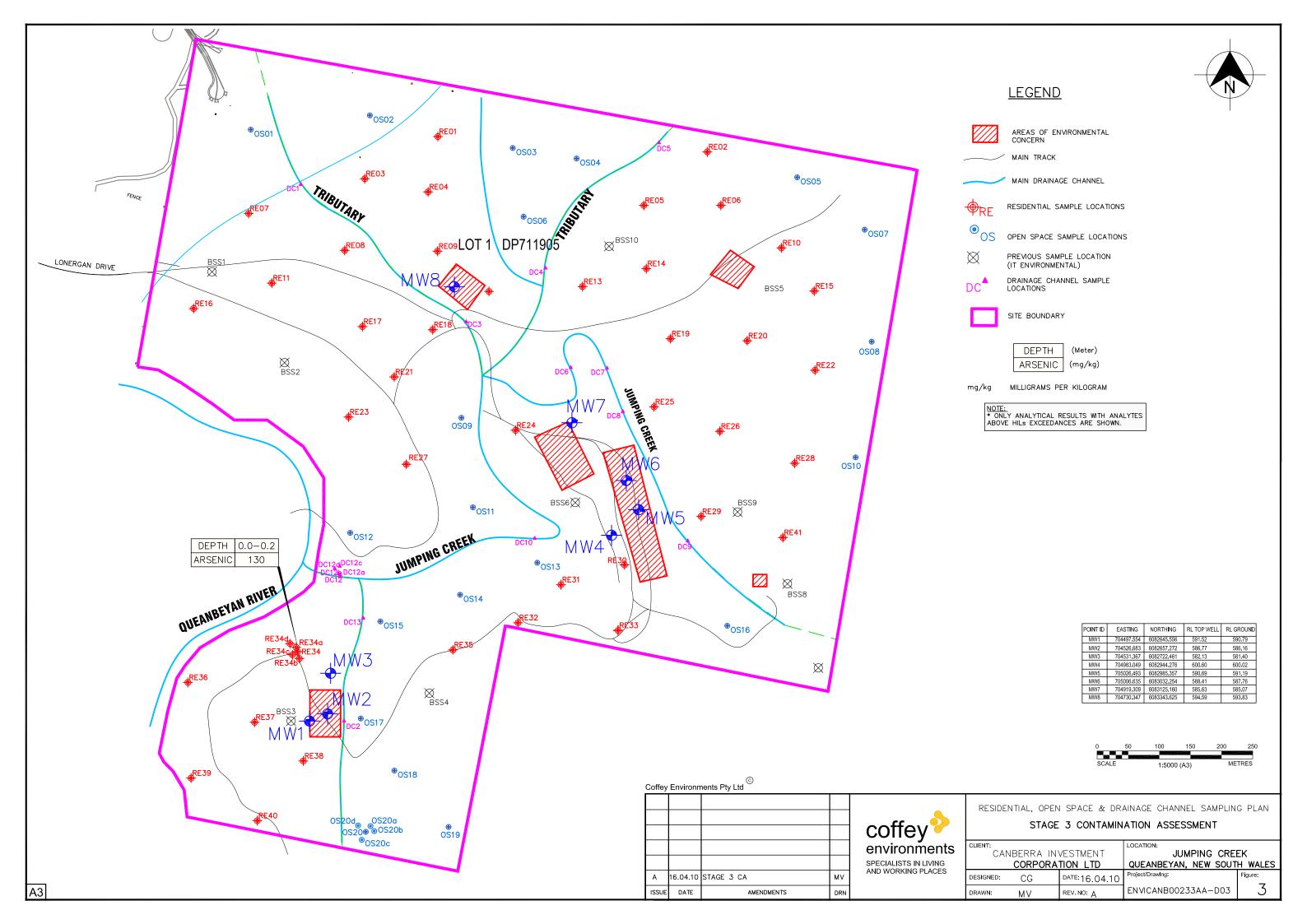

**GENERAL AREA MAP** 

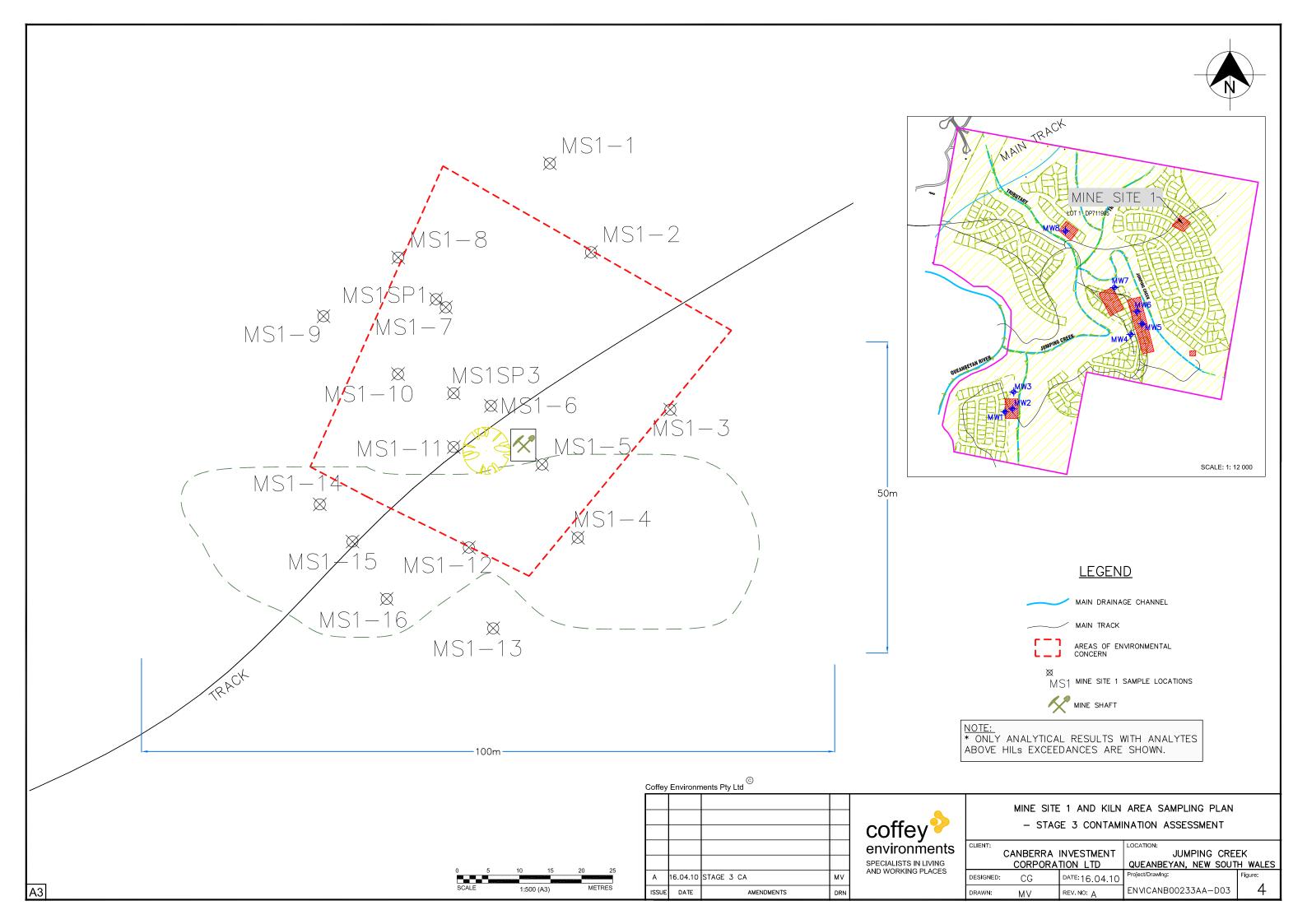


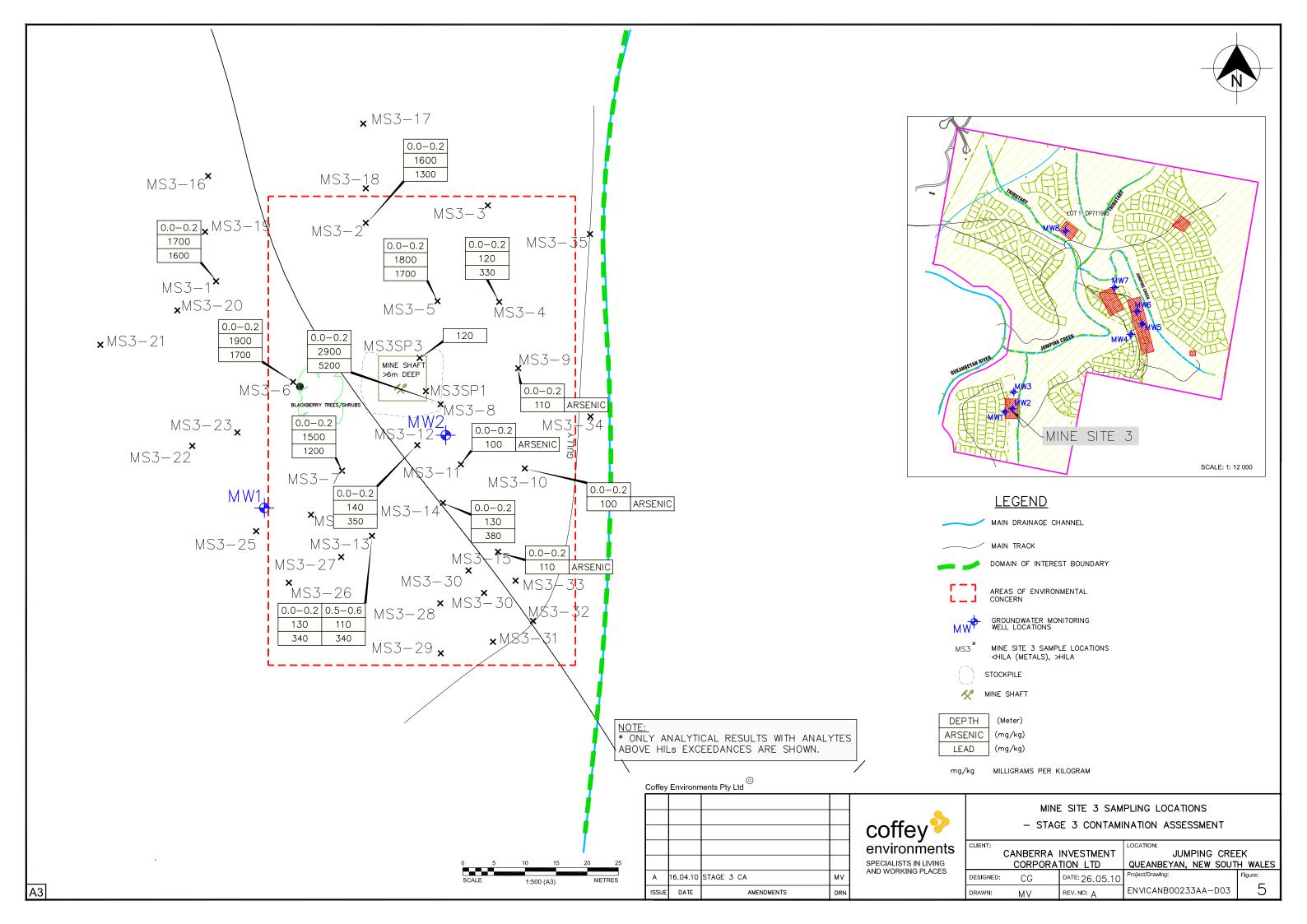


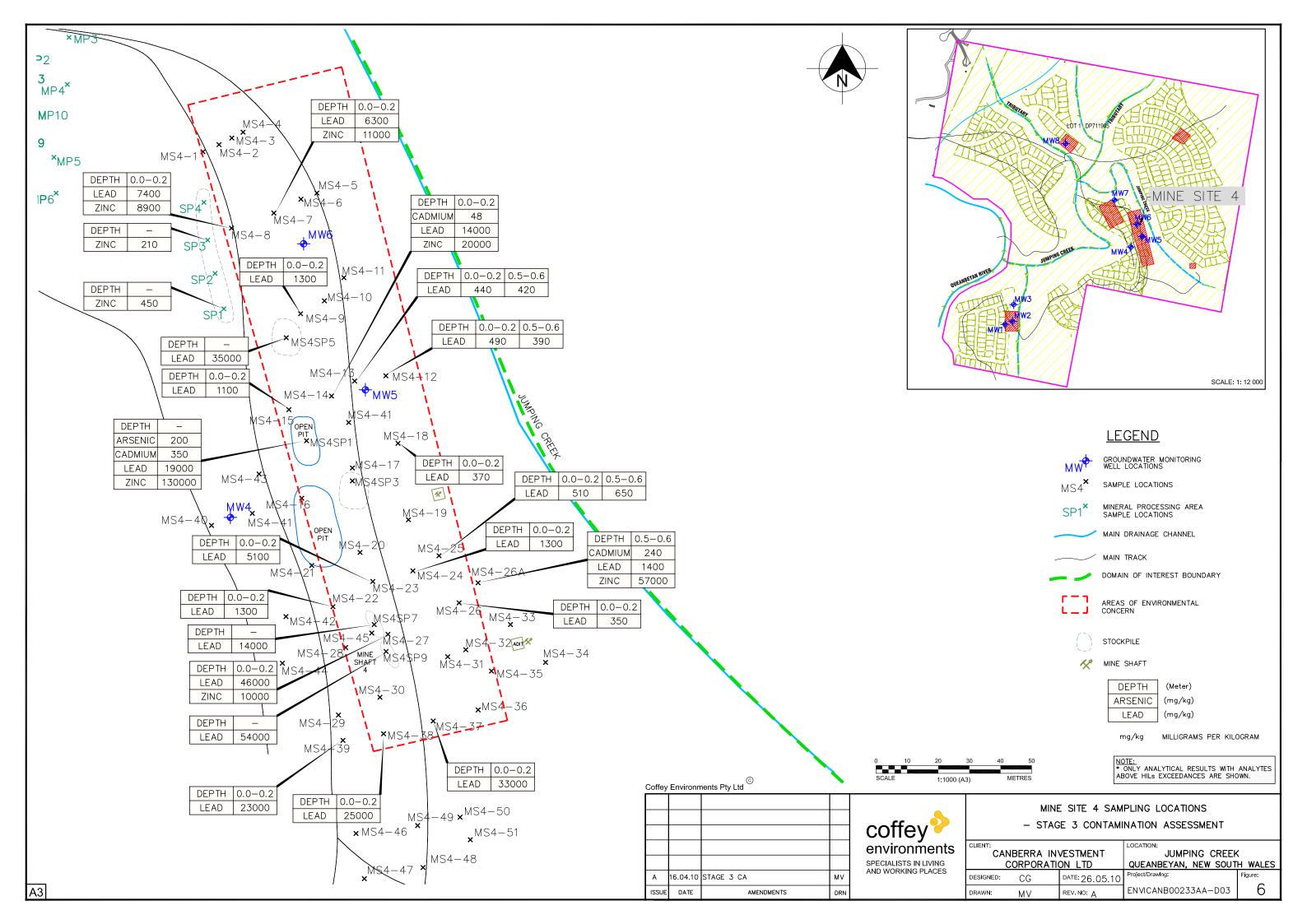
**REGIONAL** AREA MAP

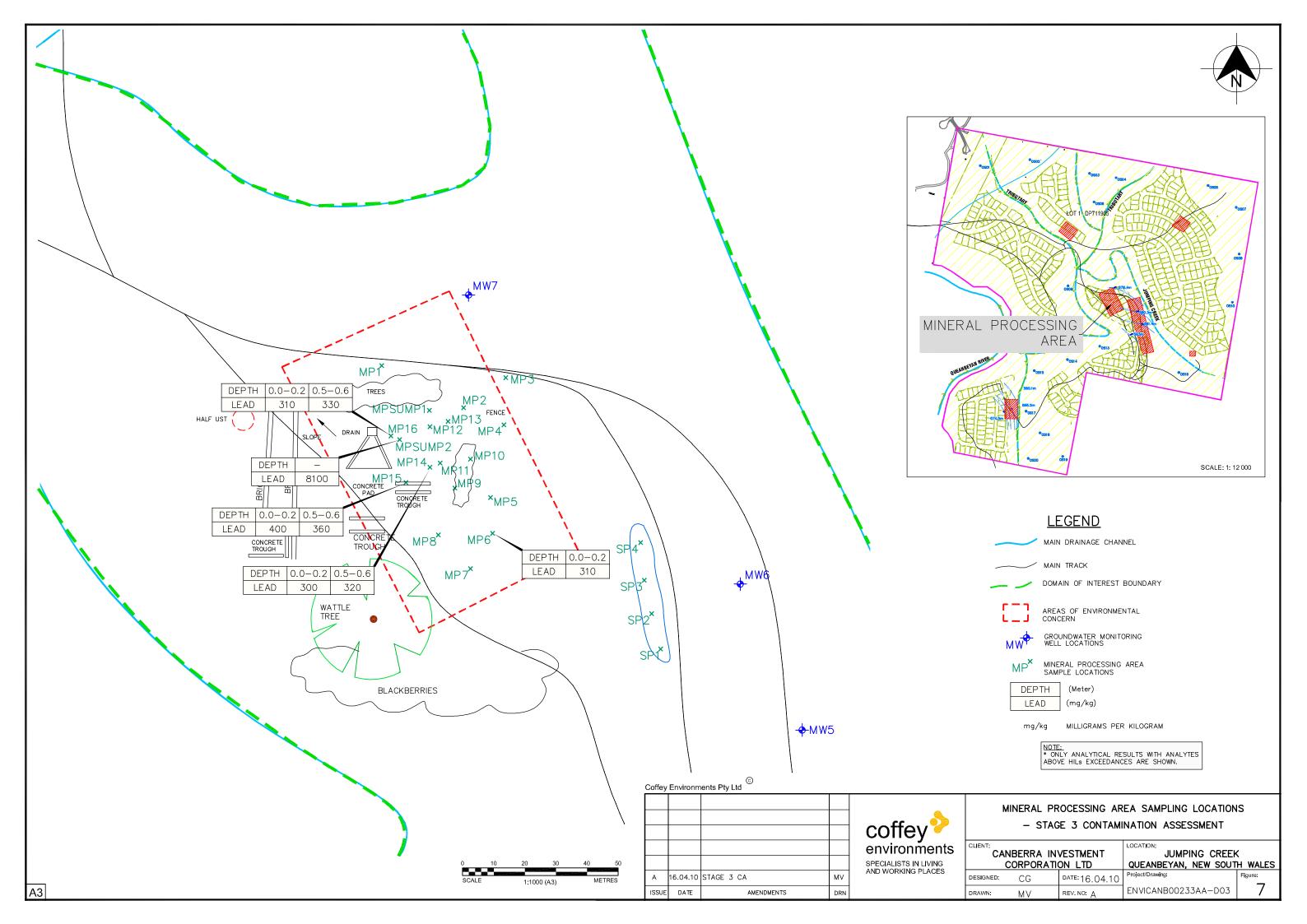

SOURCE: TOPOVIEW RASTER VIEW 2009
CANBERRA, BUNGENDORE, TUGGERANONG & HOSKINGSTOWN

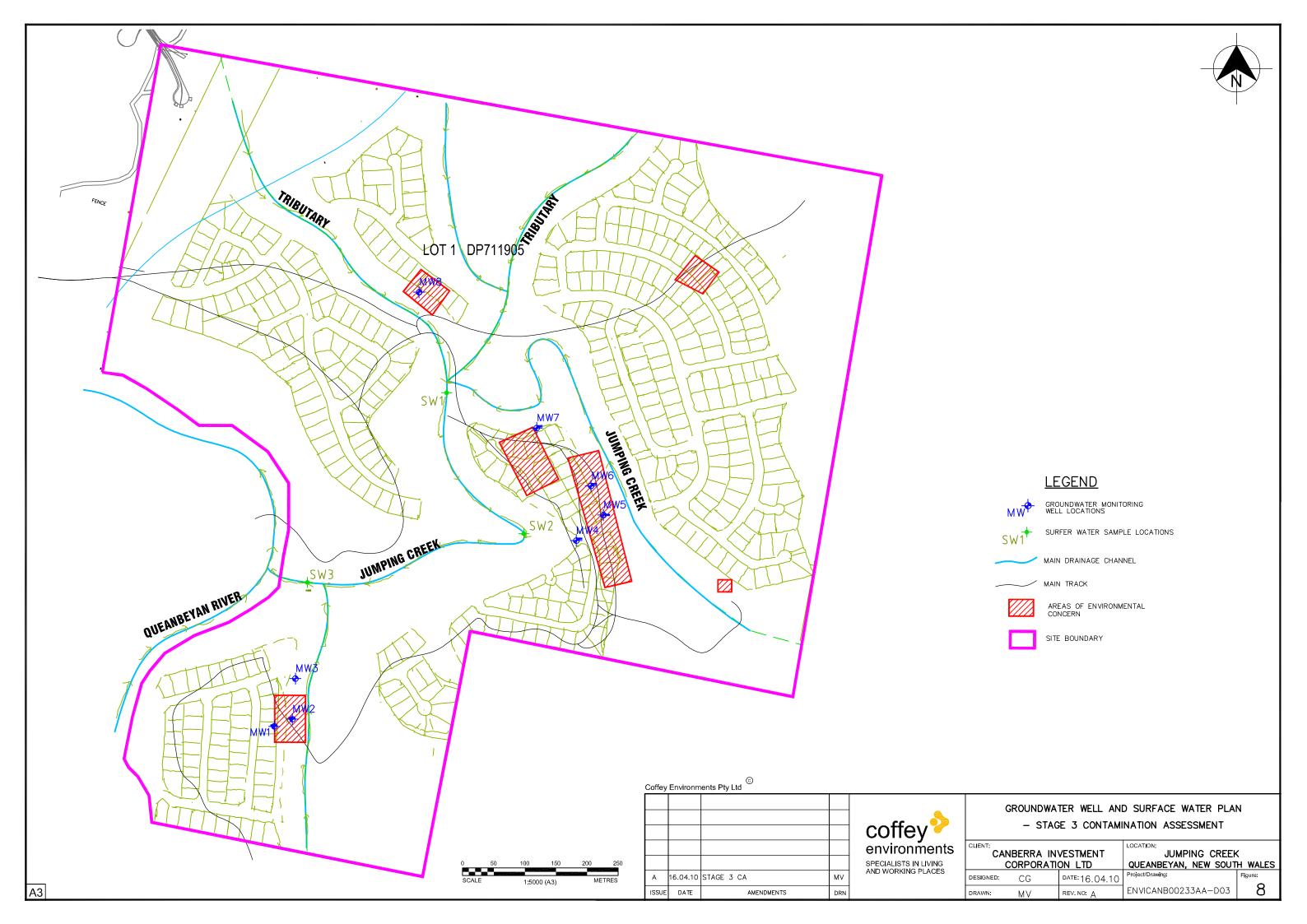


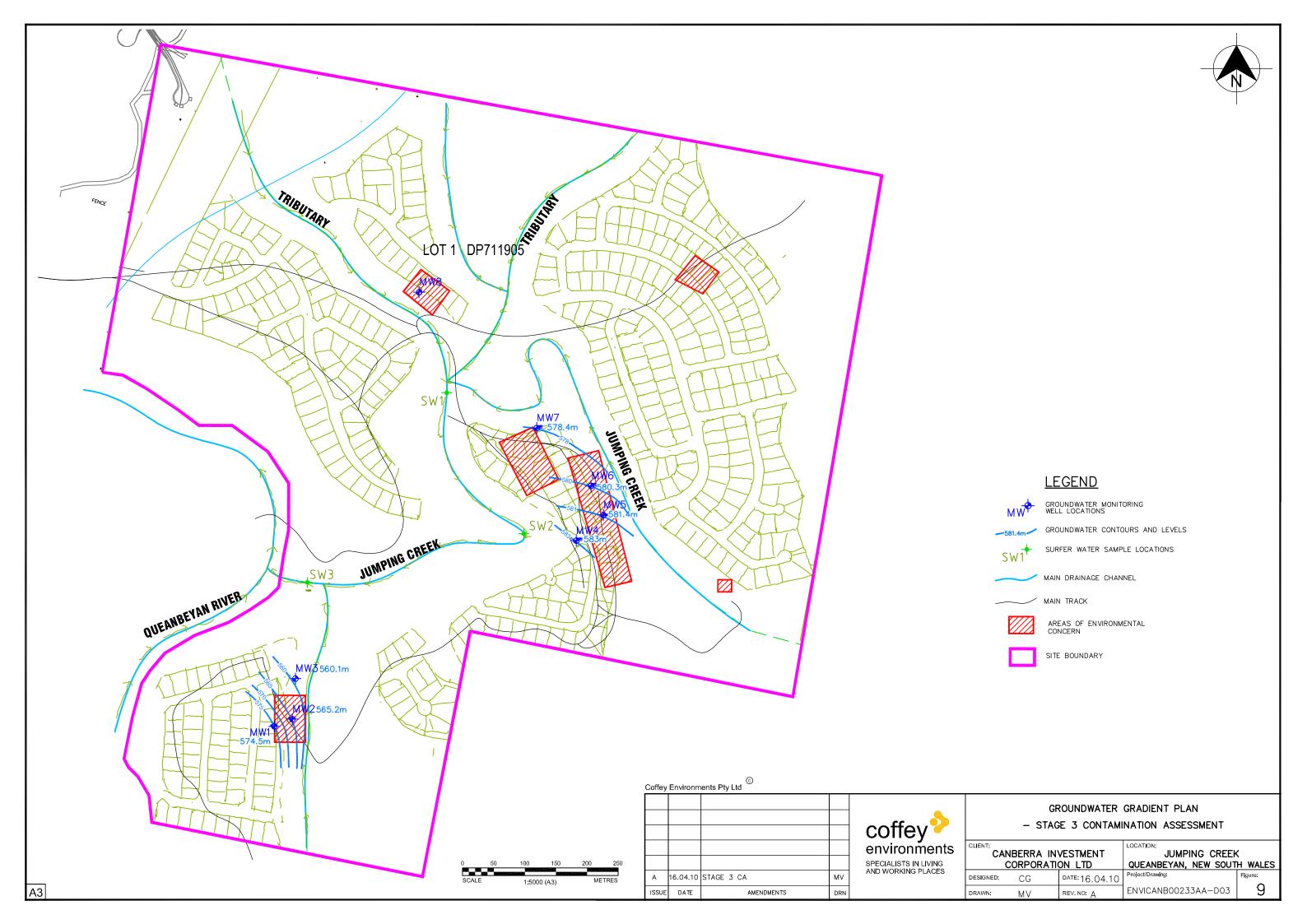


LOCAL AREA MAP


SOURCE: CANBERRA & QUEANBEYAN STREET DIRECTORY, EDITION 11TH, 2005, MAP: 82

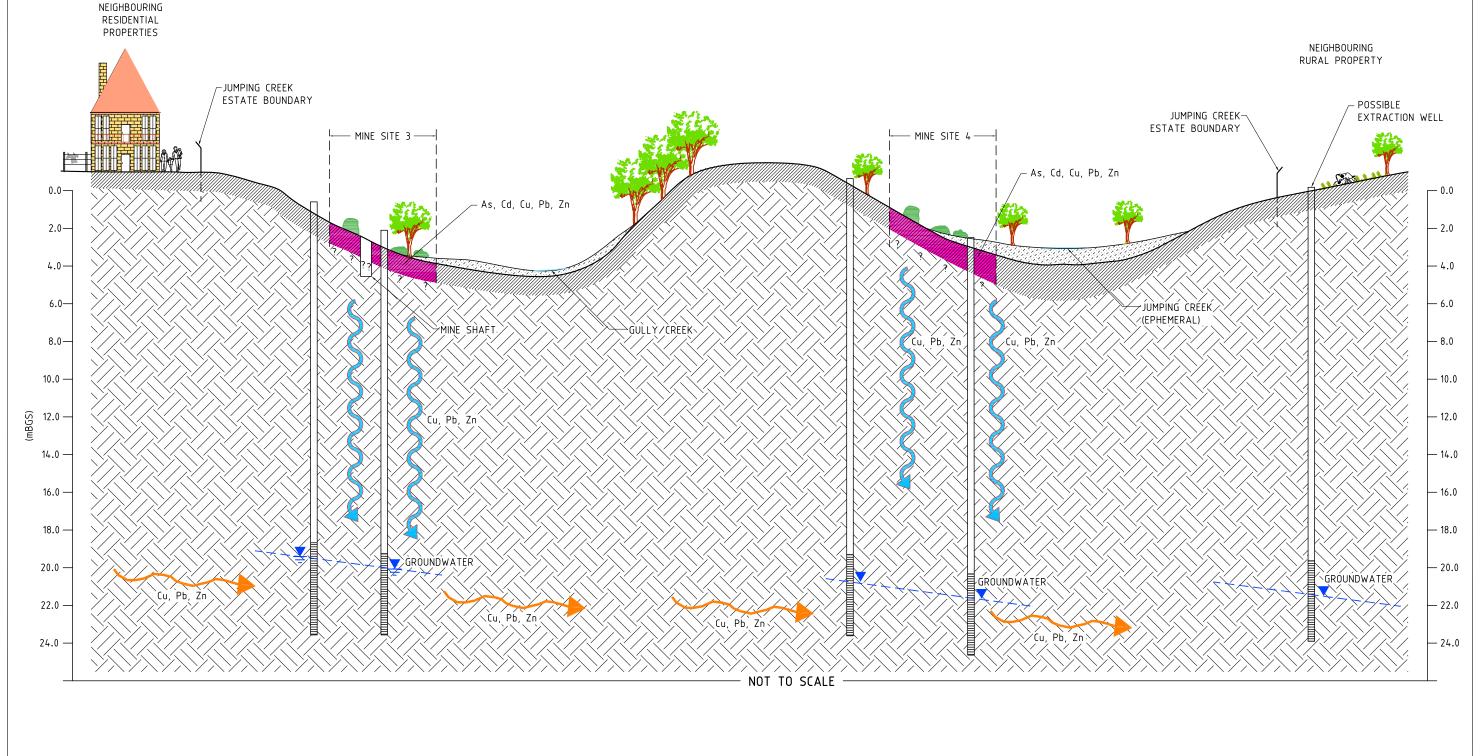

Coffey EnvIronments Pty Ltd Project: Drawing Title: coffey 2/54 Northbourne Avenue Canberra ACT 2601 Ph: (02) 6248 7154 Fax: (02) 6248 7157 CANBERRA INVESTMENT environments JUMPING CREEK SPECIALISTS IN LIVING AND WORKING PLACES CORPORATION LTD STAGE 3 CONTAMINATION ASSESSMENT **SITE LOCATION PLAN** Location: JUMPING CREEK 14.12.09 QUEANBEYAN, NEW SOUTH WALES STAGE 3 CA Figure No. Rev. Project - Drawing No. METRES 1:20 000 (A4) ENVICANBO0233AA-DO Revision Details












### CONCEPTUAL SITE MODEL





'DELINEATED' AREA OF CONTAMINATION

ALLUVIAL DEPOSITS: SILTY SAND/CLAYEY SAND, SOME GRAVELS (<1.5mBGS)

WASTE/TAILINGS PILES

SKELETAL/RESIDUAL SOILS: CLAYEY SANDS/GRAVELLY CLAYEY SANDS (<2mbGS)

BEDROCK: SANDSTONE/SILTSTONE/SHALE

|        |              |     |     | (C) |
|--------|--------------|-----|-----|-----|
| Coffey | Environments | Pty | Ltd | _   |

| Irawn            | CGT      |                                                                |
|------------------|----------|----------------------------------------------------------------|
| approved         |          | ooffov                                                         |
| late             | 11.06.10 | coffey environments                                            |
| cale             | AS SHOWN | SPECIALISTS IN ENVIRONMENTAL,<br>SOCIAL AND SAFETY PERFORMANCE |
| original<br>size | А3       |                                                                |

| client:     | CANBERRA INVESTMENT CORPO              | ORATION LT | -D        |
|-------------|----------------------------------------|------------|-----------|
| project     |                                        |            |           |
|             | JUMPING CREEK<br>QUEANBEYAN, NEW SOUTH | H WALES    |           |
| title:      | CONCEPTUAL SITE MO                     | DEL        |           |
| project no: | ENVICANB00233AA                        | figure no: | FIGURE 10 |

# Appendix A Sampling Analysis and Quality Plan

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

#### A1. DATA QUALITY OBJECTIVES - SAMPLING

These data quality objectives (DQOs) are applicable for the sampling within the site (defined as area shown on Figure 2). DQOs have been developed in accordance with the seven step process outlined in AS4482.1-1997 and NSW DEC (2006).

#### Step 1 - State the Problem

The primary objectives were to:

- Assess the contamination status of the site and suitability of the site for the proposed medium density residential apartments; and
- Assess the likely waste classification for soils to be excavated and disposed offsite, predominantly in the vicinity of the PAH hotspot, stockpiles onsite and asbestos containing fill materials in the McElhone Street Terrace;

The main problems are:

- · How many soil samples should be collected?
- What sample layout should be used to achieve the above objectives?
- · What analytes should be tested?

#### Step 2 - Identify the Decision

- Is the area within the site suitable for the proposed land use?
- What waste classification type is applicable for materials stockpiled onsite and soils beneath the site that are likely to be excavated and disposed offsite?

#### Step 3 - Identify Inputs to the Decision

The primary inputs to assessing the above include:

- The findings of the previous Stage 1 Preliminary Environmental Site Assessment carried out on the subject site including site history information and site observations;
- Additional data collected by Coffey as part of this assessment including field measurements, observations and laboratory analytical results;
- · Outcome of quality assurance assessment from relevant data; and
- Applicable NSW EPA / DECC Guidelines.

#### Step 4 - Define the Study Boundaries

The study boundary is defined as the southern portion of Lot 60 of DP619268, which is bounded by Reid Avenue to the south, Dowling street to the west and McElhone Street to the East (see figure 2).

Vertically the study boundary is to a maximum depth of 3.3 m below the current ground level (the deepest fill encountered on the site).

### Step 5 - Develop a Decision Rule

Potential chemicals of concern are listed in Section 4.2 of the main text.

The decision rule for soil for each Contaminant of Potential Concern (COPCs) will be as follows:

- QA / QC assessment for COPCs indicates data usable;
- Where concentrations for each sample are below the investigation level then no further assessment is required with respect to that chemical for site suitability purposes;
- Where there are one or more exceedances of the health-based investigation level (HIL), then:
- If the 95% upper confidence level (UCL) of the concentrations for each chemical / soil unit / area is below the HIL, and no individual concentration exceeds the HIL by a factor of greater than 2.5, and the standard deviation of the concentrations for each chemical / soil unit / area is below 50% of the HIL then no further assessment / remediation will be required with respect to that chemical / soil unit / area; and
- Where the 95% UCL of the concentrations for any chemical / soil unit / area exceeds the HIL, or one or
  more individual concentrations exceed the HIL by a factor of greater than 2.5, or the standard deviation
  of the concentrations for each chemical / soil unit / area exceeds 50% of the HIL, then further
  assessment / remediation may be required, with respect to that chemical / soil unit / area.
  - The decision rule for soil for each chemical / layer to assess the suitability of the soil for offsite disposal to landfill will be in accordance with the NSW DEC (2008) Waste Classification Guidelines Part 1: Classifying Waste.

### Step 6 - Specify Acceptable Limits on Decision Errors

There are two types of error for site suitability assessment purposes:

- 1. Deciding that the site is acceptable when it is actually not.
- 2. Deciding that the site is unacceptable when it is.
- For waste classification, the error in the assessment will involve the error in determining the type of waste and the error in the laboratory analytical results in the concentration of analytes.

The assessment will aim with a 95% confidence level to conclude that the subject site is suitable for the proposed use and for waste classification purposes. For this reason, the 95% UCL will be used to assess the mean.

#### Step 7 - Optimise the Design for Obtaining Data

The samples will target the areas identified with potential contamination issues based on site history and previous assessment. Random samples will be collected and samples will also be collected from material where evidence of visual or olfactory contamination is identified.

### **A2. Data Quality Indicators**

The following sections present the DQIs that have been used to assess the quality of the data.

### **DATA COMPLETENESS**

### **Field Considerations**

|                                                                                   | Yes /<br>No | Comments                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were all critical locations sampled?                                              | No          | During field investigations, the client requested Coffey to complete works on site by 1:30pm to minimise public attention. As a result test pit location TP5 was not progressed through to natural soil and location TP6 was not progressed into subsurface fill material. |
| Were the SOPs appropriate and complied with?                                      | Yes         | Coffey Environments Standard Operating Procedure (SOP) was consistent with relevant guidelines and was complied with by field staff.                                                                                                                                       |
| Was the sampler adequately experienced?                                           | Yes         | Samples were collected by trained and appropriately experienced staff members from Coffey Environments.                                                                                                                                                                    |
| Was the field documentation complete?                                             | Yes         | Daily field logs and records were compiled on-site by the Coffey Environments staff member. Samples selected for analysis were scheduled on the chain of custody (COC).                                                                                                    |
| Is a copy of the signed chain of custody form for each batch of samples included? | Yes         | Copies are included in Appendix D.                                                                                                                                                                                                                                         |

### **Laboratory Considerations**

|                                                       | Yes /<br>No | Comment                                                              |
|-------------------------------------------------------|-------------|----------------------------------------------------------------------|
| Were all samples analysed according to sampling plan? | Yes         | Samples were analysed according to the plan.                         |
| Were the laboratory methods appropriate?              | Yes         | Methods used were the recommended industry methods / standards.      |
| Was the laboratory methods adopted NATA endorsed?     | Yes         | Laboratories used and their methods were NATA accredited / endorsed. |
| Was the NATA Seal on the laboratory reports?          | Yes         |                                                                      |

|                                                             | Yes /<br>No | Comment                                                                                                                                                       |
|-------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were the laboratory reports signed by an authorised person? | Yes         | All laboratory reports were signed by authorised signatories using electronic signatures.                                                                     |
| Were the laboratory LORs below the criteria?                | Yes         |                                                                                                                                                               |
| Was sample documentation complete?                          | Yes         | COCs were filled out correctly at time of dispatch and receipt; they were included with the sample receipt and analysis reports provided by the laboratories. |
| Were sample holding times complied with?                    | Yes         |                                                                                                                                                               |

### **COMPLETENESS CONCLUSION**

|                               | Yes /<br>No | Comment |
|-------------------------------|-------------|---------|
| Was data adequately complete? | Yes         |         |

### **DATA COMPARABILITY**

### Field considerations

|                                                                                                      | Yes / No | Comment                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was there more than one sampling round?                                                              | No       | The soil assessment was conducted on the 29 July 2009. The soil samples were submitted for laboratory analysis in one batch.                                                                            |
| Were the same sampling methodology and SOPs used for all sampling?                                   | Yes      | Samples were collected from a backhoe bucket, using clean disposable nitrile gloves. All sampling followed the respective Coffey Environments SOPs.                                                     |
| Was all sampling undertaken by the same sampler?                                                     | Yes      | All samples were collected by Fernando Velesquez during the July 2009 sampling. Coffey Environments SOPs for soil sampling were followed during the works.                                              |
| Were sample containers, preservation, filtering the same?                                            | Yes      | Containers used were supplied by the corresponding laboratories to provide appropriate sample storage. Samples were immediately placed into a chilled (approximately 4°C) cooler.                       |
| Could climatic conditions<br>(temperature, rainfall, wind)<br>have influenced data<br>comparability? | No       | Coffey considers that the climatic condition experienced over the sampling period is unlikely to have affected the data. Samples were collected quickly and placed immediately in an ice filled cooler. |
| Were the same types of samples collected (filtered, size fractions etc) for each media?              | Yes      |                                                                                                                                                                                                         |

### **Laboratory Considerations**

|                                        | Yes /<br>No | Comment                                                                                                                                                                                                                      |
|----------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were the same analytical methods used? | yes         | Analytical methods were the same between laboratories.                                                                                                                                                                       |
| Were the LORs the same?                | No          | LORs were generally the same, with the exception of some chemicals (e.g. BTEX between laboratories). Given the LORs were well below the HIL, it is considered that the different PQLs were unlikely to change the conclusion |

|                                   | Yes /<br>No | Comment                                                                                                                                                                     |
|-----------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |             | of this report.                                                                                                                                                             |
| Were the same laboratories used?  | Yes         | SGS Laboratories in Sydney were used for the primary sample analysis and Envirolab in Sydney were used for inter-laboratory samples. Both are NATA accredited laboratories. |
| Were the units reported the same? | Yes         |                                                                                                                                                                             |

### **COMPARABILITY CONCLUSION**

|                                 | Yes /<br>No | Comment |
|---------------------------------|-------------|---------|
| Was data adequately comparable? | Yes         |         |

### **DATA REPRESENTATIVENESS**

### **Field Considerations**

|                                                                                                                  | Yes /<br>No | Comment                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was appropriate media sampled?                                                                                   | Yes         |                                                                                                                                                                                                                                                                                           |
| Were all media identified sampled?                                                                               | Yes         |                                                                                                                                                                                                                                                                                           |
| Were the samples properly and adequately preserved? This includes keeping the samples chilled, where applicable. | Yes         | Samples were immediately placed in ice chilled cooler boxes for transport, under COC conditions. Sample jars were sealed, with minimal remaining headspace. Samples were analysed within the recommended holding times. Samples were received at the laboratories in a chilled condition. |
| Were the samples in proper custody between the field and reaching the laboratory?                                | Yes         |                                                                                                                                                                                                                                                                                           |
| Were the samples received by the laboratory in good condition?                                                   | Yes         | Laboratory sample receipts are included in Appendix D.                                                                                                                                                                                                                                    |

### REPRESENTATIVENESS CONCLUSION

|                                     | Yes /<br>No | Comment                                                                                          |
|-------------------------------------|-------------|--------------------------------------------------------------------------------------------------|
| Was data adequately representative? | Yes         | Coffey is of opinion that the data was adequately representative for the objective of the works. |

### **DATA PRECISION AND ACCURACY**

### Field considerations

|                                              | Yes<br>/<br>No | Comment |
|----------------------------------------------|----------------|---------|
| Were the SOPs appropriate and complied with? | Yes            |         |

### Field QA/QC

|                                                                  | Yes / No        | Comment                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were an adequate number of field duplicates analysed?            | Yes             | During the field works program, field intra-laboratory duplicates were analysed at a rate of approximately 1 in 8 samples (12.5%) and field inter-laboratory duplicates were analysed at a rate of approximately 1 in 16 samples (6.25%) per batch. There are a total of 16 primary samples, 2 intralaboratory duplicates, and 1 interlaboratory duplicates. This is considered adequate. |
| Were the RPDs of the field duplicates within control limits?     | See<br>Comments | Only total phenolics had RPDs in excess of the 50% control limit. This is not considered to affect the findings of this report.                                                                                                                                                                                                                                                           |
| Were an adequate number of trip blanks and trip spikes analysed? | Yes             | One trip blank sample was collected. A trip spike was not collected during the assessment however this is considered to be adequate for this assessment.                                                                                                                                                                                                                                  |
| Were an adequate number of wash blanks analysed?                 | N/A             | Only disposable equipment came into contact with samples.                                                                                                                                                                                                                                                                                                                                 |
| Lab QA/QC                                                        |                 |                                                                                                                                                                                                                                                                                                                                                                                           |
| Were an adequate number of laboratory blank samples analysed?    | Yes             | See batch summary tables. One laboratory blank sample per batch was generally analysed for the contaminant(s) analysed in the batch.                                                                                                                                                                                                                                                      |
| Were the blanks free of contaminants?                            | Yes             | Analytical results for blank samples were below LOR.                                                                                                                                                                                                                                                                                                                                      |

| Were an adequate number of laboratory matrix spikes and laboratory control samples analysed?        | Yes             | See batch summary tables. One laboratory matrix spike and laboratory control sample per batch were generally analysed for the contaminant(s) analysed in the batch. |
|-----------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Were an adequate number of surrogate spike samples analysed?                                        | Yes             | See batch summary tables. Surrogate spikes were analysed as appropriate according to laboratory methods.                                                            |
| Were the spikes recoveries within control limits?                                                   | See<br>Comments | Chloroform returned a recovery of 65% acceptable percent is 70%                                                                                                     |
| Were an adequate number of laboratory duplicates analysed?                                          | Yes             |                                                                                                                                                                     |
| Were the RPDs of the laboratory duplicates and other quality control methods within control limits? | Yes             |                                                                                                                                                                     |

### PRECISION AND ACCURACY CONCLUSION

|                                           | Yes /<br>No | Comment                                                                                                      |
|-------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------|
| Was data adequately precise and accurate? | Yes         | Overall, Coffey considers that the data were adequately precise and accurate for the objective of the works. |

# Appendix B Laboratory Certificates

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

Chain of Custody

JOB NO. T. COOPERAD

No: 26351

|                         |           |                  | Laboratory Quotation / Order No: | BI NO!      |                   | 1) A SOM GOT         | TOTAL STORY              | 1                           |
|-------------------------|-----------|------------------|----------------------------------|-------------|-------------------|----------------------|--------------------------|-----------------------------|
| Dispatch to: (Address & | ń         |                  | Sampled by:                      |             |                   | Consigning Officer:  | ice. Carberra            |                             |
| Phone No.;              | V         |                  | Charlie                          | Luca        | P                 | Date Dispatche       | Date Dispatched: 23 - 69 |                             |
| Attention:              |           |                  | Project Manager:                 |             |                   | Courier Service:     | 101                      |                             |
| Sample R                | ece ip    | 10               | Christian Co                     | Has         |                   | Consignment Note No: | Vote No:                 |                             |
| Reinquished by:         | 600       | C P P P          | Date: Time:                      | Received by |                   |                      | Date                     | E. Time:                    |
|                         |           | ,                | 23769439                         |             |                   | Day, d               | ,d 24,                   | 17/09                       |
|                         |           |                  |                                  |             |                   |                      |                          |                             |
|                         | ix        |                  |                                  | 2           |                   | Arne                 | Analyses Required        |                             |
| Comments                | ole Matri | Container Type   | Sample No.                       | Sampler     | BTEX              |                      |                          | emple<br>ndition<br>Receipt |
|                         | Samp      | and rieservative |                                  | Date \$     | PAHs TIPHS MAHs = | XP/                  |                          | Cor                         |
|                         | 5012      | 50-11            | - RE02-0-0-0-2                   | 22 1 69     | <b>y</b>          | X                    |                          |                             |
|                         |           |                  | -0.0                             |             | ×                 | ^                    |                          |                             |
|                         |           |                  | RE06-0-0-                        |             | <i>y</i>          | X                    | )                        |                             |
|                         |           |                  | 4 RE10-0-0-0-2                   |             | · ·               | X                    |                          |                             |
|                         |           |                  | S REIS -00-07                    |             | *                 | ()                   |                          |                             |
|                         |           |                  | 6 REIA -0.0-0.2                  |             | _                 | ^                    | 77/10                    |                             |
|                         |           |                  | 7 REIA -0.5-0.6                  |             |                   | X                    | 9                        | 3                           |
|                         |           |                  | 8 REIS -00-02                    |             | / \               | X                    | PO                       | Op.                         |
|                         |           |                  | 2=19 -                           |             | 1.                | _                    | Storage Location, S627-6 | 628 W183-124                |
|                         |           |                  | RE20 -0.0                        |             |                   | ×                    | 41.80L M. 1808.14        |                             |
|                         |           |                  | 12 RE20 -0.5.0.6                 |             | _                 | ^                    |                          |                             |
|                         |           |                  |                                  |             |                   | 1                    |                          |                             |
|                         |           |                  | REZG -0.0                        |             | X                 | . ^                  |                          |                             |
|                         |           |                  | 1 KE28 -00-00                    | _           |                   | X. ?                 |                          |                             |
|                         | 4         | +                | RE28 -                           | <           |                   | *.                   |                          |                             |

No: 26352

|                                            | 100 months 100 months 100 months |                                    | Laboratory Quotation / Gross No.       | Br NO:       |                   | 7. seere NYSS20037 seere 7    | 7 10 7                                                      |                                   |
|--------------------------------------------|----------------------------------|------------------------------------|----------------------------------------|--------------|-------------------|-------------------------------|-------------------------------------------------------------|-----------------------------------|
| Dispatch to: Address & (MAXAMA) Phone No.) | S                                |                                    | Sampled by:                            | Luca         | P                 | Consigning Officer: Cc. barro | ,                                                           |                                   |
| Sample &                                   | 200                              | -pts                               | Project Manager:<br>treport results to | Cut          | }                 | Consignment Note No.          |                                                             |                                   |
| Reimquished by:                            | 1.0                              | 0000                               | Date: Time:                            | Received by: |                   |                               | Date: Time:                                                 | 38                                |
|                                            |                                  |                                    | 73-109 4-30                            | W            |                   | Dowid                         | 24/1/09                                                     |                                   |
|                                            | ×                                |                                    |                                        | i            | =                 | Analyses Required             |                                                             |                                   |
| Comments                                   | Sample Matri                     | Container Type<br>and Preservative | Sample No.                             | Date Sampled | PAHs  TPHs = BTEX | Metals: 8                     | Controls                                                    | Sample<br>Condition<br>on Receipt |
|                                            | Seil                             | 250-130                            | 0505-0.0-0-2                           | 1807 5081    | 1                 | X                             |                                                             |                                   |
|                                            |                                  |                                    | 0507-0-0-0-2                           | 700          |                   | ××                            |                                                             |                                   |
|                                            |                                  |                                    | 0510 -0.0-0.2                          | 21           |                   | XXX                           |                                                             |                                   |
|                                            |                                  | () ()                              | TRT LAT                                | 3 6          | <                 | ×                             |                                                             |                                   |
|                                            | _                                | Shaber, IHelal, 20                 | VINSUBIL 24                            |              |                   | X                             |                                                             |                                   |
|                                            | +                                | Co.                                | 751                                    | *            | I X               |                               |                                                             |                                   |
|                                            |                                  |                                    |                                        |              |                   |                               |                                                             |                                   |
| Detection Limits: Law ac-                  | Care                             | Detection                          | Turnaround Required St.                | devel        |                   |                               | JOE NUMBER MUST BE<br>REFERENCED ON ALL<br>SUBSEQUENT PAGES | DAT BE                            |



SGS

Email

24 July 2009

au.samplereceipt.sydney@sgs.com

Client Details Laboratory Details

chris\_gunton@coffey.com

Requested By : Chris Gunton

Client : Coffey Environments Pty Ltd Laboratory : SGS Environmental Services

Contact : Chris Gunton Manager : Edward Ibrahim

Address : 2/54 Northbourne Avenue
PO Box 1986 Address : Unit 16, 33 Maddox Street

CANBERRA ACT 2602 Address . Office 10, 35 Maddox Stree

Email

 Telephone
 : 02 6248 7154
 Telephone
 : 61 2 8594 0400

 Facsimile
 : 02 6248 7157
 Facsimile
 : 61 2 8594 0499

Project : EC00233AA Report No : **SE70874** 

Samples : 22 Soils, 3 Waters Due Date : 31/07/2009

Date Instructions Received : 24/07/2009 Sample Receipt Date : 24/7/09

Samples received in good order YES Samples received in correct containers Sufficient quantity supplied YES Samples received without headspace YFS Upon receipt sample temperature : Cooling Method Ice Pack Cool Sample containers provided by Other Lab Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received : YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a> as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE70874

Project : EC00233AA

#### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description  | Metals Prep & Inorganics - All | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|--------------|--------------------------------|-----------------------|-------------------------------|---------------------------|--------------------------------|----------------------|------------------------|--------------------------------|-----------------------------|--------------------------------|----------|
| 1          | RE02_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 2          | RE05_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 3          | RE06_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 4          | RE10_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 5          | RE13_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 6          | RE14_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 7          | RE14_0.5-0.6 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 8          | RE15_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 9          | RE19_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 10         | RE19_0.5-0.6 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 11         | RE20_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 12         | RE20_0.5-0.6 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 13         | RE22_0.0-0.2 | Х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 14         | RE26_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 15         | RE26_0.5-0.6 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 16         | RE28_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 17         | RE28_0.5-0.6 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 18         | OS05_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |



Client : Coffey Environments Pty Ltd Report No : SE70874

Project : EC00233AA

| Sample No. | Description  | Metals Prep & Inorganics - All | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|--------------|--------------------------------|-----------------------|-------------------------------|---------------------------|--------------------------------|----------------------|------------------------|--------------------------------|-----------------------------|--------------------------------|----------|
| 19         | OS07_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 20         | OS08_0.0-0.2 | х                              |                       |                               | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 21         | OS10_0.0-0.2 | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 22         | QC1          | х                              | Х                     | Х                             | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 23         | TB1          |                                |                       |                               |                           |                                | Х                    |                        |                                |                             |                                |          |
| 24         | WB1          | х                              |                       |                               |                           |                                |                      | Х                      | Х                              | Х                           | Х                              |          |
| 25         | TS1          |                                |                       |                               |                           |                                | Х                    |                        |                                |                             |                                |          |

| Sample No. | Description  |
|------------|--------------|
| 1          | RE02_0.0-0.2 |
| 2          | RE05_0.0-0.2 |
| 3          | RE06_0.0-0.2 |
| 4          | RE10_0.0-0.2 |
| 5          | RE13_0.0-0.2 |
| 6          | RE14_0.0-0.2 |
| 7          | RE14_0.5-0.6 |
| 8          | RE15_0.0-0.2 |
| 9          | RE19_0.0-0.2 |
| 10         | RE19_0.5-0.6 |
| 11         | RE20_0.0-0.2 |
| 12         | RE20_0.5-0.6 |



Coffey Environments Pty Ltd EC00233AA : SE70874 Client Report No

| Sample No. | Description  |
|------------|--------------|
| 13         | RE22_0.0-0.2 |
| 14         | RE26_0.0-0.2 |
| 15         | RE26_0.5-0.6 |
| 16         | RE28_0.0-0.2 |
| 17         | RE28_0.5-0.6 |
| 18         | OS05_0.0-0.2 |
| 19         | OS07_0.0-0.2 |
| 20         | OS08_0.0-0.2 |
| 21         | OS10_0.0-0.2 |
| 22         | QC1          |
| 23         | TB1          |
| 24         | WB1          |
| 25         | TS1          |

Attentions

Project Manager (report results to)

かんせいか.

Consignment Note No:

Date:

29/11/16

0:00x Times Courier Service:

Date Dispatched:

Consigning Officer.

6 - - 7

1

Times

Received by:

A CO 100

e

Relinquished by:

Comments

Sample Matrix

Container Type and Preservative

Sample No

Date Sampled

PAHs TPHS MAHs = ETEX

Metals: 8

OCTE OFF

Sample Condition on Receipt Analyses Required

5 Men

29/107

355

8

j

0219-00-02

てラウ

XX

0-0-7

3

CIM I Warac

XX

250

00

06

C

200

X

X

emperature on

S6 51-656

C934

00

3 0.0 (Address & Phone No.) Dispatch to:

63

Chain of Custody

Laboratory Quotation / Order No:

Job No: Ecoco TES MA

No: 26354 9

REFERENCED ON ALL SUBSEQUENT PAGES

Copies: WHITE: Sign on release YELLOW: II dispatched to Interstate Lab, Lab to sign or receipt and tax back to Coffey. BLUE: To be returned with results Detection Limits: こりまし Turnamend Required:

Special Laboratory instructions

からかり

A.

200 10

> ta 0-15-0

7

0000

のカチ

0002

CIN

XXXX

5

0

coffey >>

Chain of Custody

Laboratory Quotation / Order No.

JOB NO. ECOCOTECHA

()

9

No: 26355 0

(Address & ... Dispatch to: Detection Limits: Special Laboratory Instructions: Relinquished by: Attention: The same Comments 5 0 Table ! Sample Matrix Con 5 Container Type and Preservative -X TI TIS 3000 Tymeround Required: 3 Date 100 Project Manager, (report results to) Sampled by: Sample No. -240 þ 2-3-0 0-0-0-7 5-00 200 0 Ļa. A h à Time 00 3 0 5 000 23 22 7 13 32 200 Received by: Date Sampled P 2000 PAHs 1 TPHS MAHS - HTEX XXX XXXX X XX Metals 8 OCK OF Consignment Note No: Counter Service: Date Dispatched: Consigning Official Analyses Required 1 SUBSEQUENT PAGES 36 17 Oct 39/7/09 Date: fraces. 355yn-Coc Time Sample Condition on Receipt

Copies: WHITE: Sign on release YELLOW: If dispatched to interprate Lab. Lab to eign on receipt and fax back to Coffey. BLUE: To be returned with results

coffey\*

Chain of Custody

Laboratory Quotation / Order No:

Job No. T TTTTTAA

Sheet N

Phone No.) Copies: WHITE: Sgmon refease VELLOW: If dispatched to intermine Late, Late is sign on receipt and that back to Cellity... BLUE: To be returned with results. Dispatch to: Detection Limits: Spacial Laboratory Instructions: Relinquished by: Attention: PRA INTO Sample Matrix 350 Container Type and Preservative 1 Turnaround Required: 3 Project Manager (report results to) Cuc Date Sampled by: Sample No. 2.0 1 100 6-0 0-0 0-0 ġ ø SHIFT 3 3 1 15 +3 F 42 40 4 TITIES Received by: Coope Date Sampled 2 PAHs TPHs MAHS = BTEX X Metals: OFFICE PROPERTY. Courier Service: Date Dispatched: TO -Consigning Officer: Consignment Note No: Analyses Required なかに ラ さ の 29/7/65 REFERENCED ON ALL SUBSEQUENT PAGES 36/7/05 3.550 TIME 9:000 Condition on Receipt

coffey 3

(Address & Phone No.)

Attention

Chain of Custody

Laboratory Quotation / Order No:

JOB NO. C.CO. 2457 Sheet

9

No: 26357

Dispatch to: Detection Limits: Relinquished by: Special Laboratory Instructions: Comments TU 14 Sample Matrix 0 1 Container Type and Preservative 日本 Ç CO CO RE KECT-0-0-0-2 509-05 Turnaround Required: F30-00-0-2 52 20-00-00 4 50-1-2 Project Markager (report results to) 34-3 Sampled by: CASA Sample No. TYPE C. C. C. 5 0.6 53 US 7.00 7.60 959.0 Time: 65 7 55 P 63 Regained by D. 1 13 Date Sampled P ħ PAHs TPHs MAHS = BTEX XXXX XX XXX XX Metals OCP FORE Courier Service: Date Dispatched: Consigning Officer Consignment Note No: Analyses Required 00 Dig la 1 JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES Date 29/7/05 9:00er Time Sample Condition on Receipt 200

Copies: WHITE: Sign on release. YELLOW: If dispatched to interstate Lab. Lab to sign on receipt and tax back to Coffey. BLUE: To be returned with results.

coffey >

(Address & Phone No.) Dispatch to:

Chain of Custody

Laboratory Quotation / Order No.

(3

一時日子

Date Dispatched:

Consigning Officer

Sampled by

Job Not ECOCO TENA

Sheet

Detection Limits: Special Laboratory Instructions: Relinquished by: Attention YELLOW: If dispatched to intensiste Lab, Lab to sign on receipt and tax back to Coffey: BLUE: To be returned with results . Sample Matrix 6 3 Container Type and Preservative 9-20-25P Turnaround Required: Date Project Manager: (report results to) N T S 20.00 70-5 Sample No 500 7000 Turne: Conserved town 45 3 10 76 75 73 65 70 Received by Date Sampled XX XX PAHis TPHs MAHs : BTEX XXXXXX XX Metals: BOF CTR Consignment Note No. Courier Service: PH Analyses Required JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 29/7/59 30/1/20 Time: 35500 9:000 Sample Condition on Receipt

coffey >>

Disparch to: (Address & Phone No.)

200

Chain of Custody

Laboratory Quotation / Order No:

Sampled by:

reapp

Date Dispatched: 7 9 - 02

TANSELESS SIEN GOL

Consigning Officer:

No: 26359

|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 1                                     |                            |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------|----------------------------|
| Relinquished by:                 | Lucas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date: Time:                               | Received by:                          |                            |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79/2/20 7 003-                            |                                       | Riciala                    |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       | Taylo                      |
|                                  | tin,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | e.                                    | Analyses Required          |
| Comments                         | Sample Mate Container Type and Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample No.                                | Date Samples  PAHs  TPHs  MAHs = BTEX | Metus: 3,<br>OCP (SP<br>PH |
| 20                               | 250-1 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NES-EOD-0-7 85                            | 36 1 36                               | X                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-0007                                    |                                       | ×                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   |                                       | X                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0-0.2                                   |                                       | X >                        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-0002                                   |                                       | X                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 2000 0 - ESST                          |                                       | ×                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -13-0000                                  |                                       | X                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 CO CO CO CO CO CO CO CO CO CO CO CO CO |                                       | < >                        |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS2-15-00-0295                            |                                       | X                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MC3-15-15-0696                            |                                       | X                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.b                                       | ×                                     | ×                          |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       | X                          |
|                                  | 12-12-1-12-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L WEA GO                                  | ×                                     | X                          |
|                                  | The Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract o |                                           |                                       |                            |
|                                  | 4 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152 10                                    |                                       |                            |
| Special Laboratory Instructions: | The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2-                                        |                                       |                            |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                       |                            |

# AU.SampleReceipt.Sydney (Sydney)

From: Chris Gunton [Chris\_Gunton@coffey.com]

Sent: Wednesday, 29 July 2009 3:55 PM

To: AU.SampleReceipt.Sydney (Sydney)

Subject: RE: EC00233AA, SGS SE70984

Attachments: 20090729165209441.pdf

Hi Emily,

Please find attached the COC's for EC00233AA

Regards

CHRIS GUNTON Project Geologist

Coffey Environments Pty Ltd

2/54 Northbourne Avenue Canberra ACT 2609 Australia T (+61) (2) 6248 7154 F (+61) (2) 6248 7157 M 0420 960 831 coffey.com

50 YLARS AN EXTRAORDINARY JOURNEY

From: AU.SampleReceipt.Sydney (Sydney) [mailto:AU.SampleReceipt.Sydney@sgs.com]

Sent: Wednesday, 29 July 2009 1:28 PM

To: Chris Gunton; Charles Lucas Subject: EC00233AA, SGS SE70984

Hello,

#### OS09 0.5-0.6 received broken.

Please forward analysis as soon as possible. Thank You.

Kind Regards
Emily Yin
Environmental Services
Sample Administration Officer

SGS Australia Pty Ltd Unit 16, 33 Maddox St Alexandria, NSW, 2015 Phone: +61 (0)2 8594 0400 Fax: +61 (0)2 8594 0499

E-mail: au samplereceipt sydney@sgs.com

Web: www au sgs com

Information in this email and any attachments is confidential and intended solely for the use of the individual(s) to whom it is addressed or otherwise directed. Please note that any views or opinions presented in this email are solely those of the author and do not necessarily represent those of the Company.

Finally, the recipient should check this email and any attachments for the presence of viruses. The Company accepts no liability for any damage



30 July 2009

**Edward Ibrahim** 

**Client Details Laboratory Details** 

Requested By **Chris Gunton** 

Client Coffey Environments Pty Ltd Laboratory SGS Environmental Services

Contact **Chris Gunton** 

Address 2/54 Northbourne Avenue

Unit 16, 33 Maddox Street PO Box 1986 Address

CANBERRA ACT 2602 Alexandria NSW 2015

Manager

chris\_gunton@coffey.com Email Email au.samplereceipt.sydney@sgs.com

61 2 8594 0400 Telephone 02 6248 7154 Telephone 02 6248 7157 61 2 8594 0499 Facsimile Facsimile

EC00233AA SE70984 Project Report No 101 Order Number 26354-26359 No. of Samples Due Date 5/08/2009 Samples 94 Soils, 7 Waters

**Date Instructions Received** 29/07/2009 Sample Receipt Date 29/07/09

Samples received in good order NO Samples received in correct containers Samples received without headspace YES Sufficient quantity supplied YFS Upon receipt sample temperature : Cool Cooling Method Ice Pack Sample containers provided by Other Lab Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received: YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

OS09\_0.5-0.6 sample jar received broken at SGS.

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm as at the date of this document. Attention is drawn to the limitations of liablility and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE70984

Project : EC00233AA

#### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description  | Metals Prep & Inorganics - All | PAHs in Soil | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | PAHs in Water | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|--------------|--------------------------------|--------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|---------------|------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|----------|
| 1          | OS19_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 2          | OS20_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 3          | OS20_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 4          | OS18_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 5          | OS17_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 6          | OS17_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 7          | OS15_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 8          | OS15_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 9          | OS14_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 10         | RE35_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 11         | RE35_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 12         | OS13_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 13         | RE31_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 14         | RE32_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 15         | RE24_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 16         | RE24_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 17         | RE30_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 18         | RE33_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |



Coffey Environments Pty Ltd EC00233AA : SE70984 Client Report No

| Sample No. | Description  | Metals Prep & Inorganics - All | PAHs in Soil | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | PAHs in Water | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|--------------|--------------------------------|--------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|---------------|------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|----------|
| 19         | OS16_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 20         | OS16_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 21         | OS03_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 22         | OS04_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 23         | OS06_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 24         | RE25_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 25         | RE25_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 26         | RE29_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 27         | RE29_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 28         | RE41_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 29         | QC2          | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 30         | WB2          | х                              |              |                       |                               |            |                           |                                |               | Х                      | Х                              | Х                           | Х                              |                              |          |
| 31         | TB2          |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 32         | RE12_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 33         | RE12_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 34         | OS01_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 35         | RE07_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 36         | RE07_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 37         | RE08_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 38         | RE08_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 39         | RE11_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 40         | RE16_0.0-0.2 | Х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 41         | RE16_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 42         | RE17_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |



Client Coffey Environments Pty Ltd EC00233AA : SE70984 Report No

| Sample No. | Description  | Metals Prep & Inorganics - All | PAHs in Soil | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | PAHs in Water | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|--------------|--------------------------------|--------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|---------------|------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|----------|
| 43         | RE23_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 44         | OS12_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 45         | OS11_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 46         | RE27_0.0-0.2 | Х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 47         | RE21_0.0-0.2 | Х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 48         | RE18_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 49         | RE18_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | X                            |          |
| 50         | OS09_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 52         | RE39_0.0-0.2 | х                              |              | Х                     | Х                             |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 53         | RE40_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 54         | RE38_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 55         | RE37_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 56         | RE37_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 57         | RE36_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 58         | RE34_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 59         | RE34_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 60         | QC3          | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 61         | WB3          | х                              |              |                       |                               |            |                           |                                |               |                        |                                | Х                           | Х                              |                              |          |
| 62         | TB3          |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 63         | OS02_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 64         | RE01_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 65         | RE01_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 66         | RE03_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 67         | RE03_0.5-0.6 |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |



Coffey Environments Pty Ltd EC00233AA : SE70984 Client Report No

| Sample No. | Description    | Metals Prep & Inorganics - All | PAHs in Soil | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | PAHs in Water | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|----------------|--------------------------------|--------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|---------------|------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|----------|
| 68         | RE04_0.0-0.2   | Х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 69         | RE09_0.0-0.2   | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 70         | K3_0.0-0.2     |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 71         | K3_0.5-0.6     |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 72         | K3_0.9-1.0     |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 73         | K2_0.0-0.2     |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 74         | K2_0.5-0.6     |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 75         | K2_0.9-1.0     |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 76         | K1_0.0-0.2     |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 77         | K1_0.5-0.6     |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 78         | K1_0.9-1.0     |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 79         | MS3-1_0.0-0.2  | Х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 80         | MS3-2_0.0-0.2  | Х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 81         | MS3-3_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 82         | MS3-3_0.5-0.6  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 83         | MS3-4_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 84         | MS3-5_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 85         | MS3-6_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 86         | MS3-7_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 87         | MS3-8_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 88         | MS3-9_0.0-0.2  | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 89         | MS3-10_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 90         | MS3-11_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 91         | MS3-12_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |



Client : Coffey Environments Pty Ltd Report No : SE70984

Project : EC00233AA

| Sample No. | Description    | Metals Prep & Inorganics - All | PAHs in Soil | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | PAHs in Water | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|----------------|--------------------------------|--------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|---------------|------------------------|--------------------------------|-----------------------------|--------------------------------|------------------------------|----------|
| 92         | MS3-13_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 93         | MS3-13_0.5-0.6 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 94         | MS3-14_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 95         | MS3-15_0.0-0.2 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 96         | MS3-15_0.5-0.6 | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 97         | QC4            |                                | Х            |                       |                               | Х          |                           |                                |               |                        |                                |                             |                                |                              | Х        |
| 98         | QC5            | х                              |              |                       |                               |            | Х                         | Х                              |               |                        |                                |                             |                                |                              | Х        |
| 99         | WB4            | х                              |              |                       |                               |            |                           |                                | Х             |                        |                                | Х                           | Х                              |                              |          |
| 100        | TB4            |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |
| 101        | TS2            |                                |              |                       |                               |            |                           |                                |               |                        |                                |                             |                                | Х                            |          |

| Sample No. | Description  |
|------------|--------------|
| 1          | OS19_0.0-0.2 |
| 2          | OS20_0.0-0.2 |
| 3          | OS20_0.5-0.6 |
| 4          | OS18_0.0-0.2 |
| 5          | OS17_0.0-0.2 |
| 6          | OS17_0.5-0.6 |
| 7          | OS15_0.0-0.2 |
| 8          | OS15_0.5-0.6 |
| 9          | OS14_0.0-0.2 |



Coffey Environments Pty Ltd EC00233AA : SE70984 Client Report No

| Sample No.  Description  Description  10  RE35_0.0- | 0.2 |
|-----------------------------------------------------|-----|
| 10 RE35 0.0-                                        | 0.2 |
|                                                     | ·   |
| 11 RE35_0.5-                                        | 0.6 |
| 12 OS13_0.0-                                        | 0.2 |
| 13 RE31_0.0-                                        | 0.2 |
| 14 RE32_0.0-                                        | 0.2 |
| 15 RE24_0.0-                                        | 0.2 |
| 16 RE24_0.5-                                        | 0.6 |
| 17 RE30_0.0-                                        | 0.2 |
| 18 RE33_0.0-                                        | 0.2 |
| 19 OS16_0.0-                                        | 0.2 |
| 20 OS16_0.5-                                        | 0.6 |
| 21 OS03_0.0-                                        | 0.2 |
| 22 OS04_0.0-                                        | 0.2 |
| 23 OS06_0.0-                                        | 0.2 |
| 24 RE25_0.0-                                        | 0.2 |
| 25 RE25_0.5-                                        | 0.6 |
| 26 RE29_0.0-                                        | 0.2 |
| 27 RE29_0.5-                                        | 0.6 |
| 28 RE41_0.0-                                        | 0.2 |
| 29 QC2                                              |     |
| 30 WB2                                              |     |
| 31 TB2                                              |     |
| 32 RE12_0.0-                                        | 0.2 |
| 33 RE12_0.5-                                        | 0.6 |
| 34 OS01_0.0-                                        | 0.2 |
| 35 RE07_0.0-                                        | 0.2 |
| 36 RE07_0.5-                                        | 0.6 |
| 37 RE08_0.0-                                        | 0.2 |
| 38 RE08_0.5-                                        | 0.6 |



Coffey Environments Pty Ltd EC00233AA : SE70984 Client Report No

| Sample No. | Description  |
|------------|--------------|
| 39         | RE11_0.0-0.2 |
| 40         | RE16_0.0-0.2 |
| 41         | RE16_0.5-0.6 |
| 42         | RE17_0.0-0.2 |
| 43         | RE23_0.0-0.2 |
| 44         | OS12_0.0-0.2 |
| 45         | OS11_0.0-0.2 |
| 46         | RE27_0.0-0.2 |
| 47         | RE21_0.0-0.2 |
| 48         | RE18_0.0-0.2 |
| 49         | RE18_0.5-0.6 |
| 50         | OS09_0.0-0.2 |
| 52         | RE39_0.0-0.2 |
| 53         | RE40_0.0-0.2 |
| 54         | RE38_0.0-0.2 |
| 55         | RE37_0.0-0.2 |
| 56         | RE37_0.5-0.6 |
| 57         | RE36_0.0-0.2 |
| 58         | RE34_0.0-0.2 |
| 59         | RE34_0.5-0.6 |
| 60         | QC3          |
| 61         | WB3          |
| 62         | TB3          |
| 63         | OS02_0.0-0.2 |
| 64         | RE01_0.0-0.2 |
| 65         | RE01_0.5-0.6 |
| 66         | RE03_0.0-0.2 |
| 67         | RE03_0.5-0.6 |
| 68         | RE04_0.0-0.2 |



Coffey Environments Pty Ltd EC00233AA : SE70984 Client Report No

| Sample No. | Description    |
|------------|----------------|
| 69         | RE09_0.0-0.2   |
| 70         | K3_0.0-0.2     |
| 71         | K3_0.5-0.6     |
| 72         | K3_0.9-1.0     |
| 73         | K2_0.0-0.2     |
| 74         | K2_0.5-0.6     |
| 75         | K2_0.9-1.0     |
| 76         | K1_0.0-0.2     |
| 77         | K1_0.5-0.6     |
| 78         | K1_0.9-1.0     |
| 79         | MS3-1_0.0-0.2  |
| 80         | MS3-2_0.0-0.2  |
| 81         | MS3-3_0.0-0.2  |
| 82         | MS3-3_0.5-0.6  |
| 83         | MS3-4_0.0-0.2  |
| 84         | MS3-5_0.0-0.2  |
| 85         | MS3-6_0.0-0.2  |
| 86         | MS3-7_0.0-0.2  |
| 87         | MS3-8_0.0-0.2  |
| 88         | MS3-9_0.0-0.2  |
| 89         | MS3-10_0.0-0.2 |
| 90         | MS3-11_0.0-0.2 |
| 91         | MS3-12_0.0-0.2 |
| 92         | MS3-13_0.0-0.2 |
| 93         | MS3-13_0.5-0.6 |
| 94         | MS3-14_0.0-0.2 |
| 95         | MS3-15_0.0-0.2 |
| 96         | MS3-15_0.5-0.6 |
| 97         | QC4            |



Coffey Environments Pty Ltd EC00233AA : SE70984 Client Report No

| Sample No. | Description |
|------------|-------------|
| 98         | QC5         |
| 99         | WB4         |
| 100        | TB4         |
| 101        | TS2         |

No: 26363

|                                   | Chain               | Chair of Custody                | Laboratory Quotation / Order No.                | ter No              |      |      |             |           | Job No. E. C. DC 233AA Sheet \ of                  | CU<br>CU           |                                    |
|-----------------------------------|---------------------|---------------------------------|-------------------------------------------------|---------------------|------|------|-------------|-----------|----------------------------------------------------|--------------------|------------------------------------|
| Dispatch to: Address & Phone No.) |                     |                                 | Sampled by:                                     | Lucas               |      |      |             | п о       | Consigning Officer Caberra Date Dispatched 30/7/69 |                    |                                    |
| Attention:                        | )                   |                                 | Project Manager:<br>(report results to)         |                     |      |      |             |           | Courier Service: TNT                               |                    |                                    |
| Sample                            | RAP                 | e pls                           | Chris a                                         | ander               |      |      |             | 0         | Consignment Note No:                               |                    |                                    |
| Relinquished by:                  | -                   | 0000                            | Date: Time:                                     | Received by:        |      |      |             | -         | De                                                 | Date:              | Times                              |
|                                   |                     |                                 | 25-100 23-20p                                   | \$                  |      |      |             |           | David 31                                           | 17/09              |                                    |
|                                   |                     |                                 |                                                 |                     |      |      |             |           | Analyses Required                                  |                    |                                    |
| Comments                          | Sample Matri        | Container Type and Preservative | Sample No.                                      | Date Sample         | PAHs | TPHs | IAHS = BTEX | Metals: 8 | 64                                                 |                    | Sample<br>Condition<br>on Receipt  |
|                                   | 100                 | 250ml 150                       | - NST-1-0-0-0-2                                 | 20 1 09             |      |      |             | X         | X                                                  | -                  |                                    |
|                                   |                     |                                 | NS1-1-                                          |                     |      |      | ,           | X         |                                                    |                    |                                    |
|                                   |                     |                                 | + UST- 2-0-5-0-6                                |                     |      |      |             | X         |                                                    |                    |                                    |
|                                   |                     |                                 | NS1-3-0-0-                                      |                     |      |      |             | X         |                                                    |                    |                                    |
|                                   |                     |                                 | -2-75N                                          |                     |      |      |             | X         | 7                                                  |                    |                                    |
|                                   |                     |                                 | 7 MS1-4-0-0-6-2                                 |                     |      |      |             | (X        | 31/7/00                                            |                    |                                    |
|                                   |                     |                                 | NST-S-00                                        |                     |      |      |             | X         | 1 P                                                | D. m               |                                    |
|                                   |                     |                                 | -5-TSN                                          |                     |      |      |             | X         | Sole: Bas                                          |                    |                                    |
|                                   |                     |                                 | - NST-6-0002                                    |                     |      |      |             | XX        | Storage Location 5668                              | 670,               | W 212                              |
|                                   |                     |                                 | NS1-1-00                                        |                     |      |      |             | X         | 71036                                              | 01                 |                                    |
|                                   |                     |                                 | NS1-1.                                          |                     |      |      |             | _         | ×                                                  |                    |                                    |
|                                   |                     |                                 | 1                                               |                     |      |      |             | X         |                                                    |                    |                                    |
|                                   |                     | <                               | 17NS1-8-00-07                                   |                     |      |      |             | XX        |                                                    | -                  |                                    |
| Special Laboratory Instructions:  |                     |                                 |                                                 |                     |      |      |             |           |                                                    | N MARKE            |                                    |
| Detection Limits: award           | Level               | Detection                       | Tumaround Required                              | Sand Charles        |      |      |             |           | DO RE                                              | JESEQUI<br>EFERENC | REFERENCED ON ALL SUBSEQUENT PAGES |
| Conice: WHITE San on relapos VE   | VELLOW! II district | September 1                     | section and the pack to Coffee III DE. To be to | A bear with convict |      |      |             |           |                                                    |                    |                                    |

Copies: WHITE: Sign on relaises: YELLOW; if dispatched to interstate Lab. Lab to sign on receipt and tax back to Coffey. BLUE: Te be returned with results

Laporatory Quotation / Order No:

AASSTOOD SWOOL

Sheet 2

No: 26364

Phone No.) Dispatch to: Relinquished by: ( Special Laboratory Instructions: Attention: Sample Receipts Comments Voi Sample Matrix 50000 250-1 150 Container Type and Preservative 3 25 NST - 17 - 0.9-1.0 24 23 MS1-11-00-02 22 MS1-10-0-5-0-6 21 30-50-15N KZ 34 251-16-00-02 33 MS1-15-05-06 30 MS1 - 14-0:0-02 28 MST - 13-00-02 27 MST-17-0-5-06 20 NS1-9-00-02 3.0-5-0-8-15M 81 MS1-15-00-02 NST-14-0506 NS1-11-05-06 NS1-10-00-0-2 Project Manager: report results to: 307109 Date Sampled by Sample No. harrie 5.4.5 3.300 Lighton LUCCES 304 00 Received by: Date Sampled PAHs TPHs MAHS - BTEX XXXXXXXXXX Metals: 8 X PH X X X Consignment Note No. Courier Service 151 Consigning Officer Co- De 470 Date Dispatched: SC/T (OS) Analyses Required David N JOB NUMBER MUST BE REFERENCED ON ALL BUBSEQUENT PAGES 31/7/09 Date Time: Sample Condition on Receipt

Turnaround Required Should and

Laboratory Quotation / Order No.

Not 26365

Dispatch to: (Address & SCS Special Laboratory Instructions Relinquished by: Attention: 200 Comments a di 1.c.41.c 701 Sample Matrix Lucas Container Type and Preservative 35 US1-16-05-06 31 AC6 31 TBS Project Manager: 30709 Sampled by: hertie Sample No. 2,28 m Luces 30709 Received by Date Sampled PAHS TPHs XX - LITEX XXX Metals 8 XX PH Consignment Note No. Courier Service: Date Dispatched: 30 4 69 Consigning Officer: Caba 3 3 a JUD NOT ECOCO STAA Sheet 3 David Analyses Required of JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 31/7/09 N Times Sample Condition on Receipt

Turnaround Required: Standard

Delection Limits Lowest Level Delecation



SGS

31 July 2009

**Edward Ibrahim** 

Client Details Laboratory Details

Requested By : Chris Gunton

Client : Coffey Environments Pty Ltd Laboratory : SGS Environmental Services

Contact : Chris Gunton

Address : 2/54 Northbourne Avenue

PO Box 1986 : Unit 16, 33 Maddox Street

CANBERRA ACT 2602 Alexandria NSW 2015

Manager

 Telephone
 : 02 6248 7154
 Telephone
 : 61 2 8594 0400

 Facsimile
 : 02 6248 7157
 Facsimile
 : 61 2 8594 0499

 Project
 :
 EC00233AA
 Report No
 :
 SE71036

 Order Number
 :
 26363-5
 No. of Samples
 :
 39

Samples : 37 Soils, 2 Waters Due Date : 7/08/2009

Date Instructions Received : 31/07/2009 Sample Receipt Date : 31/7/09

Samples received in good order YES Samples received in correct containers Samples received without headspace YFS Sufficient quantity supplied YFS Upon receipt sample temperature : Cooling Method Ice Pack Cool Sample containers provided by Other Lab Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received : YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a> as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE71036

Project : EC00233AA

#### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description   | Metals Prep & Inorganics - All | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | Moisture |
|------------|---------------|--------------------------------|------------|---------------------------|--------------------------------|----------------------|----------|
| 1          | MS1-1_0.0-0.2 | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 2          | MS1-1_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |
| 3          | MS1-2_0.0-0.2 | Х                              |            | Х                         | Х                              |                      | Х        |
| 4          | MS1-2_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |
| 5          | MS1-3_0.0-0.2 | Х                              |            | Х                         | Х                              |                      | Х        |
| 6          | MS1-3_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |
| 7          | MS1-4_0.0-0.2 | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 8          | MS1-4_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |
| 9          | MS1-5_0.0-0.2 | Х                              |            | Х                         | Х                              |                      | Х        |
| 10         | MS1-5_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |
| 11         | MS1-6_0.0-0.2 | Х                              |            | Х                         | Х                              |                      | Х        |
| 12         | MS1-6_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |
| 13         | MS1-7_0.0-0.2 | Х                              |            | Х                         | Х                              |                      | Х        |
| 14         | MS1-7_0.5-0.6 | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 15         | MS1-7_0.9-1.0 | Х                              |            | Х                         | Х                              |                      | Х        |
| 16         | MS1-7_1.4-1.5 | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 17         | MS1-8_0.0-0.2 | Х                              |            | Х                         | Х                              |                      | Х        |
| 18         | MS1-8_0.5-0.6 | Х                              |            | Х                         | Х                              |                      | Х        |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71036

| Sample No. | Description                     | Metals Prep & Inorganics - All | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | Moisture |
|------------|---------------------------------|--------------------------------|------------|---------------------------|--------------------------------|----------------------|----------|
| 19         | MS1-9 0.0-0.2                   | X                              | X          | X                         | X                              | ш                    | X        |
| 20         | MS1-9_0.0-0.2<br>MS1-9_0.5-0.6  | X                              | ^          | X                         | X                              |                      | X        |
| 21         | MS1-9_0.5-0.0<br>MS1-10_0.0-0.2 | X                              |            | X                         | X                              |                      | X        |
| 22         | MS1-10_0.5-0.6                  | X                              |            | X                         | X                              |                      | X        |
| 23         | MS1-11 0.0-0.2                  | X                              |            | X                         | X                              |                      | X        |
| 24         | MS1-11_0.5-0.6                  | X                              | Х          | X                         | X                              |                      | X        |
| 25         | MS1-11_0.9-1.0                  | X                              |            | X                         | X                              |                      | X        |
| 26         | MS1-12 0.0-0.2                  | X                              |            | X                         | X                              |                      | X        |
| 27         | MS1-12_0.5-0.6                  | X                              |            | Х                         | Х                              |                      | Х        |
| 28         | MS1-13_0.0-0.2                  | Х                              |            | Х                         | Х                              |                      | Х        |
| 29         | MS1-13_0.5-0.6                  | Х                              |            | Х                         | Х                              |                      | Х        |
| 30         | MS1-14_0.0-0.2                  | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 31         | MS1-14_0.5-0.6                  | Х                              |            | Х                         | Х                              |                      | Х        |
| 32         | MS1-15_0.0-0.2                  | Х                              |            | Х                         | Х                              |                      | Х        |
| 33         | MS1-15_0.5-0.6                  | Х                              |            | Х                         | Х                              |                      | Х        |
| 34         | MS1-16_0.0-0.2                  | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 35         | MS1-16_0.5-0.6                  | Х                              |            | Х                         | Х                              |                      | Х        |
| 36         | QC6                             | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 37         | QC7                             | Х                              | Х          | Х                         | Х                              |                      | Х        |
| 38         | TB5                             |                                |            |                           |                                | Х                    |          |
| 39         | TS3                             |                                |            |                           |                                | Х                    |          |



Coffey Environments Pty Ltd EC00233AA : SE71036 Client Report No

| Sample No. | Description    |
|------------|----------------|
| 1          | MS1-1_0.0-0.2  |
| 2          | MS1-1_0.5-0.6  |
| 3          | MS1-2_0.0-0.2  |
| 4          | MS1-2_0.5-0.6  |
| 5          | MS1-3_0.0-0.2  |
| 6          | MS1-3_0.5-0.6  |
| 7          | MS1-4_0.0-0.2  |
| 8          | MS1-4_0.5-0.6  |
| 9          | MS1-5_0.0-0.2  |
| 10         | MS1-5_0.5-0.6  |
| 11         | MS1-6_0.0-0.2  |
| 12         | MS1-6_0.5-0.6  |
| 13         | MS1-7_0.0-0.2  |
| 14         | MS1-7_0.5-0.6  |
| 15         | MS1-7_0.9-1.0  |
| 16         | MS1-7_1.4-1.5  |
| 17         | MS1-8_0.0-0.2  |
| 18         | MS1-8_0.5-0.6  |
| 19         | MS1-9_0.0-0.2  |
| 20         | MS1-9_0.5-0.6  |
| 21         | MS1-10_0.0-0.2 |
| 22         | MS1-10_0.5-0.6 |
| 23         | MS1-11_0.0-0.2 |
| 24         | MS1-11_0.5-0.6 |
| 25         | MS1-11_0.9-1.0 |
| 26         | MS1-12_0.0-0.2 |
| 27         | MS1-12_0.5-0.6 |
| 28         | MS1-13_0.0-0.2 |
| 29         | MS1-13_0.5-0.6 |



Coffey Environments Pty Ltd EC00233AA : SE71036 Client Report No

| Sample No. | Description    |
|------------|----------------|
| 30         | MS1-14_0.0-0.2 |
| 31         | MS1-14_0.5-0.6 |
| 32         | MS1-15_0.0-0.2 |
| 33         | MS1-15_0.5-0.6 |
| 34         | MS1-16_0.0-0.2 |
| 35         | MS1-16_0.5-0.6 |
| 36         | QC6            |
| 37         | QC7            |
| 38         | TB5            |
| 39         | TS3            |

coffey >>

Chain of Custody

No: 26367

|                   | Sampled by                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Consigning Officer:                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | 01,                             | the know                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Dispatched:                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                   | Project Manag                   | Ber                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Courier Service:                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * 124-            | services turkies                | 7                               | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Consignment Note No:                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Date:                           | Time: Received                  | t by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 1                               | 7                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | David                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                 | d                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyses Requ                                                                                                                                                                             | ured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Container Type    | Sample N                        |                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ole de                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and Preservative  |                                 |                                 | PAHs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAHs = E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OCP<br>Cypnii<br>Sulfic                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2530 1 45-        | 一名としかい                          |                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XXX                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 1                               |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 1120 1411                       | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | + 177-0000                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XXX                                                                                                                                                                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 5 127-050                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   | 100 000                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | Burgust 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                   | 7                               | 2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           | В,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | 7                               | 63                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           | Simple allect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | 1-3-8AM                         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           | Cooler Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 10 MAY - 04-0                   | 2                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XXX                                                                                                                                                                                       | Tumperature o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                   | CIPA Y TO                       | in                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           | SUS PIE NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 2 104-1                         | 0                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 13 400 000                      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 4 7 750                         | ah i                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 15 LEST 0.3.                    |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 7                               | -                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | 7700 1                          | 70                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | AUSO!                           |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                 |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C. T. Santa Santa | Turnaround Require              | 100                             | 1,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | Container Type and Preservative | Container Type and Preservative | Container Type and Preservative Sample Marager (Page 1)  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Type Sample Ma  Container Typ | Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mannager  Project Mann | Project Manager Project Manager Project Manager Part Date:  Date: Firm: Received by:  Container Type and Preservative  Somple Ma  A  10  11  12  13  14  14  15  16  Turnaround Requires: | Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types  Continue Types |

coffey >

Dispatch to: (Address & Phone No.)

Attention:

Project Manager (report results to)

Date

Terne

Received by

Reinquished by:

Comments

Sample Matrix

Container Type and Preservative

Sample No.

Date Sampled

PAHs TPHS MAHS BIEN Metals:

OCP

Cyande Sulfide

Analyses Paquired

井 23

44 27

3

by 23

31

23

22

20

\_0

4

Chain of Custody

Laboratory Quotation / Order No.

Sampled by

- ととの

Date Dispatched

Courter Service:

Consignment Note No.

David

Consigning Officer

Job No.

Sheet No: 26368 Date 9 6/3/09 Time Sample Condition

on Receipt

Copies: WHITE: Sign on release. YELLOW: If dispatched to interstate Lish, Lab to sign on recept and fax back to Coffey BLUE: To be returned with results Special Laboratory Instructions: + \

33

100

1

Turnsround Required:

HEFERENCED ON ALL SUBSEQUENT PAGES

Delection Limits:

No: 26369

|                                          | Chain o    | Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory Guotation : Order No:       | notation / Onc | er No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |      |          |        | Jeb No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7      | Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | eet S at 4         |                               |
|------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------|
| Dispatch to:<br> Actress &<br>Phone No.] |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampled by:                            | , 11 to 1      | 6<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , x |      |          |        | Consider Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contract of the Contr | ning ( | Consigning Officer:  Date Dispatched:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P.                 |                               |
| Attentions                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Manager<br>(report results to) | 0 0            | A DOLONGO DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRAC |     |      |          |        | Counter Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Say    | Dec -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | ,                             |
| NO THE A                                 | E # 17     | A 17 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F. W                                   | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          |        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | Amening process of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of |                    |                               |
| Relinquished by:                         |            | A Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission | Date:                                  | Time.          | Received by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |      |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: Tu           | Time:                         |
|                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | David  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/3/07             |                               |
|                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      | -11      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Analyses Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                               |
| Comments                                 | nple Matri | Container Type<br>and Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample No.                             | No.            | e Surreplese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lis | rida | 15 15 15 | als; 8 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ride   | ficle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Sample<br>onsition<br>Renerpt |
|                                          | Samp       | and energies in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                | Date :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PAH | TPH  | MAHS =   |        | CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _      | Selfi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Co<br>on I                    |
|                                          | 7          | 756 1 1 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11913-5-C-C-                           | 2              | P 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |      |          | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                               |
|                                          |            | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in                                     | 2              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          | -          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | -              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                               |
|                                          |            | Mr. war and the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ERM                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          | -          | ₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 136                                    |                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          | 0          | 350 L Long #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100 A-00                               | 10.33          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |          | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                               |
|                                          |            | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1014 D                                 | 2000           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          |            | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | でもの い                                  | 0.7            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          |            | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50 - Siding                            | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          | +          | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00 - 91din                             | 200            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |      |          | XX     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          | -          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | 0              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
|                                          |            | +4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | サイヤンことも                                | 4              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                               |
|                                          |            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 五四日で市                                  | 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |      |          | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                               |
|                                          | -          | 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | のでド                                    |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | L    | L        | X      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                               |
| Special Laboratory Instructions:         | - Harris   | 1 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STATE OF STATE OF                      | 7              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |      |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JOB NUMBER MUST BE |                               |
| Detection Limits                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Turnaround Required:                   | M              | The contract of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3   |      |          |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TOTAL CHARLES      | PAGES                         |

coffey ?

(Address & Phone No.)

1

Attention:

N .

1

Project (Vanager) (report results to)

1

Date

Time -

Received by

2

Relinquished by:

Comments

Sample Matrix

Container Type and Preservative

Sample No.

Date Samples

PAHS TPHS MAHE = TEX

Dispatch to:

Chain of Custody

Laboratory Quotation / Order No.

Sampled by:

Job No. -

Consigning Officer

Date Dispatched:

Courier Service:

Consignment Note No:

David

6/8/09

Time.

No: 26370

Sheat 0

Metals Cyando Analyses Recuired OCP MEFERENCED ON ALL SUBSEQUENT PAGES Sample Condition on Receipt

Copies: WHITE: Sign on release: YELLOW: If dispatched to mirestate Lab, Lab to sign on receipt and fax back to Cuffey. BLUE: To be returned with results. Turnaround Required: Special Laboratory instructions:

3

101

N H

9

1

Detection Limits



Email

6 August 2009

**Edward Ibrahim** 

**Client Details Laboratory Details** 

Requested By **Chris Gunton** 

Client Coffey Environments Pty Ltd Laboratory SGS Environmental Services

Contact **Chris Gunton** 

Address 2/54 Northbourne Avenue Unit 16, 33 Maddox Street Address

PO Box 1986

CANBERRA ACT 2602

Alexandria NSW 2015

chris\_gunton@coffey.com Email au.samplereceipt.sydney@sgs.com

Manager

61 2 8594 0400 Telephone 02 6248 7154 Telephone 02 6248 7157 61 2 8594 0499 Facsimile Facsimile

EC00233AA SE71167 Project Report No Order Number 26367-70 No. of Samples 58

54 Soils, 4 Waters Due Date 17/08/2009 Samples

**Date Instructions Received** 6/08/2009 Sample Receipt Date 6/8/09

Samples received in good order YES Samples received in correct containers Samples received without headspace YFS Sufficient quantity supplied YFS Upon receipt sample temperature : Cooling Method Cool Ice Pack Sample containers provided by Other Lab Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received: YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

Sulphide subcontracted to SGS Cairns

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm as at the date of this document. Attention is drawn to the limitations of liablility and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE71167

Project : EC00233AA

#### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description | Metals Prep & Inorganics - All | OC Pesticides in Soil | Cyanide | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | External | Hold sample-NO test required | Moisture |
|------------|-------------|--------------------------------|-----------------------|---------|---------------------------|--------------------------------|----------|------------------------------|----------|
| 1          | MP1_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 2          | MP1_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 3          | MP1_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 4          | MP2_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 5          | MP2_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 6          | MP2_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 7          | MP3_0.0-0.2 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 8          | MP3_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 9          | MP3_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 10         | MP4_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 11         | MP4_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 12         | MP4_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 13         | MP5_0.0-0.2 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 14         | MP5_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 15         | MP5_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 16         | MP6_0.0-0.2 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 17         | MP6_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 18         | MP6_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71167

| Sample No. | Description  | Metals Prep & Inorganics - All | OC Pesticides in Soil | Cyanide | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | External | Hold sample-NO test required | Moisture |
|------------|--------------|--------------------------------|-----------------------|---------|---------------------------|--------------------------------|----------|------------------------------|----------|
| 19         | MP7_0.0-0.2  | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 20         | MP7_0.5-0.6  | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 21         | MP7_0.9-1.0  |                                |                       |         |                           |                                |          | Х                            |          |
| 22         | MP8_0.0-0.2  | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 23         | MP8_0.5-0.6  | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 24         | MP9_0.0-0.2  | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 25         | MP9_0.5-0.6  | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 26         | MP9_0.9-1.0  |                                |                       |         |                           |                                |          | Х                            |          |
| 27         | MP10_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 28         | MP10_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 29         | MP11_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 30         | MP11_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 31         | MP11_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 32         | MP12_0.0-0.2 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 33         | MP12_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 34         | MP12_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 35         | MP13_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | X        |
| 36         | MP13_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 37         | MP13_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 38         | QC8          | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 39         | WB5          |                                |                       |         |                           |                                |          | Х                            |          |
| 40         | TB6          |                                |                       |         |                           |                                |          | Х                            |          |
| 41         | MP14_0.0-0.2 | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 42         | MP14_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |



Client Coffey Environments Pty Ltd EC00233AA Report No : SE71167

| Sample No. | Description  | Metals Prep & Inorganics - All | OC Pesticides in Soil | Cyanide | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | External | Hold sample-NO test required | Moisture |
|------------|--------------|--------------------------------|-----------------------|---------|---------------------------|--------------------------------|----------|------------------------------|----------|
| 43         | MP14_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 44         | MP15_0.0-0.2 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 45         | MP15_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 46         | MP16_0.0-0.2 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 47         | MP16_0.5-0.6 | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 48         | MP16_0.9-1.0 |                                |                       |         |                           |                                |          | Х                            |          |
| 49         | MPSUMP-1     | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 50         | MPSUMP-2     | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 51         | SP1          | Х                              | Х                     |         | Х                         | Х                              |          |                              | Х        |
| 52         | SP2          | Х                              | Х                     |         | Х                         | Х                              |          |                              | Х        |
| 53         | SP3          | Х                              | Х                     |         | Х                         | Х                              |          |                              | Х        |
| 54         | SP4          | Х                              | Х                     |         | Х                         | Х                              |          |                              | Х        |
| 55         | QC9          | Х                              | Х                     | Х       | Х                         | Х                              | Х        |                              | Х        |
| 56         | QC10         | Х                              |                       |         | Х                         | Х                              |          |                              | Х        |
| 57         | TB7          |                                |                       |         |                           |                                |          | Х                            |          |
| 58         | TS4          |                                |                       |         |                           |                                |          | Х                            |          |

| Sample No. | Description |
|------------|-------------|
| 1          | MP1_0.0-0.2 |
| 2          | MP1_0.5-0.6 |
| 3          | MP1_0.9-1.0 |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71167

| Sample No. | Description  |
|------------|--------------|
| 4          | MP2_0.0-0.2  |
| 5          | MP2_0.5-0.6  |
| 6          | MP2_0.9-1.0  |
| 7          | MP3_0.0-0.2  |
| 8          | MP3_0.5-0.6  |
| 9          | MP3_0.9-1.0  |
| 10         | MP4_0.0-0.2  |
| 11         | MP4_0.5-0.6  |
| 12         | MP4_0.9-1.0  |
| 13         | MP5_0.0-0.2  |
| 14         | MP5_0.5-0.6  |
| 15         | MP5_0.9-1.0  |
| 16         | MP6_0.0-0.2  |
| 17         | MP6_0.5-0.6  |
| 18         | MP6_0.9-1.0  |
| 19         | MP7_0.0-0.2  |
| 20         | MP7_0.5-0.6  |
| 21         | MP7_0.9-1.0  |
| 22         | MP8_0.0-0.2  |
| 23         | MP8_0.5-0.6  |
| 24         | MP9_0.0-0.2  |
| 25         | MP9_0.5-0.6  |
| 26         | MP9_0.9-1.0  |
| 27         | MP10_0.0-0.2 |
| 28         | MP10_0.5-0.6 |
| 29         | MP11_0.0-0.2 |
| 30         | MP11_0.5-0.6 |
| 31         | MP11_0.9-1.0 |
| 32         | MP12_0.0-0.2 |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71167

| Sample No. | Description  |
|------------|--------------|
| 33         | MP12_0.5-0.6 |
| 34         | MP12_0.9-1.0 |
| 35         | MP13_0.0-0.2 |
| 36         | MP13_0.5-0.6 |
| 37         | MP13_0.9-1.0 |
| 38         | QC8          |
| 39         | WB5          |
| 40         | TB6          |
| 41         | MP14_0.0-0.2 |
| 42         | MP14_0.5-0.6 |
| 43         | MP14_0.9-1.0 |
| 44         | MP15_0.0-0.2 |
| 45         | MP15_0.5-0.6 |
| 46         | MP16_0.0-0.2 |
| 47         | MP16_0.5-0.6 |
| 48         | MP16_0.9-1.0 |
| 49         | MPSUMP-1     |
| 50         | MPSUMP-2     |
| 51         | SP1          |
| 52         | SP2          |
| 53         | SP3          |
| 54         | SP4          |
| 55         | QC9          |
| 56         | QC10         |
| 57         | TB7          |
| 58         | TS4          |

Laboratory Quotation / Order No:

JOB NO. ECOOZSSA

Sheet

No: 26374

Address & CCS Detection Limits: Lowert Lavel Betechian Special Laboratory lostructions: Relinquished by: Attention: 2 comple Comments Sample Matrix CROCK 2500 Container Type and Preservative 17 NS4-11-00-0-2 14 MS4-8-0.0-0.2 = 0 D f NS4-1-05-0-E MS4-7-0-0-0-2 NSA-4-0506 WSA-1-0.0-0.2 NSF-10-0-0-0-2 NS4-9-0-0-0-2 MS4-6-0.5-0.6 NA-5-0-5-06 NS4-4-00-02 NS4-3-05-06 NS4-3-0-0-0-2 NS4-2-05-0-6 TS4-5-00-02 MS4-6-0.0-02 Turnaround Required Standard Charlie ( 800 Project Manager: (report results to) Date Sample No. 2:47 4.30 Laces 6800 Received by: Date Sampled PAHS TPHE MAHS - BTEX  $\times$ Metals 8 PH Dayio X X Consignment Note No. Consigning Officer C Courier Service: TUT Date Dispatoned: 6 5 09 Analyses Required S 60440 ž 71199 5710 JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 109 7/8/09 N 000 Time: 2036 Condition on Receipt

Copies: WHITE: Sign or release. YELLOW, I dispatched to relessate Lat. Lat to sign or receipt accides back to Defey. BLUE: To be returned with results

Laboratory Quotation / Order No.

JOB NO: ECOCZ33AA

Sheet

No: 26375

Detection Limits: Lowest Level Detection Phone No.) Special Laboratory Instructions: Relinquished by: Dispatch to: Attention >ample Comments Receipts 50:1 Sample Matrix CCPA 250ml Jan Container Type and Preservative 36 14 25 MS4-16-0.0-0.2 24 NS4-15-00-0-2 23 NS4-14-000-2 22 NS4-13-05-06 21 20 NS4-12-0-0-0-2 32 MS4- 22-00-02 30 NS4-20-0-0-0-2 34754-24-0.0.0.2 31 NS4-21-0002 NS4-23-00-02 MS4-13-0-0-0-2 NS4-11-0-5-0-6 WS4-19-00-0-2 ていかーでしいつの NS4-17-00-02 NS4-18-00-02 Tunnaround Required Sol control C 8 69 4-30 M preport results to Project Manager Sampled by: Sample No. イヤンド んらずいき works with 0 Received by: 8 09 2990 Date Sampled PAHS TPHs MAHS - BTEX Dayld  $\times$ Metals 8 PH X X X X Consignment Note No. Courier Service: 7 77 Date Dispatched: C Q Q9 Consigning Officer Colors 370 Analyses Required 2 JOB NUMBER MUST BE HEFERENCED ON ALL SUBSEQUENT PAGES N Date 7/1/03 Time: Condition on Receipt

No: 26376

| Chest   Continue   The sample   Continue   The sample   Continue   The sample   Continue   The sample   Continue   The sample   Continue   The sample   Continue   The sample   Continue   Continue   The sample   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continue   Continu   | Dispatch to:                     |                 | Laboratory Quotation / Order No. | 0            |             | 7 14                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------|----------------------------------|--------------|-------------|-------------------------|
| Consider Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course Service   Course   Course Service   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   Course   C   | Address 8 SCS                    |                 | 4                                | Luca         | , ja        | Date Dispatched: C & O. |
| Care   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consigning   Consignin   | Attention:                       |                 | Project Manager                  |              |             | Courier Service: TVT    |
| Sample Matrix  Container Type  and Preservative  Sample No.  Container Type  and Preservative  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Container Type  Sample No.  Contain | Sample                           | Receipts        |                                  | - Lunda      | }           | Consignment Note No.    |
| Sample Matrix  Container Type  and Preservative  Sample No.  1 250-1 1-2 35USA-24-05-06  38 WSA-25-0-0-07  39 WSA-25-0-0-07  40 WSA-26A-0-0-07  41 WSA-26A-0-0-07  42 WSA-26A-0-0-07  43 OC 11  44 OC 17  Wattaker These Sample No.  PAHS  These  These  X X X  Metales  X X X  X X  X X  X X  X X  X X  X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Refinquished by:                 | -               | Time:                            | Received by: |             |                         |
| Sample Matrix  Continuer Type  and Preservative  35 MS4 - 24 - 05 - 06  37 MS4 - 25 - 0.0 - 07  37 MS4 - 25 - 0.0 - 07  41 MS4 - 25 - 0.0 - 07  42 MS4 - 26 - 0.0 - 0.7  41 MS4 - 27 - 0.0 - 0.7  42 MS4 - 28 - 0.0 - 0.7  43 MS4 - 28 - 0.0 - 0.7  44 MS4 - 28 - 0.0 - 0.7  46 TSS  Temporard Recurred  X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                 | ca                               |              | Day         | 101                     |
| Sample Matr  Continuer Type  and Preservative  35 MS4-24-05-06  37 MS4-25-00-07  37 MS4-25-00-07  38 MS4-26-00-07  40 MS4-26-00-07  41 MS4-27-00-07  42 MS4-27-00-07  43 MS4-27-00-07  44 MS4-27-00-07  45 MS4-27-00-07  46 T388  X Metralis & X  Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X  X Metralis & X |                                  | ix              |                                  |              |             | Analyses Required       |
| Seil 250-11 16-3 35 MS4-24-05-06 efelog X 38 MS4-25-0-0-0-2 38 MS4-25-0-0-0-2 38 MS4-26-0-0-0-2 40 MS4-26A-0-0-0-2 41 MS4-26A-0-0-0-2 41 MS4-27-0-0-0-2 42 MS4-28-0-0-0-2 43 QC11 44 QC12 X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments                         |                 | Sample No.                       |              | TPHs = BTEX |                         |
| 38 NS4-26-0-0-2  39 MS4-26A-0-0-0-2  40 MS4-26A-0-0-0-2  41 MS4-28-0-0-0-2  42 MS4-28-0-0-0-2  43 OC (1)  44 OC (2)  46 T38  X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | Se:1 250-1 1c   | -24-05-06                        | 10           |             |                         |
| 40 NSA-26A-0.0-0.7  41 NSA-26A-0.0-0.2  42 NSA-27-0.0-0.2  42 NSA-28-0.0-0.2  X  43 QC 11  44 QC 12  47 TS8  X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                 | 38NS4-26-0-0-0-2                 |              | ×           |                         |
| #1 MSA - 27-0:0-0:2  #2 MSA - 28-0:0-0:2  #3 QC 11  #4 QC 12  ** TS8  ** TS8  ** TS8  ** TS8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |                 | 40NS4-26A-0-0-0-1                |              | XX          | ×                       |
| #3 QC 11  #3 QC 11  #4 QC 12  Waster 7 Wissle 1 Meta-14 QC 12  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  ** TISS  **  |                                  |                 | 41 NS4-27-0:0-0-2                |              | ×           |                         |
| Winter West Hack Hack Hack Hack Hack Hack Hack Hack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                 | NS4-28-                          |              | ×           |                         |
| Winter Wester Wester Hywis 6  1 Usel Hotel Hotel Required Cl. 1  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | 5               | Sh                               |              | ××          |                         |
| t out Out 46TB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1 Amber, 1      | 3                                |              | ×           |                         |
| Tumpround Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | -               | 1                                |              | ×           |                         |
| t out to the transpoint Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |                 |                                  |              |             |                         |
| t love to the transpoint Required Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                 |                                  |              |             |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special Laboratory Instructions: | Lovel Detection | Turnaround Required:             |              |             |                         |





7 August 2009

Client Details Laboratory Details

Requested By : Chris Gunton

Client : Coffey Environments Pty Ltd Laboratory : SGS Environmental Services

Contact : Chris Gunton

Address : 2/54 Northbourne Avenue

PO Box 1986

CANBERRA ACT 2602

Address : Unit 16, 33 Maddox Street

Manager

Alexandria NSW 2015

**Edward Ibrahim** 

Email : chris\_gunton@coffey.com Email : au.samplereceipt.sydney@sgs.com

 Telephone
 : 02 6248 7154
 Telephone
 : 61 2 8594 0400

 Facsimile
 : 02 6248 7157
 Facsimile
 : 61 2 8594 0499

Project : EC00233AA Report No : SE71199

Order Number : 26374-6 No. of Samples : 46

Samples : 44 Soils, 2 Waters Due Date : 14/08/2009

Date Instructions Received : 7/08/2009 Sample Receipt Date : 7/8/09

Samples received in good order YES Samples received in correct containers Samples received without headspace YFS Sufficient quantity supplied YFS Upon receipt sample temperature : Cooling Method Ice Pack Cool Sample containers provided by Other Lab Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received : YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a> as at the date of this document. Attention is drawn to the limitations of liability and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE71199

Project : EC00233AA

### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description    | Metals Prep & Inorganics - All | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|----------------|--------------------------------|------------|---------------------------|--------------------------------|----------------------|-----------------------------|--------------------------------|----------|
| 1          | MS4-1_0.0-0.2  | х                              | х          | Х                         | Х                              |                      |                             |                                | Х        |
| 2          | MS4-1_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 3          | MS4-2_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 4          | MS4-2_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 5          | MS4-3_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 6          | MS4-3_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 7          | MS4-4_0.0-0.2  | х                              | х          | Х                         | Х                              |                      |                             |                                | Х        |
| 8          | MS4-4_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 9          | MS4-5_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 10         | MS4-5_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 11         | MS4-6_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 12         | MS4-6_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | X        |
| 13         | MS4-7_0.0-0.2  | х                              | х          | Х                         | Х                              |                      |                             |                                | X        |
| 14         | MS4-8_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 15         | MS4-9_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 16         | MS4-10_0.0-0.2 | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 17         | MS4-11_0.0-0.2 | х                              | х          | Х                         | Х                              |                      |                             |                                | Х        |
| 18         | MS4-11_0.5-0.6 | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71199

| Sample No. | Description     | Metals Prep & Inorganics - All | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|-----------------|--------------------------------|------------|---------------------------|--------------------------------|----------------------|-----------------------------|--------------------------------|----------|
| 19         | MS4-12_0.0-0.2  | Х                              | Х          | Х                         | Х                              |                      |                             |                                | X        |
| 20         | MS4-12_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 21         | MS4-13_0.0-0.2  | Х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 22         | MS4-13_0.5-0.6  | Х                              |            | Х                         | Х                              |                      |                             |                                | X        |
| 23         | MS4-14_0.0-0.2  | х                              | х          | Х                         | Х                              |                      |                             |                                | X        |
| 24         | MS4-15_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Χ        |
| 25         | MS4-16_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 26         | MS4-17_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 27         | MS4-18_0.0-0.2  | х                              | х          | Х                         | Х                              |                      |                             |                                | Х        |
| 28         | MS4-18_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 29         | MS4-19_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 30         | MS4-20_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 31         | MS4-21_0.0-0.2  | х                              | х          | Х                         | Х                              |                      |                             |                                | Х        |
| 32         | MS4-22_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 33         | MS4-23_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 34         | MS4-24_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 35         | MS4-24_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 36         | MS4-25_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 37         | MS4-25_0.5-0.6  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 38         | MS4-26_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 39         | MS4-26A_0.0-0.2 | х                              | х          | Х                         | Х                              |                      |                             |                                | Х        |
| 40         | MS4-26A_0.5-0.6 | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 41         | MS4-27_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 42         | MS4-28_0.0-0.2  | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |



Client Coffey Environments Pty Ltd EC00233AA Report No : SE71199

| Sample No. | Description | Metals Prep & Inorganics - All | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|-------------|--------------------------------|------------|---------------------------|--------------------------------|----------------------|-----------------------------|--------------------------------|----------|
| 43         | QC11        | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 44         | QC12        | х                              |            | Х                         | Х                              |                      |                             |                                | Х        |
| 45         | WB6         | Х                              | х          |                           |                                |                      | Х                           | Х                              |          |
| 46         | TB8         |                                |            |                           |                                | Х                    |                             |                                |          |

| Sample No. | Description   |
|------------|---------------|
| 1          | MS4-1_0.0-0.2 |
| 2          | MS4-1_0.5-0.6 |
| 3          | MS4-2_0.0-0.2 |
| 4          | MS4-2_0.5-0.6 |
| 5          | MS4-3_0.0-0.2 |
| 6          | MS4-3_0.5-0.6 |
| 7          | MS4-4_0.0-0.2 |
| 8          | MS4-4_0.5-0.6 |
| 9          | MS4-5_0.0-0.2 |
| 10         | MS4-5_0.5-0.6 |
| 11         | MS4-6_0.0-0.2 |
| 12         | MS4-6_0.5-0.6 |
| 13         | MS4-7_0.0-0.2 |
| 14         | MS4-8_0.0-0.2 |
| 15         | MS4-9_0.0-0.2 |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71199

| Sample No. | Description     |
|------------|-----------------|
| 16         | MS4-10_0.0-0.2  |
| 17         | MS4-11_0.0-0.2  |
| 18         | MS4-11_0.5-0.6  |
| 19         | MS4-12_0.0-0.2  |
| 20         | MS4-12_0.5-0.6  |
| 21         | MS4-13_0.0-0.2  |
| 22         | MS4-13_0.5-0.6  |
| 23         | MS4-14_0.0-0.2  |
| 24         | MS4-15_0.0-0.2  |
| 25         | MS4-16_0.0-0.2  |
| 26         | MS4-17_0.0-0.2  |
| 27         | MS4-18_0.0-0.2  |
| 28         | MS4-18_0.5-0.6  |
| 29         | MS4-19_0.0-0.2  |
| 30         | MS4-20_0.0-0.2  |
| 31         | MS4-21_0.0-0.2  |
| 32         | MS4-22_0.0-0.2  |
| 33         | MS4-23_0.0-0.2  |
| 34         | MS4-24_0.0-0.2  |
| 35         | MS4-24_0.5-0.6  |
| 36         | MS4-25_0.0-0.2  |
| 37         | MS4-25_0.5-0.6  |
| 38         | MS4-26_0.0-0.2  |
| 39         | MS4-26A_0.0-0.2 |
| 40         | MS4-26A_0.5-0.6 |
| 41         | MS4-27_0.0-0.2  |
| 42         | MS4-28_0.0-0.2  |
| 43         | QC11            |
| 44         | QC12            |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71199

| Sample No. | Description |
|------------|-------------|
| 45         | WB6         |
| 46         | TB8         |

Laboratory Quotation / Order No.

No: 26378

JOB NO: ECCOZSSAA Sheet

Delegion Lawis Lowest Dispatch to: (Address & Phone No.) Special Laboratory Instructions Relinquished by: Attention: Jampe Comments Sample Matrix 250~ Container Type and Preservative 4 1 ā 00 \_0 G DCS NS4-37-00-0-2 NS4-38-00-0-2 NS4-36-00:00 NS4-35-0-0-0-7 MS4-39-0:0-0:2 NST-34-0-0-02 NS4-30-05-06 US4-33-00-02 154-34-05-0-6 454-32-00-0-2 454-29-0-0-02 154-53-05-00 454-31-00-0-7 Turnaround Required: 60 30 Sampled by: Date Project Manager: ireport results to "herlie Sample No. 44:0 1.3000 Time: Received by: Soon 800 Date Sample: PAHs TPHS MAHS - BTFX XXXX X X Metals 8 PH Date Dispatched: 10 8 09 Consigning Officer Consignment Note No: Courier Service: TUT XXX OCP/OPF Daniel Analyses Required SGS COOK Face corage un "Derafur コンコキ 2735-737, WOSH REFERENCED ON ALL SUBSEQUENT PAGES 11/8/09 Date: 0 Time Sample Condition on Receipt

Copies: WHITE Sign on release. YELLOW: If displayment is interstate Lab. Lat to sign on relegit and the fact to Coffer. SLUE: To be returned with results

coffey >

No: 26379

| Chain of Custody  Semplatiby  Character for Custody  Semplatiby  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  Character for Custom  C |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Samples by:  Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service: The Counter Service:  |
| Date Sampled  Date Sampled  Date Sampled  Date Dispatched 10 8  Consignment Note No:  Consignment Note No:  Analyses Required  X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PAHs TPHs TPHs Analyses Required  Analyses Required  Analyses Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Consigning Officer Country Service TUT Country Service TUT Consignment Nate No:  Analyses Required  Analyses Required  X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Condition on Receipt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



11 August 2009

**Edward Ibrahim** 

**Client Details Laboratory Details** 

Requested By **Chris Gunton** 

Coffey Environments Pty Ltd Client Laboratory SGS Environmental Services

Contact **Chris Gunton** 

Address 2/54 Northbourne Avenue

PO Box 1986

Unit 16, 33 Maddox Street Address

CANBERRA ACT 2602 Alexandria NSW 2015

Manager

chris\_gunton@coffey.com Email Email au.samplereceipt.sydney@sgs.com

61 2 8594 0400 Telephone 02 6248 7154 Telephone 02 6248 7157 61 2 8594 0499 Facsimile Facsimile

EC00233AA SE71274 Project Report No

Order Number 26378-9 No. of Samples 34

28 Soils, 5 Waters Due Date 18/08/2009 Samples

**Date Instructions Received** 11/08/2009 Sample Receipt Date 11/8/09

Samples received in good order NO Samples received in correct containers Samples received without headspace YFS Sufficient quantity supplied YFS Ice Pack Upon receipt sample temperature : Cooling Method Cool Sample containers provided by Other Lab Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received: YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

WB7 one vial received broken. DC11 not received

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms and conditions.htm as at the date of this document. Attention is drawn to the limitations of liablility and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE71274

Project : EC00233AA

#### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description    | Metals Prep & Inorganics - All | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|----------------|--------------------------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|----------------------|------------------------|--------------------------------|-----------------------------|--------------------------------|----------|
| 1          | MS4-29_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 2          | MS4-30_0.0-0.2 | х                              |                       |                               | х          | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 3          | MS4-30_0.5-0.6 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 4          | MS4-31_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 5          | MS4-32_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 6          | MS4-33_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 7          | MS4-33_0.5-0.6 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 8          | MS4-34_0.0-0.2 | х                              |                       |                               | х          | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 9          | MS4-34_0.5-0.6 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 10         | MS4-35_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 11         | MS4-36_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 12         | MS4-37_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 13         | MS4-38_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 14         | MS4-39_0.0-0.2 | х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 15         | DC1            | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 16         | DC2            | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 17         | DC5            | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 18         | DC6            | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |



Client Coffey Environments Pty Ltd EC00233AA Report No : SE71274

| Sample No. | Description | Metals Prep & Inorganics - All | OC Pesticides in Soil | OP Pesticides in Soil by GCMS | Inorganics | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | OC Pesticides in Water | OP Pesticides in Water by GCMS | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | Moisture |
|------------|-------------|--------------------------------|-----------------------|-------------------------------|------------|---------------------------|--------------------------------|----------------------|------------------------|--------------------------------|-----------------------------|--------------------------------|----------|
| 19         | DC7         | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 20         | DC8         | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 21         | DC9         | Х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 22         | DC10        | Х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 23         | QC13        | Х                              |                       |                               |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 24         | QC14        | Х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | X        |
| 25         | WB7         | Х                              |                       |                               | х          |                           |                                |                      |                        |                                | Х                           | Х                              |          |
| 26         | TB9         |                                |                       |                               |            |                           |                                | Х                    |                        |                                |                             |                                |          |
| 27         | DC13        | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 28         | DC12        | Х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 30         | DC3         | Х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 31         | DC4         | х                              | Х                     | Х                             |            | Х                         | Х                              |                      |                        |                                |                             |                                | Х        |
| 32         | TB10        |                                |                       |                               |            |                           |                                | Х                    |                        |                                |                             |                                |          |
| 33         | TS5         |                                |                       |                               |            |                           |                                | Х                    |                        |                                |                             |                                |          |
| 34         | WB8         | х                              |                       |                               |            |                           |                                |                      | Х                      | Х                              | Х                           | Х                              |          |

| Sample No. | Description    |
|------------|----------------|
| 1          | MS4-29_0.0-0.2 |
| 2          | MS4-30_0.0-0.2 |
| 3          | MS4-30_0.5-0.6 |
| 4          | MS4-31_0.0-0.2 |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71274

| Sample No. | Description    |  |  |  |
|------------|----------------|--|--|--|
| 5          | MS4-32_0.0-0.2 |  |  |  |
| 6          | MS4-33_0.0-0.2 |  |  |  |
| 7          | MS4-33_0.5-0.6 |  |  |  |
| 8          | MS4-34_0.0-0.2 |  |  |  |
| 9          | MS4-34_0.5-0.6 |  |  |  |
| 10         | MS4-35_0.0-0.2 |  |  |  |
| 11         | MS4-36_0.0-0.2 |  |  |  |
| 12         | MS4-37_0.0-0.2 |  |  |  |
| 13         | MS4-38_0.0-0.2 |  |  |  |
| 14         | MS4-39_0.0-0.2 |  |  |  |
| 15         | DC1            |  |  |  |
| 16         | DC2            |  |  |  |
| 17         | DC5            |  |  |  |
| 18         | DC6            |  |  |  |
| 19         | DC7            |  |  |  |
| 20         | DC8            |  |  |  |
| 21         | DC9            |  |  |  |
| 22         | DC10           |  |  |  |
| 23         | QC13           |  |  |  |
| 24         | QC14           |  |  |  |
| 25         | WB7            |  |  |  |
| 26         | TB9            |  |  |  |
| 27         | DC13           |  |  |  |
| 28         | DC12           |  |  |  |
| 30         | DC3            |  |  |  |
| 31         | DC4            |  |  |  |
| 32         | TB10           |  |  |  |
| 33         | TS5            |  |  |  |
| 34         | WB8            |  |  |  |
|            |                |  |  |  |

No: 26381

|                                             | The second second second |                                          |           |                                       |          |              |      |                   |          |      | 1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|---------------------------------------------|--------------------------|------------------------------------------|-----------|---------------------------------------|----------|--------------|------|-------------------|----------|------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------|-----------------------------------|
| Dispatch to:<br>Accress & SCS<br>Phore No.: |                          |                                          |           | Sampled by:                           | 4/10     | Coop         | D    |                   |          | Cons | Consigning Officer: Date Dispatched: | Cant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6449        |          |                                   |
| Attention                                   | 200                      | eipts                                    |           | Project Marrager: (report results to) | of Chris | in Cu        | rot  | 7                 |          | Cons | Courier Service: T                   | dote No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |          |                                   |
| Relinquished by:                            | -                        | 2                                        |           | Date:                                 | Times    | Received by: |      |                   |          |      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d.          | Date:    | Time:                             |
|                                             |                          | 1                                        |           | 13809                                 | 3.00     |              |      |                   |          |      |                                      | David                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | 4/8/09   |                                   |
|                                             | x                        |                                          |           |                                       |          | 1            |      |                   |          |      | Aeta                                 | Analyses Required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |                                   |
| Comments                                    | Sample Matri             | Container Type<br>and Preservative       |           | Sample No.                            | io.      | Date Sample  | PAHs | TPHs  AAHs = BTEX | Metals 8 | NAPP | NAC                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          | Sample<br>Condition<br>on Receipt |
|                                             | 0                        | 250-11-5                                 | -         | NSISPI                                |          | 12 8 09      |      |                   | X        | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 1        |                                   |
|                                             |                          |                                          |           | 151SP2                                |          |              |      |                   |          | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             |                          |                                          | 7         | 24STSV                                |          |              |      |                   | X        | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             |                          |                                          | 7         | 181SP4                                |          |              |      |                   |          | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             |                          |                                          | 2         | 12555                                 |          |              |      |                   | X        | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             |                          |                                          | 0         | 535P2                                 |          |              |      |                   |          | X    | X                                    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |          |                                   |
|                                             |                          |                                          | 7         | 1535P3                                |          |              |      |                   | X        | X    | X                                    | BATOTAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15/41       | 200      |                                   |
|                                             |                          |                                          | 0°        | TANKE T                               | あかっ      |              |      |                   | X        | X    | X                                    | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           | 0        |                                   |
|                                             |                          |                                          | 9         | 花を作っ                                  | US45P2   |              |      |                   |          | X    | X                                    | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mpres imaci | 190      |                                   |
|                                             |                          |                                          | -         | 150                                   | VS45P3   |              |      |                   | X        | X    | X                                    | peratura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P:          | 300      | 2000                              |
|                                             |                          |                                          | =         | 1000                                  | MS4SP4   | ,            |      | +                 |          | X    | X                                    | Silvage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10          | 10t- 16  | MOS LOW                           |
|                                             |                          |                                          | 7         | SASSR                                 |          |              | L    | H                 | X        | X    | X                                    | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113         | 11392    |                                   |
|                                             | +                        |                                          | wy        | 1545PC                                |          |              |      | +                 | (        | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             |                          |                                          | 7         | 843431                                |          |              |      | -                 | )        | X    | ×,                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             |                          |                                          | 5.        | 154579                                |          |              |      |                   | X        | X    | X.                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
|                                             | ~                        |                                          | 17        | かんかつ                                  |          | 4            |      |                   |          | X    | X                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |          |                                   |
| Special Laboratory instructions: NAPP       | 1                        | Net Acid Produ                           | Producing | Potentia                              | (0)      | NAG-         | tot  |                   | Acid     | 0    | 20                                   | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | JG.         | BINUN BI | JOB NUMBER MUST BE                |
| Detection Limits: Course St                 |                          | 7                                        |           |                                       |          |              | 7    |                   |          |      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |          | ED ON ALL                         |
| I                                           | 0110                     | o lo lo lo lo lo lo lo lo lo lo lo lo lo |           | Turnaround Required:                  | 0        | 2            | 1    |                   |          |      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in in       | UBSEQU   | ENT PAGES                         |

Laboratory Quotation / Order No:

Job No: ECOOT TSAA Sheet 2 of 2

No: 26382

|                                       |             |                                 | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |              |                | 5000                     | >3177              | ,                  |                                   |
|---------------------------------------|-------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------------------|--------------------|--------------------|-----------------------------------|
| Dispatch to: Address & SCS Prone No:) |             |                                 | Sampled by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2900         | Þ.             | Date Dispatched: 13 8 69 | Comberso           | Þ                  |                                   |
| Attention: Schurghe                   | P           | ceste                           | Project Manager: Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Howard       | to the         | Consignment Note No.     | 27                 |                    |                                   |
| Relinquished by:                      | 6           | 0000                            | Date: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Received by: |                |                          |                    | Date:              | Times                             |
|                                       |             |                                 | 13/8/09 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                | David                    | nd.                | 109                |                                   |
|                                       | rix:        |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d            |                | Analyses                 | Arralyses Required |                    |                                   |
| Comments                              | Sample Matr | Container Type and Preservative | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date Sample  | PAHs TPHS BTEX | NAPP<br>NAC<br>CCP/OPP   | Suphate            |                    | Sample<br>Condition<br>on Receipt |
|                                       | 1:05        | 250-1705                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13809        |                | X                        |                    |                    |                                   |
|                                       | Water       | 7 Victo                         | 2300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                | XX                       | X >                |                    |                                   |
|                                       |             |                                 | 21 SW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                | X                        | X                  |                    |                                   |
|                                       | -           | 1 V: al 23                      | TRII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4            | X              | 7                        |                    |                    |                                   |
|                                       |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                          |                    |                    |                                   |
|                                       |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                          |                    |                    |                                   |
|                                       |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                          |                    |                    |                                   |
|                                       |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                          |                    |                    |                                   |
|                                       |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                          |                    |                    |                                   |
| Special Laboratory Instructions:      |             |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                |                          |                    | JOS NUMBER MUST BE | MUST HE                           |

Detection Limits: Lowest Level Defection

Copies: WHITE: Sign on release YELLOW: It dispationed to interstate Lab, Lab to sign on recept and fee back to Calley. BLUE: To be refurred with requisi-

Turneround Required: Stendard



## LABORATORY REPORT COVERSHEET

Date: 25 August 2009

To: Coffey Canberra

PO Box 1986

Canberra ACT 2602

Attention: **Chris Gunton** 

Your Reference: Coffey ref EC00233AA SE71392

CE64627 **Laboratory Report No:** 

Samples Received: 17/08/2009 Samples / Quantity: 18 Soil/Rock

The above samples were received intact and analysed according to your written instructions. Unless otherwise stated, solid samples are reported on a dry weight basis and liquid samples as received.

Jon Dicker

Manager **CAIRNS** 

**Shey Goddard** 

Speddard

Administration Manager

CAIRNS

SGS Australia Pty Utd.



PROJECT: Coffey ref EC00233AA SE71392

| Waste Rock - Acid Mine Drain Our Reference Your Reference Type of Sample Date Sampled Job Description/Project & No | Units               | CE64627-1<br>MS1SP1<br>Soil<br>13/08/2009<br>SE71392-1 | CE64627-2<br>MS1SP2<br>Soil<br>13/08/2009<br>SE71392-2 | CE64627-3<br>MS1SP3<br>Soil<br>13/08/2009<br>SE71392-3 |
|--------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Date Extracted                                                                                                     |                     | 19/08/2009                                             | 19/08/2009                                             | 19/08/2009                                             |
| Date Analysed                                                                                                      |                     | 19/08/2009                                             | 19/08/2009                                             | 19/08/2009                                             |
| Aged EC (1:2)                                                                                                      | μS/cm               | 65                                                     | 64                                                     | 91                                                     |
| pH (Paste)                                                                                                         | pH Units            | 7.0                                                    | 7.2                                                    | 7.1                                                    |
| Total Sulfur#                                                                                                      | % w/w               | <0.005                                                 | <0.005                                                 | 0.006                                                  |
| Shci#                                                                                                              | % w/w               | <0.005                                                 | <0.005                                                 | <0.005                                                 |
| Total Oxidisable Sulfur, TOS#                                                                                      | % w/w               | <0.005                                                 | <0.005                                                 | <0.005                                                 |
| Acid Neutralisation Capacity<br>ANСвт                                                                              | % CaCO <sub>3</sub> | 0.3                                                    | 0.3                                                    | 0.3                                                    |
| Acid Neutralisation Capacity                                                                                       | kgH2SO4/tonne       | 2.5                                                    | 2.5                                                    | 2.5                                                    |
| NAGP#                                                                                                              | kg H2SO4/tonne      | <0.5                                                   | <0.5                                                   | <0.5                                                   |
| NAGP (inc ANC) #                                                                                                   | kg H2SO4/tonne      | -2.4                                                   | -2.4                                                   | -2.3                                                   |
| рН ох                                                                                                              | pH Units            | 5.8                                                    | 6.2                                                    | 6.1                                                    |
| Net Acid Generation pH7                                                                                            | kg H2SO4/tonne      | <0.5                                                   | <0.5                                                   | <0.5                                                   |



PROJECT: Coffey ref EC00233AA SE71392

| Waste Rock - Acid Mine Drain Our Reference Your Reference Type of Sample Date Sampled Job Description/Project & No | Units                                    | CE64627-4<br>MS1SP4<br>Soil<br>13/08/2009<br>SE71392-4 | CE64627-5<br>MS3SP1<br>Soil<br>13/08/2009<br>SE71392-5 | CE64627-6<br>MS3SP2<br>Soil<br>13/08/2009<br>SE71392-6 |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Date Extracted                                                                                                     |                                          | 19/08/2009                                             | 19/08/2009                                             | 19/08/2009                                             |
| Date Analysed                                                                                                      |                                          | 19/08/2009                                             | 19/08/2009                                             | 19/08/2009                                             |
| Aged EC (1:2)                                                                                                      | μS/cm                                    | 34                                                     | 110                                                    | 100                                                    |
| pH (Paste)                                                                                                         | pH Units                                 | 6.9                                                    | 8.8                                                    | 8.9                                                    |
| Total Sulfur#                                                                                                      | % w/w                                    | <0.005                                                 | 0.031                                                  | 0.023                                                  |
| Shci#                                                                                                              | % w/w                                    | <0.005                                                 | 0.006                                                  | <0.005                                                 |
| Total Oxidisable Sulfur, TOS#                                                                                      | % w/w                                    | <0.005                                                 | 0.025                                                  | 0.020                                                  |
| Acid Neutralisation Capacity ANCBT                                                                                 | % CaCO <sub>3</sub>                      | 0.3                                                    | 90                                                     | 75                                                     |
| Acid Neutralisation Capacity                                                                                       | kgH2SO4/tonne                            | 2.5                                                    | 880                                                    | 730                                                    |
| NAGP#                                                                                                              | kg H <sub>2</sub> SO <sub>4</sub> /tonne | <0.5                                                   | 0.7                                                    | 0.6                                                    |
| NAGP (inc ANC) #                                                                                                   | kg H <sub>2</sub> SO <sub>4</sub> /tonne | -2.4                                                   | -881                                                   | -834                                                   |
| pH ox                                                                                                              | pH Units                                 | 5.5                                                    | 10.2                                                   | 12.0                                                   |
| Net Acid Generation pH7                                                                                            | kg H2SO4/tonne                           | <0.5                                                   | <0.5                                                   | <0.5                                                   |



PROJECT: Coffey ref EC00233AA SE71392

| Waste Rock - Acid Mine Drain Our Reference Your Reference Type of Sample Date Sampled Job Description/Project & No | Units               | CE64627-7<br>MS3SP3<br>Soil<br>13/08/2009<br>SE71392-7 | CE64627-8<br>MS4SP1<br>Soil<br>13/08/2009<br>SE71392-8 | CE64627-9<br>MS4SP2<br>Soil<br>13/08/2009<br>SE71392-9 |
|--------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Date Extracted                                                                                                     |                     | 19/08/2009                                             | 19/08/2009                                             | 19/08/2009                                             |
| Date Analysed                                                                                                      |                     | 19/08/2009                                             | 19/08/2009                                             | 19/08/2009                                             |
| Aged EC (1:2)                                                                                                      | μS/cm               | 73                                                     | 230                                                    | 420                                                    |
| pH (Paste)                                                                                                         | pH Units            | 9.0                                                    | 8.1                                                    | 8.1                                                    |
| Total Sulfur#                                                                                                      | % w/w               | 66                                                     | 0.025                                                  | 0.033                                                  |
| SHCI#                                                                                                              | % w/w               | <0.005                                                 | <0.005                                                 | 0.024                                                  |
| Total Oxidisable Sulfur, TOS #                                                                                     | % w/w               | 0.062                                                  | 0.021                                                  | 0.009                                                  |
| Acid Neutralisation Capacity<br>ANСвт                                                                              | % CaCO <sub>3</sub> | 89                                                     | 0.4                                                    | 1.5                                                    |
| Acid Neutralisation Capacity                                                                                       | kgH2SO4/tonne       | 870                                                    | 3.7                                                    | 15                                                     |
| NAGP#                                                                                                              | kg H2SO4/tonne      | 1.9                                                    | 0.6                                                    | <0.5                                                   |
| NAGP (inc ANC) #                                                                                                   | kg H2SO4/tonne      | -868                                                   | -3.0                                                   | -14                                                    |
| рН ох                                                                                                              | pH Units            | 12.0                                                   | 7.5                                                    | 8.1                                                    |
| Net Acid Generation pH7                                                                                            | kg H2SO4/tonne      | <0.5                                                   | <0.5                                                   | <0.5                                                   |



PROJECT: Coffey ref EC00233AA SE71392

| Waste Rock - Acid Mine Drain Our Reference Your Reference Type of Sample Date Sampled Job Description/Project & No | Units                                    | CE64627-10<br>MS4SP3<br>Soil<br>13/08/2009<br>SE71392-10 | CE64627-11<br>MS4SP4<br>Soil<br>13/08/2009<br>SE71392-11 | CE64627-12<br>MS4SP5<br>Soil<br>13/08/2009<br>SE71392-12 |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Date Extracted                                                                                                     |                                          | 19/08/2009                                               | 19/08/2009                                               | 19/08/2009                                               |
| Date Analysed                                                                                                      |                                          | 19/08/2009                                               | 19/08/2009                                               | 19/08/2009                                               |
| Aged EC (1:2)                                                                                                      | μS/cm                                    | 180                                                      | 200                                                      | 150                                                      |
| pH (Paste)                                                                                                         | pH Units                                 | 8.4                                                      | 8.3                                                      | 8.2                                                      |
| Total Sulfur#                                                                                                      | % w/w                                    | <0.005                                                   | 0.021                                                    | <0.005                                                   |
| Shci#                                                                                                              | % w/w                                    | <0.005                                                   | <0.005                                                   | <0.005                                                   |
| Total Oxidisable Sulfur, TOS#                                                                                      | % w/w                                    | <0.005                                                   | 0.018                                                    | <0.005                                                   |
| Acid Neutralisation Capacity ANCBT                                                                                 | % CaCO3                                  | 8.3                                                      | 2.3                                                      | 0.4                                                      |
| Acid Neutralisation Capacity                                                                                       | kgH2SO4/tonne                            | 81                                                       | 22                                                       | 3.7                                                      |
| NAGP#                                                                                                              | kg H <sub>2</sub> SO <sub>4</sub> /tonne | <0.5                                                     | 0.5                                                      | <0.5                                                     |
| NAGP (inc ANC) #                                                                                                   | kg H <sub>2</sub> SO <sub>4</sub> /tonne | -81                                                      | -22                                                      | -3.7                                                     |
| pH ox                                                                                                              | pH Units                                 | 10.4                                                     | 8.9                                                      | 7.4                                                      |
| Net Acid Generation pH7                                                                                            | kg H2SO4/tonne                           | <0.5                                                     | <0.5                                                     | <0.5                                                     |



PROJECT: Coffey ref EC00233AA SE71392

| Waste Rock - Acid Mine Drain Our Reference Your Reference Type of Sample Date Sampled Job Description/Project & No | Units                                    | CE64627-13<br>MS4SP6<br>Soil<br>13/08/2009<br>SE71392-13 | CE64627-14<br>MS4SP7<br>Soil<br>13/08/2009<br>SE71392-14 | CE64627-15<br>MS4SP8<br>Soil<br>13/08/2009<br>SE71392-15 |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Date Extracted                                                                                                     |                                          | 19/08/2009                                               | 19/08/2009                                               | 19/08/2009                                               |
| Date Analysed                                                                                                      |                                          | 19/08/2009                                               | 19/08/2009                                               | 19/08/2009                                               |
| Aged EC (1:2)                                                                                                      | μS/cm                                    | 160                                                      | 250                                                      | 210                                                      |
| pH (Paste)                                                                                                         | pH Units                                 | 8.7                                                      | 8.4                                                      | 8.2                                                      |
| Total Sulfur#                                                                                                      | % w/w                                    | 0.028                                                    | 0.016                                                    | 0.015                                                    |
| Shci#                                                                                                              | % w/w                                    | 0.012                                                    | <0.005                                                   | 0.007                                                    |
| Total Oxidisable Sulfur, TOS#                                                                                      | % w/w                                    | 0.015                                                    | 0.012                                                    | 0.008                                                    |
| Acid Neutralisation Capacity ANCBT                                                                                 | % CaCO3                                  | 19                                                       | 0.3                                                      | 0.4                                                      |
| Acid Neutralisation Capacity                                                                                       | kgH2SO4/tonne                            | 190                                                      | 2.5                                                      | 3.7                                                      |
| NAGP#                                                                                                              | kg H2SO4/tonne                           | <0.5                                                     | <0.5                                                     | <0.5                                                     |
| NAGP (inc ANC) #                                                                                                   | kg H <sub>2</sub> SO <sub>4</sub> /tonne | -190                                                     | -2.1                                                     | -3.4                                                     |
| pH ox                                                                                                              | pH Units                                 | 10.1                                                     | 7.4                                                      | 7.7                                                      |
| Net Acid Generation pH7                                                                                            | kg H2SO4/tonne                           | <0.5                                                     | <0.5                                                     | <0.5                                                     |



PROJECT: Coffey ref EC00233AA SE71392

| Waste Rock - Acid Mine Drain       |                                          |            |            |            |  |
|------------------------------------|------------------------------------------|------------|------------|------------|--|
| Our Reference                      | Units                                    | CE64627-16 | CE64627-17 | CE64627-18 |  |
| Your Reference                     |                                          | MS4SP9     | MS4SP10    | QC15       |  |
| Type of Sample                     |                                          | Soil       | Soil       | Soil       |  |
| Date Sampled                       |                                          | 13/08/2009 | 13/08/2009 | 13/08/2009 |  |
| Job Description/Project & No       |                                          | SE71392-16 | SE71392-17 | SE71392-18 |  |
| Date Extracted                     |                                          | 19/08/2009 | 19/08/2009 | 19/08/2009 |  |
| Date Analysed                      |                                          | 19/08/2009 | 19/08/2009 | 19/08/2009 |  |
| Aged EC (1:2)                      | μS/cm                                    | 200        | 290        | 190        |  |
| pH (Paste)                         | pH Units                                 | 7.4        | 8.0        | 7.9        |  |
| Total Sulfur#                      | % w/w                                    | 0.037      | <0.005     | 0.015      |  |
| Shci#                              | % w/w                                    | 0.013      | <0.005     | <0.005     |  |
| Total Oxidisable Sulfur, TOS#      | % w/w                                    | 0.021      | <0.005     | 0.012      |  |
| Acid Neutralisation Capacity ANCBT | % CaCO3                                  | 0.9        | 6.8        | 0.4        |  |
| Acid Neutralisation Capacity       | kgH2SO4/tonne                            | 8.6        | 66         | 3.7        |  |
| NAGP#                              | kg H <sub>2</sub> SO <sub>4</sub> /tonne | 0.6        | <0.5       | <0.5       |  |
| NAGP (inc ANC) #                   | kg H <sub>2</sub> SO <sub>4</sub> /tonne | -7.9       | -66        | -3.3       |  |
| рН ох                              | pH Units                                 | 7.8        | 8.7        | 7.4        |  |
| Net Acid Generation pH7            | kg H2SO4/tonne                           | <0.5       | <0.5       | <0.5       |  |



PROJECT: Coffey ref EC00233AA SE71392

| TEST PARAMETERS                    | UNITS               | LOR   | METHOD            |
|------------------------------------|---------------------|-------|-------------------|
| Waste Rock - Acid<br>Mine Drain    |                     |       |                   |
| Date Extracted                     |                     |       |                   |
| Date Analysed                      |                     |       |                   |
| Aged EC (1:2)                      | μS/cm               | 5     | AN106             |
| pH (Paste)                         | pH Units            | 0.1   | AN212 CEI-400     |
| Total Sulfur#                      | % w/w               | 0.005 | ASSMAC_20A        |
| SHCI#                              | % w/w               | 0.005 | ASSMAC_20B        |
| Total Oxidisable Sulfur,<br>TOS#   | % w/w               | 0.005 | Calculation       |
| Acid Neutralisation Capacity ANCвт | % CaCO <sub>3</sub> | 0.1   | ASSMAC_19A1/AN214 |
| Acid Neutralisation<br>Capacity    | kgH2SO4/tonne       | 0.5   | ASSMAC_19A1/AN214 |
| NAGP#                              | kg H2SO4/tonne      | 0.5   | AN215 CEI-043     |
| NAGP (inc ANC) #                   | kg H2SO4/tonne      |       | Calculation       |
| рН ох                              | pH Units            | 0.1   | AN212 CEI-400     |
| Net Acid Generation pH7            | kg H2SO4/tonne      | 0.5   | AN212 CEI-400     |



PROJECT: Coffey ref EC00233AA SE71392

| QUALITY CONTROL                       | UNITS                 | Blank    | Duplicate<br>Sm# | Duplicate                    |
|---------------------------------------|-----------------------|----------|------------------|------------------------------|
|                                       |                       |          |                  | Sample  Duplicate            |
| Date Extracted                        |                       | 19/08/09 | CE64627-1        | 19/08/2009    19/08/2009     |
| Date Analysed                         |                       | 19/08/09 | CE64627-1        | 19/08/2009    19/08/2009     |
| Aged EC (1:2)                         | μS/cm                 | -        | CE64627-1        | 65    64    RPD: 2           |
| pH (Paste)                            | pH Units              | -        | CE64627-1        | 7.0    7.0    RPD: 0         |
| Total Sulfur#                         | % w/w                 | <0.005   | CE64627-1        | <0.005    <0.005             |
| SHCI#                                 | % w/w                 | <0.005   | CE64627-1        | <0.005    <0.005             |
| Total Oxidisable Sulfur,<br>TOS #     | % w/w                 | <0.005   | CE64627-1        | <0.005    <0.005             |
| Acid Neutralisation<br>Capacity ANСвт | % CaCO <sub>3</sub>   | -        | CE64627-1        | 0.3    0.3    RPD: 0         |
| Acid Neutralisation<br>Capacity       | kgH2SO4/to<br>nne     | -        | CE64627-1        | 2.5    2.5    RPD: 0         |
| NAGP#                                 | kg<br>H2SO4/tonn<br>e | -        | CE64627-1        | <0.5    <0.5                 |
| NAGP (inc ANC) #                      | kg<br>H2SO4/tonn<br>e | -        | CE64627-1        | -2.4    -2.4    RPD: 0       |
| рН ох                                 | pH Units              | 3.8      | CE64627-1        | 5.8    5.7    RPD: 2         |
| Net Acid Generation<br>pH7            | kg<br>H2SO4/tonn<br>e | -        | CE64627-1        | <0.5    <0.5                 |
| QUALTY CONTROL                        | UNITS                 | Blank    | Duplicate<br>Sm# | Duplicate  Sample  Duplicate |
| Date Extracted                        |                       | [NT]     | CE64627-11       | 19/08/2009    19/08/2009     |
| Date Analysed                         |                       | [NT]     | CE64627-11       | 19/08/2009    19/08/2009     |
| Aged EC (1:2)                         | μS/cm                 | [NT]     | CE64627-11       | 200    200    RPD: 0         |
| pH (Paste)                            | pH Units              | [NT]     | CE64627-11       | 8.3    8.3    RPD: 0         |
| ' \/<br>Total Sulfur#                 | % w/w                 | [NT]     | CE64627-11       | 0.021    0.021    RPD: 0     |
| SHCI #                                | % w/w                 | [NT]     | CE64627-11       | <0.005    <0.005             |



PROJECT: Coffey ref EC00233AA SE71392

#### LABORATORY REPORT

| QUALTY CONTROL                     | UNITS                                       | Blank | Duplicate<br>Sm# | Duplicate Sample  Duplicate |
|------------------------------------|---------------------------------------------|-------|------------------|-----------------------------|
| Total Oxidisable Sulfur,<br>TOS#   | % w/w                                       | [NT]  | CE64627-11       | 0.018    0.018    RPD: 0    |
| Acid Neutralisation Capacity ANCBT | % CaCO3                                     | [NT]  | CE64627-11       | 2.3    2.1    RPD: 9        |
| Acid Neutralisation Capacity       | kgH <sub>2</sub> SO <sub>4</sub> /to<br>nne | [NT]  | CE64627-11       | 22    21    RPD: 5          |
| NAGP#                              | kg<br>H2SO4/tonn<br>e                       | [NT]  | CE64627-11       | 0.5    0.5    RPD: 0        |
| NAGP (inc ANC) #                   | kg<br>H2SO4/tonn<br>e                       | [NT]  | CE64627-11       | -22    -20    RPD: -10      |
| pH ox                              | pH Units                                    | [NT]  | CE64627-11       | 8.9    9.0    RPD: 1        |
| Net Acid Generation<br>pH7         | kg<br>H2SO4/tonn<br>e                       | [NT]  | CE64627-11       | <0.5    <0.5                |

#### **NOTES:**

LOR - Limit of Reporting.

# This test is not covered by our current NATA accreditation.

Analysis Date: Between 17/08/09 and 24/08/09

SGS Terms and Conditions are available from www.au.sgs.com





SGS

14 August 2009

Client Details Laboratory Details

Requested By : Chris Gunton

Client : Coffey Environments Pty Ltd Laboratory : SGS Environmental Services

Contact : Chris Gunton

Address : 2/54 Northbourne Avenue

PO Box 1986

CANBERRA ACT 2602

Address : Unit 16, 33 Maddox Street

Manager

Email

Telephone

Facsimile

Alexandria NSW 2015

au.samplereceipt.sydney@sgs.com

**Edward Ibrahim** 

61 2 8594 0400

61 2 8594 0499

Email : chris\_gunton@coffey.com

Telephone : 02 6248 7154 Facsimile : 02 6248 7157

Project : EC00233AA Report No : **SE71392** 

Order Number : 26381-2 No. of Samples : 23

Samples : 18 Rocks, 5 Waters Due Date : 25/08/2009

Date Instructions Received : 14/08/2009 Sample Receipt Date : 14/8/09

Samples received in good order YES Samples received in correct containers Samples received without headspace YES Sufficient quantity supplied YFS Ice Pack Upon receipt sample temperature : Cooling Method Cool Sample containers provided by SGS Samples clearly Labelled YES Turnaround time requested Standard Completed documentation received: YFS

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

NAPP and NAG Subcontracted to SGS Cairns

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms\_and\_conditions.htm as at the date of this document. Attention is drawn to the limitations of liablility and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE71392

Project : EC00233AA

#### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description | Metals Prep, soil, water, TCLP | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | OC Pesticides in Water | OP Pesticides in Water by GCMS | Anions in water | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | External | Moisture |
|------------|-------------|--------------------------------|---------------------------|--------------------------------|----------------------|------------------------|--------------------------------|-----------------|-----------------------------|--------------------------------|----------|----------|
| 1          | MS1SP1      | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 2          | MS1SP2      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 3          | MS1SP3      | х                              | X                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | X        |
| 4          | MS1SP4      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 5          | MS3SP1      | х                              | X                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 6          | MS3SP2      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 7          | MS3SP3      | х                              | X                         | X                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 8          | MS4SP1      | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 9          | MS4SP2      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 10         | MS4SP3      | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 11         | MS4SP4      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 12         | MS4SP5      | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 13         | MS4SP6      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 14         | MS4SP7      | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 15         | MS4SP8      |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 16         | MS4SP9      | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |
| 17         | MS4SP10     |                                |                           |                                |                      |                        |                                |                 |                             |                                | Х        |          |
| 18         | QC15        | х                              | Х                         | Х                              |                      |                        |                                |                 |                             |                                | Х        | Х        |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71392

| Sample No. | Description | Metals Prep, soil, water, TCLP | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | BTEX in Water (µg/L) | OC Pesticides in Water | OP Pesticides in Water by GCMS | Anions in water | Trace HM (ICP-MS)-Dissolved | Mercury Cold Vapor/Hg Analyser | External | Moisture |
|------------|-------------|--------------------------------|---------------------------|--------------------------------|----------------------|------------------------|--------------------------------|-----------------|-----------------------------|--------------------------------|----------|----------|
| 19         | SW1         | х                              |                           |                                |                      | Х                      | Х                              | Х               | Х                           | Х                              |          |          |
| 20         | SW2         | х                              |                           |                                |                      | Х                      | Х                              | Х               | Х                           | Х                              |          |          |
| 21         | SW3         | х                              |                           |                                |                      | Х                      | Х                              | Х               | Х                           | Х                              |          |          |
| 22         | QC16        | х                              |                           |                                |                      | Х                      | Х                              | Х               | Х                           | Х                              |          |          |
| 23         | TB11        |                                |                           |                                | Х                    |                        |                                |                 |                             |                                |          |          |

| Sample No. | Description |  |  |  |  |  |  |
|------------|-------------|--|--|--|--|--|--|
| 1          | MS1SP1      |  |  |  |  |  |  |
| 2          | MS1SP2      |  |  |  |  |  |  |
| 3          | MS1SP3      |  |  |  |  |  |  |
| 4          | MS1SP4      |  |  |  |  |  |  |
| 5          | MS3SP1      |  |  |  |  |  |  |
| 6          | MS3SP2      |  |  |  |  |  |  |
| 7          | MS3SP3      |  |  |  |  |  |  |
| 8          | MS4SP1      |  |  |  |  |  |  |
| 9          | MS4SP2      |  |  |  |  |  |  |
| 10         | MS4SP3      |  |  |  |  |  |  |
| 11         | MS4SP4      |  |  |  |  |  |  |
| 12         | MS4SP5      |  |  |  |  |  |  |
| 13         | MS4SP6      |  |  |  |  |  |  |
| 14         | MS4SP7      |  |  |  |  |  |  |



Coffey Environments Pty Ltd EC00233AA Client Report No : SE71392

| Sample No. | Description |
|------------|-------------|
| 15         | MS4SP8      |
| 16         | MS4SP9      |
| 17         | MS4SP10     |
| 18         | QC15        |
| 19         | SW1         |
| 20         | SW2         |
| 21         | SW3         |
| 22         | QC16        |
| 23         | TB11        |

Laboratory Quotation / Order No.

Dispatch to: (Address & Phone No.) Special Laboratory Instructions: Relinquished by: Attention: Sample Keceipts Comments Sas her-lie F W 200 = 13 6 - OD 2 a W 20. Sample Matrix 250... Container Type and Preservative LE NS3-29-00-0-2 MS3-77-00-0-2 MSS-31-0-0-0-2 MS3-30-0-0-0-2 NS3-24-0-0-0-2 HSS-73-0-0-0-2 NS3-18-00-0-2 MS3-16-0-0-0-2 NS3-32-00-0-2 VISS-76-00-0-2 US3-25-0-0-0-2 MS3-77-60-0-2 NS3-21-00-0-2 NS3-70-00-0-2 NS3-19-0-0-0-2 Project Manager: 75 11/09 4-00pm Date: Sample No. herice Locas Time: 25/11/09 Received by: Charle Date Sampled PAHs TPHs MAHs = BTEX X Metals: 8 X X X X Consignment Note No: Courier Service - Z Date Dispatched: 25/11/09 Job No: ELOCZ33AA Sheet 1 Consigning Officer: Carbar + a Analyses Required NESS PET & 100 to JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 2611/37 2005 Time; 169 Sample Condition on Receipt

Detection Limits: Lowerst Level Detection

Chain of Custody

JOB NO: FCCCOTTEAA

Sheet of N

|                                          |              | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |              |      |      |             | JOHN E.               | ELLC CANA            | College C | 0                                     |                                   |
|------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------|------|-------------|-----------------------|----------------------|-----------|---------------------------------------|-----------------------------------|
| Dispatch to:<br>(Address &<br>Phone No.) |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampled by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Lucas        | 3    |      |             | Consigning Officer: C | 3                    | 09        |                                       |                                   |
| Sample R                                 | 600          | stars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Manager: (report results to)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lawa         | 8    |      |             | Counter Service: T    | Consignment Note No: |           |                                       |                                   |
| Relinquished by:                         | 10           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Received by: |      |      |             |                       |                      |           |                                       | Time:                             |
|                                          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75/11/09/4-00pm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Done         | 6    |      |             |                       |                      |           | 50///97.                              | rober                             |
|                                          | ix           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |      |      |             | A                     | Analyses Required    |           |                                       |                                   |
| Comments                                 | Sample Matri | Container Type<br>and Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date Sample  | PAHs | TPHs | MAHs - BTEX | Metals: X             |                      |           |                                       | Sample<br>Condition<br>on Receipt |
| 81                                       | 1:05         | 250ml Jose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NS3-37-0-5-0-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75/11/09     |      |      | -           |                       |                      |           |                                       |                                   |
| 19                                       | +            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HS3-33-6.00-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -            |      |      |             |                       |                      |           |                                       |                                   |
| 21                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -34-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |      |      |             |                       |                      |           |                                       |                                   |
| 22                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |      |      | ~           | ^                     |                      |           |                                       |                                   |
| 23                                       | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |      |             |                       |                      |           |                                       |                                   |
| 75                                       | +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NS4- 40-0-0-0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |      | -    |             |                       |                      |           |                                       |                                   |
| 26                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |      |      |             |                       |                      |           |                                       |                                   |
| 27                                       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -43-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |      |      | /           | X                     |                      |           |                                       |                                   |
| -0 =<br>Lu 1                             | 1            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MS4-45-00-0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +            |      | 1    |             | X                     |                      |           |                                       |                                   |
| 3.0                                      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -46-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |      |      |             |                       |                      |           |                                       |                                   |
| 26                                       | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS4-48-0-0-0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |      |      | -           | ×                     |                      |           |                                       |                                   |
| war                                      | _            | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NSA - 49-0:0-0:2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |      |      | X           | ^                     |                      |           |                                       |                                   |
| Special Laboratory Instructions:         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *            |      | -    | -           |                       |                      |           | 1                                     |                                   |
| Detection Limits: Lowest (               | le ve        | el Ordertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Turnaround Required: STc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e c          | 2    |      |             |                       |                      |           | REFERENCED ON ALL<br>SUBSEQUENT PAGES | MUST BE                           |
|                                          | 1000         | el Octentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A Turnaround Required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rac 4        | 0    |      |             |                       |                      |           | SUBSEQUEN                             | T PAGES                           |

coffey?

Chain of Custody

Laboratory Quotation / Order No.

No: 26308

Detection Limits Lowest Level Detection Dispatch to: Address & SCS

Phone No.) Special Laboratory Instructions: Relinquished by: Attention: Sample Keceipts Comments 37 36 Water Vo: Sample Matrix Metals Container Type and Preservative 8C100 NS4-51-00-0-2 25/11/09 Time: Received by: Project Manager:
Irapor results to

Light Care Haward Charlie Lucas Sample No. Date Sampled PAHS TPHs MAHS = BTEX XX 8 Metals Date Dispatched: 25/11/09 Consigning Officer: Carberra Consignment Note No: Courier Service: Job No: ECCO235AA Sheet Z or S Analyses Required JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 26/11/09 400an Ime: Sample Condition on Receipt

Turnaround Required:



26 November 2009

**Client Details Laboratory Details** 

Requested By Julian Howard SGS Environmental Services Client Coffey Environments Pty Ltd Laboratory

Contact Julian Howard Manager **Edward Ibrahim** 

Address 17 Torrens St Address Unit 16, 33 Maddox Street **BRADDON ACT 2612** 

Alexandria NSW 2015

julian\_howard@coffey.com au.samplereceipt.sydney@sgs.com Email Email

02 6248 7154 61 2 8594 0400 Telephone Telephone 02 6248 7157 61 2 8594 0499 Facsimile Facsimile

EC00233AA SE74004 Project Report No Order Number 26306-308 No. of Samples 38

37 Soils, 1 Water 2/12/2009 Samples Due Date

**Date Instructions Received** 26/11/2009 Sample Receipt Date 26/11/2009

Samples received in good order YES Samples received in correct container:3 YFS Samples received without headspace YFS Sufficient quantity supplied YES Upon receipt sample temperature : Cooling Method Cool Ice YES Sample containers provided by SGS Samples clearly Labelled Turnaround time requested Standard Completed documentation received: YES

Samples will be held for 1 month for water samples and 3 months for soil samples from date of receipt of samples, unless otherwise instructed.

#### Comments

To the extent not inconsistent with the other provisions of this document and unless specifically agreed otherwise in writing by SGS, all SGS services are rendered in accordance with the applicable SGS General Conditions of Service accessible at http://www.sgs.com/terms\_and\_conditions.htm as at the date of this document. Attention is drawn to the limitations of liablility and to the clauses of indemnification.

The signed chain of custody will be returned to you with the original report.



Client : Coffey Environments Pty Ltd Report No : SE74004

Project : EC00233AA

### **Summary of Samples and Requested Analysis**

The table below represents SGS Environmental Service's understanding and interpretation of the customer supplied sample request.

Please indicate ASAP if your request differs from these details.

Testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing. Note that a small X in the table below indicates some testing has not been requested in the package.

| Sample No. | Description    | Metals Prep & Inorganics - All | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|----------------|--------------------------------|---------------------------|--------------------------------|------------------------------|----------|
| 1          | MS3-16_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 2          | MS3-17_0.0-0.2 |                                |                           |                                | Х                            |          |
| 3          | MS3-18_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 4          | MS3-19_0.0-0.2 |                                |                           |                                | Х                            |          |
| 5          | MS3-20_0.0-0.2 |                                |                           |                                | Х                            |          |
| 6          | MS3-21_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 7          | MS3-22_0.0-0.2 |                                |                           |                                | Х                            |          |
| 8          | MS3-23_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 9          | MS3-24_0.0-0.2 |                                |                           |                                | Х                            |          |
| 10         | MS3-25_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 11         | MS3-26_0.0-0.2 |                                |                           |                                | Х                            |          |
| 12         | MS3-27_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 13         | MS3-28_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 14         | MS3-29_0.0-0.2 |                                |                           |                                | Х                            |          |
| 15         | MS3-30_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 16         | MS3-31_0.0-0.2 |                                |                           |                                | Х                            |          |
| 17         | MS3-32_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 18         | MS3-32_0.5-0.6 |                                |                           |                                | Х                            |          |



Client : Coffey Environments Pty Ltd Report No : SE74004

Project : EC00233AA

| Sample No. | Description    | Metals Prep & Inorganics - All | Metals in Soil by ICP-OES | Mercury Cold Vapor/Hg Analyser | Hold sample-NO test required | Moisture |
|------------|----------------|--------------------------------|---------------------------|--------------------------------|------------------------------|----------|
| 19         | MS3-33_0.0-0.2 |                                |                           |                                | Х                            |          |
| 20         | MS3-34_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 21         | MS3-34_0.5-0.6 |                                |                           |                                | Х                            |          |
| 22         | MS3-35_0.0-0.2 | Х                              | Х                         | Х                              |                              | X        |
| 23         | MS3-35_0.5-0.6 |                                |                           |                                | Х                            |          |
| 24         | MS4-40_0.0-0.2 |                                |                           |                                | Х                            |          |
| 25         | MS4-41_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 26         | MS4-42_0.0-0.2 |                                |                           |                                | Х                            |          |
| 27         | MS4-43_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 28         | MS4-44_0.0-0.2 |                                |                           |                                | Х                            |          |
| 29         | MS4-45_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 30         | MS4-46_0.0-0.2 |                                |                           |                                | Х                            |          |
| 31         | MS4-47_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 32         | MS4-48_0.0-0.2 |                                |                           |                                | Х                            |          |
| 33         | MS4-49_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 34         | MS4-50_0.0-0.2 |                                |                           |                                | Х                            |          |
| 35         | MS4-51_0.0-0.2 | Х                              | Х                         | Х                              |                              | Х        |
| 36         | QC100          | Х                              | Х                         | Х                              |                              | Х        |
| 37         | QC101          |                                |                           |                                | Х                            |          |
| 38         | WB             |                                |                           |                                | Х                            |          |



Coffey Environments Pty Ltd EC00233AA : SE74004 Client Report No

Project

| Sample No. | Description    |
|------------|----------------|
| 1          | MS3-16_0.0-0.2 |
| 2          | MS3-17_0.0-0.2 |
| 3          | MS3-18_0.0-0.2 |
| 4          | MS3-19_0.0-0.2 |
| 5          | MS3-20_0.0-0.2 |
| 6          | MS3-21_0.0-0.2 |
| 7          | MS3-22_0.0-0.2 |
| 8          | MS3-23_0.0-0.2 |
| 9          | MS3-24_0.0-0.2 |
| 10         | MS3-25_0.0-0.2 |
| 11         | MS3-26_0.0-0.2 |
| 12         | MS3-27_0.0-0.2 |
| 13         | MS3-28_0.0-0.2 |
| 14         | MS3-29_0.0-0.2 |
| 15         | MS3-30_0.0-0.2 |
| 16         | MS3-31_0.0-0.2 |
| 17         | MS3-32_0.0-0.2 |
| 18         | MS3-32_0.5-0.6 |
| 19         | MS3-33_0.0-0.2 |
| 20         | MS3-34_0.0-0.2 |
| 21         | MS3-34_0.5-0.6 |
| 22         | MS3-35_0.0-0.2 |
| 23         | MS3-35_0.5-0.6 |
| 24         | MS4-40_0.0-0.2 |
| 25         | MS4-41_0.0-0.2 |
| 26         | MS4-42_0.0-0.2 |
| 27         | MS4-43_0.0-0.2 |
| 28         | MS4-44_0.0-0.2 |
| 29         | MS4-45_0.0-0.2 |



Coffey Environments Pty Ltd EC00233AA : SE74004 Client Report No

Project

| Sample No. | Description    |
|------------|----------------|
| 30         | MS4-46_0.0-0.2 |
| 31         | MS4-47_0.0-0.2 |
| 32         | MS4-48_0.0-0.2 |
| 33         | MS4-49_0.0-0.2 |
| 34         | MS4-50_0.0-0.2 |
| 35         | MS4-51_0.0-0.2 |
| 36         | QC100          |
| 37         | QC101          |
| 38         | WB             |



### ANALYTICAL REPORT

8 October 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Julian Howard

Your Reference: EC00233AA - Additional Analysis

Our Reference: SE71199A Samples: 2 Soils

Received: 7/8/09

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:


**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:



| Metals in TCLP                        |          |           |           |
|---------------------------------------|----------|-----------|-----------|
| Our Reference:                        | UNITS    | SE71199A- | SE71199A- |
|                                       |          | 40        | 41        |
| Your Reference                        |          | MS4-26A_0 | MS4-27_0. |
|                                       |          | .5-0.6    | 0-0.2     |
| Sample Matrix                         |          | Soil      | Soil      |
| Date Sampled                          |          | 6/08/2009 | 6/08/2009 |
| Depth                                 |          |           |           |
| Date Extracted (TCLP Preparation)     |          | 1/10/2009 | 1/10/2009 |
| pH of soil for fluid# determ.         | pH units | 6.34      | 6.81      |
| pH of soil for fluid # determ. (acid) | pH units | 1.78      | 1.79      |
| Extraction fluid used                 | -        | 1         | 1         |
| pH of final Leachate                  | pH units | 6.37      | 5.16      |
| Date Extracted (Metals)               |          | 2/10/2009 | 2/10/2009 |
| Date Analysed (Metals)                |          | 2/10/2009 | 2/10/2009 |
| Arsenic                               | mg/L     | <0.05     | [NA]      |
| Lead                                  | mg/L     | [NA]      | 370       |

**REPORT NO: SE71199A** 

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN006     | Toxicity Characteristic Leaching Procedure (TCLP) - Preparation of leachates for assessing the mobility of both organic and inorganic contaminants present in liquid, solid, and multiphase wastes. Based on USEPA 1311. For volatile analytes, Zero-Headspace Extraction Vessel (ZHE) is used. This method also meets the requirements of Australian Standard Leaching Procedure (ASLP) AS 4439.3-1997 Part 3. |
| AN101     | pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).                                                                                                |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                                                                             |

**REPORT NO: SE71199A** 

| QUALITY CONTROL                          | UNITS    | LOR  | METHOD  | Blank         | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------------------------|----------|------|---------|---------------|------------------|-------------------------|-----------|----------------------------|
| Metals in TCLP                           |          |      |         |               |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| pH of soil for fluid#<br>determ.         | pH units | 0    | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| pH of soil for fluid #<br>determ. (acid) | pH units | 0    | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Extraction fluid used                    | -        |      | AN006   | 1             | [NT]             | [NT]                    | [NR]      | [NR]                       |
| pH of final Leachate                     | pH units | 0    | AN101   | 4.93          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Date Extracted (Metals)                  |          |      |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009                  |
| Date Analysed (Metals)                   |          |      |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009                  |
| Arsenic                                  | mg/L     | 0.05 | SEM-010 | <0.05         | [NT]             | [NT]                    | LCS       | 96%                        |
| Lead                                     | mg/L     | 0.02 | SEM-010 | <0.02         | [NT]             | [NT]                    | LCS       | 99%                        |

**REPORT NO: SE71199A** 

PROJECT: EC00233AA - Additional Analysis REPORT NO: SE71199A

### **Result Codes**

[INS] Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] Not Requested : Not part of NATA Accreditation

[NT] Not tested [N/A] : Not Applicable

#### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms and conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

#### **Quality Control Protocol**

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

### **Quality Acceptance Criteria**

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





### ANALYTICAL REPORT

6 October 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Julian Howard

Your Reference: EC00233AA - Additional Analysis

Our Reference: SE71167A Samples: 1 Soil

Received: 6/8/09

Preliminary Report Sent: Not Issued

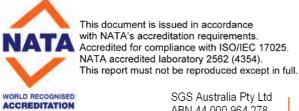
These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com


Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

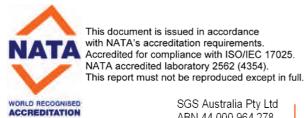
Results Approved and/or Authorised by:





| Metals in TCLP                        |          |            |
|---------------------------------------|----------|------------|
| Our Reference:                        | UNITS    | SE71167A-  |
|                                       |          | 44         |
| Your Reference                        |          | MP15_0.0-0 |
|                                       |          | .2         |
| Sample Matrix                         |          | Soil       |
| Date Sampled                          |          | 5/08/2009  |
| Depth                                 |          |            |
| Date Extracted (TCLP Preparation)     |          | 1/10/2009  |
| pH of soil for fluid# determ.         | pH units | 5.64       |
| pH of soil for fluid # determ. (acid) | pH units | 1.65       |
| Extraction fluid used                 | -        | 1          |
| pH of final Leachate                  | pH units | 5.07       |
| Date Extracted (Metals)               |          | 2/10/2009  |
| Date Analysed (Metals)                |          | 2/10/2009  |
| Lead                                  | mg/L     | 0.07       |
|                                       |          |            |




**REPORT NO: SE71167A** 

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN006     | Toxicity Characteristic Leaching Procedure (TCLP) - Preparation of leachates for assessing the mobility of both organic and inorganic contaminants present in liquid, solid, and multiphase wastes. Based on USEPA 1311. For volatile analytes, Zero-Headspace Extraction Vessel (ZHE) is used. This method also meets the requirements of Australian Standard Leaching Procedure (ASLP) AS 4439.3-1997 Part 3. |
| AN101     | pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).                                                                                                |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                                                                             |

**REPORT NO: SE71167A** 

| QUALITY CONTROL                          | UNITS    | LOR  | METHOD  | Blank         | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------------------------|----------|------|---------|---------------|------------------|-------------------------|-----------|----------------------------|
| Metals in TCLP                           |          |      |         |               |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| pH of soil for fluid#<br>determ.         | pH units | 0    | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| pH of soil for fluid #<br>determ. (acid) | pH units | 0    | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Extraction fluid used                    | -        |      | AN006   | 1             | [NT]             | [NT]                    | [NR]      | [NR]                       |
| pH of final Leachate                     | pH units | 0    | AN101   | 4.93          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Date Extracted (Metals)                  |          |      |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009                  |
| Date Analysed (Metals)                   |          |      |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009                  |
| Lead                                     | mg/L     | 0.02 | SEM-010 | <0.02         | [NT]             | [NT]                    | LCS       | 99%                        |

**REPORT NO: SE71167A** 



PROJECT: EC00233AA - Additional Analysis REPORT NO: SE71167A

#### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

#### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

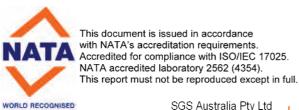
#### **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

**Internal Standard**: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

### **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





### ANALYTICAL REPORT

6 October 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Julian Howard

Your Reference: EC00233AA - Additional Analysis

Our Reference: SE70984A Samples: 2 Soils

Received: 29/07/09

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:





| Metals in TCLP                        |          |            |            |
|---------------------------------------|----------|------------|------------|
| Our Reference:                        | UNITS    | SE70984A-  | SE70984A-  |
|                                       |          | 58         | 87         |
| Your Reference                        |          | RE34_0.0-0 | MS3-8_0.0- |
|                                       |          | .2         | 0.2        |
| Sample Matrix                         |          | Soil       | Soil       |
| Date Sampled                          |          | 27/07/2009 | 28/07/2009 |
| Date Extracted (TCLP Preparation)     |          | 1/10/2009  | 1/10/2009  |
| pH of soil for fluid# determ.         | pH units | 6.03       | 6.95       |
| pH of soil for fluid # determ. (acid) | pH units | 1.60       | 1.62       |
| Extraction fluid used                 | -        | 1          | 1          |
| pH of final Leachate                  | pH units | 5.05       | 6.17       |
| Date Extracted (Metals)               |          | 2/10/2009  | 2/10/2009  |
| Date Analysed (Metals)                |          | 2/10/2009  | 2/10/2009  |
| Arsenic                               | mg/L     | <0.05      | 0.44       |
| Cadmium                               | mg/L     | [NA]       | 0.18       |
| Lead                                  | mg/L     | [NA]       | 0.16       |

WORLD RECOGNISED

**REPORT NO: SE70984A** 

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN006     | Toxicity Characteristic Leaching Procedure (TCLP) - Preparation of leachates for assessing the mobility of both organic and inorganic contaminants present in liquid, solid, and multiphase wastes. Based on USEPA 1311. For volatile analytes, Zero-Headspace Extraction Vessel (ZHE) is used. This method also meets the requirements of Australian Standard Leaching Procedure (ASLP) AS 4439.3-1997 Part 3. |
| AN101     | pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).                                                                                                |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                                                                             |

REPORT NO: SE70984A

| QUALITY CONTROL                       | UNITS    | LOR   | METHOD  | Blank         | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike % Recovery |
|---------------------------------------|----------|-------|---------|---------------|------------------|-------------------------|-----------|-------------------------|
| Metals in TCLP                        |          |       |         |               |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD        |
| pH of soil for fluid#<br>determ.      | pH units | 0     | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                    |
| pH of soil for fluid # determ. (acid) | pH units | 0     | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                    |
| Extraction fluid used                 | -        |       | AN006   | 1             | [NT]             | [NT]                    | [NR]      | [NR]                    |
| pH of final Leachate                  | pH units | 0     | AN101   | 4.93          | [NT]             | [NT]                    | [NR]      | [NR]                    |
| Date Extracted (Metals)               |          |       |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009               |
| Date Analysed (Metals)                |          |       |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009               |
| Arsenic                               | mg/L     | 0.05  | SEM-010 | <0.05         | [NT]             | [NT]                    | LCS       | 96%                     |
| Cadmium                               | mg/L     | 0.005 | SEM-010 | <0.005        | [NT]             | [NT]                    | LCS       | 101%                    |
| Lead                                  | mg/L     | 0.02  | SEM-010 | <0.02         | [NT]             | [NT]                    | LCS       | 99%                     |

**REPORT NO: SE70984A** 

WORLD RECOGNISED

PROJECT: EC00233AA - Additional Analysis REPORT NO: SE70984A

#### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

#### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

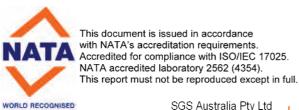
#### **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

**Internal Standard**: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

### **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





### ANALYTICAL REPORT

6 October 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Julian Howard

Your Reference: EC00233AA - Additional Analysis

Our Reference: SE71392A Samples: 2 Rocks

Received: 14/8/09

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:





**REPORT NO: SE71392A** 

PROJECT: EC00233AA - Additional Analysis REPORT NO: SE71392A

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AN006     | Toxicity Characteristic Leaching Procedure (TCLP) - Preparation of leachates for assessing the mobility of both organic and inorganic contaminants present in liquid, solid, and multiphase wastes. Based on USEPA 1311. For volatile analytes, Zero-Headspace Extraction Vessel (ZHE) is used. This method also meets the requirements of Australian Standard Leaching Procedure (ASLP) AS 4439.3-1997 Part 3. |
| AN101     | pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).                                                                                                |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                                                                             |

| QUALITY CONTROL                          | UNITS    | LOR   | METHOD  | Blank         | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------------------------|----------|-------|---------|---------------|------------------|-------------------------|-----------|----------------------------|
| Metals in TCLP                           |          |       |         |               | OHIII            | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| pH of soil for fluid#<br>determ.         | pH units | 0     | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| pH of soil for fluid #<br>determ. (acid) | pH units | 0     | AN101   | [NT]          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Extraction fluid used                    | -        |       | AN006   | 1             | [NT]             | [NT]                    | [NR]      | [NR]                       |
| pH of final Leachate                     | pH units | 0     | AN101   | 4.93          | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Date Extracted (Metals)                  |          |       |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009                  |
| Date Analysed (Metals)                   |          |       |         | 2/10/20<br>09 | [NT]             | [NT]                    | LCS       | 2/10/2009                  |
| Arsenic                                  | mg/L     | 0.05  | SEM-010 | <0.05         | [NT]             | [NT]                    | LCS       | 96%                        |
| Cadmium                                  | mg/L     | 0.005 | SEM-010 | <0.005        | [NT]             | [NT]                    | LCS       | 101%                       |
| Lead                                     | mg/L     | 0.02  | SEM-010 | <0.02         | [NT]             | [NT]                    | LCS       | 99%                        |
| Zinc                                     | mg/L     | 0.01  | SEM-010 | <0.010        | [NT]             | [NT]                    | LCS       | 99%                        |

**REPORT NO: SE71392A** 

PROJECT: EC00233AA - Additional Analysis REPORT NO: SE71392A

### **Result Codes**

[INS] Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] Not Requested : Not part of NATA Accreditation

[NT] Not tested [N/A] : Not Applicable

#### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms and conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

#### **Quality Control Protocol**

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

### **Quality Acceptance Criteria**

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





Chain of Custody

Laboratory Quotation / Order No:

No: 26366

Detection Limits: Lowest Level Delection Special Laboratory Instructions: Dispatch to: (Address & MCX)
Phone No.) Relinquished by: Attention: Sample Receipts Comments Seil + Sample Matrix Lucas 750-1 Container Type and Preservative BCTA acca. Turnaround Required: Standard Date: Project Manager: (report results to) Sampled by: harlie Lucus المعدد Sample No. Time: 30/7/09 Received by: Date Sampled PAHs MAHs = BTEX X X Metals: & X PH Consignment Note No: 309 609 257 Courier Service: TUT Date Dispatched: 30/7 (09 Consigning Officer: Carberra Job No: ECOCZSSAN Sheet 1 of 1 80517 ag Analyses Required JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES 31/7 Time: 6-00 Sample Condition on Receipt

Copies: WHITE: Sign on release. YELLOW: If dispatched to interstate Lab, Lab to sign on receipt and fax back to Coffey. BLUE: To be returned with results



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

**Coffey Environments Pty Ltd ACT** 2/54 Northbourne Avenue Canberra **ACT 2609** 

Site: EC00233AA

Report Number: 249508-V1 Page 1 of 4

**Order Number:** 

Date Received: Jul 31, 2009 Date Sampled: Jul 30, 2009 Date Reported: Aug 6, 2009 Contact: Chris Gunton

### Methods

- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury
  • Method 102 - ANZECC - % Moisture
  • APHA 4500 pH by Direct Measurement

Comments

**Notes** 

Authorised Report Number: 249508-V1

Michael Wright Senior Principal Chemist NATA Signatory

Glenn Jackson **Client Manager**  Tammy Lakeland **Chief Inorganic Chemist** 







Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mat@matenv.com.au

web: www.matenv.com.au

#### GLOSSARY OF TERMS

#### UNITS

mg/kg milligrams per Kilogram milligrams per litre mg/l micrograms per litre Parts per million ug/l ppm ppb Parts per billion Percentage Organisms per 100 millilitres org/100ml NTII Units

#### TERMS

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

Limit of Reporting. LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**Batch Duplicate** A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. **Batch SPIKE** Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3) Toxicity Characteristic Leaching Procedure

TCLP coc Chain of Custody

SRA Sample Receipt Advice

## QC - ACCEPTANCE CRITERIA RPD Duplicates Result

Results <10 times the LOR: No Limit

Results between 10-20 times LOR: RPD must lie between 0-50% Results >20 times LOR: RPD must lie between 0-20%

**LCS Recoveries** Recoveries must lie between 70-130% - Phenols 20-110% **CRM Recoveries** Recoveries must lie between 70-130% - Phenols 20-110%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 20-110% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-110%

#### **GENERAL COMMENTS**

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis

### **QC DATA GENERAL COMMENTS**

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons - where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6 Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.

  For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 249508-V1 Page 2 of 4



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



ABN - 50 005 085 521 e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

| Coffey Environments Pty Ltd ACT | Client Sample ID |       | QC6A         | QC7A         |
|---------------------------------|------------------|-------|--------------|--------------|
| bourne Avenue                   | Lab Number       |       | M09-JL12261  | M09-JL12262  |
|                                 | Matrix           |       | Soil         | Soil         |
| ACT 2609                        | Sample Date      |       | Jul 30, 2009 | Jul 30, 2009 |
| Analysis Type                   | LOR              | Units |              |              |
| % Moisture                      | 0.1              | %     | 15           | 8.8          |
| pH (1:5 Aqueous extract)        | 0.1              | units | 6.5          | 6.2          |
| Heavy Metals                    |                  |       |              |              |
| Arsenic                         | 2.0              | mg/kg | 6.4          | 4.9          |
| Cadmium                         | 0.5              | mg/kg | < 0.5        | < 0.5        |
| Chromium                        | 5                | mg/kg | 19           | 25           |
| Copper                          | 5                | mg/kg | 22           | 13           |
| Lead                            | 5                | mg/kg | 5.6          | 15           |
| Mercury                         | 0.1              | mg/kg | < 0.1        | < 0.1        |
| Nickel                          | 5                | mg/kg | 32           | 30           |
| Zinc                            | 5                | mg/kg | 38           | 98           |
|                                 |                  |       |              |              |
|                                 |                  |       |              |              |

MGT Report No. 249508-V1 Page 3 of 4

COMMENTS:



2/54 Northbourne Avenue

pH (1:5 Aqueous extract)

Heavy Metals

Chromium

Copper

Lead

Mercury

Nickel

Cadmium

Arsenic

Analysis Type

ACT 2609 Sanberra

web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au ABN - 50 005 085 521

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Method blank Jul 30, 2009 Batch < 0.5 < 0.1 **v** ۷ ۷ v 2 v 2 v 2 mg/L Soil % Recovery Jul 30, 2009 Batch % Recovery CS 133 100 93 98 97 97 87 97 Soil Jul 30, 2009 SPIKE % Recovery 09-JL12261 Batch Spike % Recovery 103 66 66 66 98 79 8 97 Soil Duplicate % RPD Jul 30, 2009 09-JL12261 Batch RPD 3.0 v 25 v 16 4 27 34 27 M RPD Soil Jul 30, 2009 09-JL12261 Batch < 0.5 Duplicate 8.4 24 16 7.4 38 4 QC6A Soil Jul 30, 2009 09-JL12261 Batch < 0.5 6.4 22 5.6 19 32 38 Client Sample QC6A Soil QA Description Sample Date Lab Number Matrix Units Coffey Environments Pty Ltd ACT

MGT Report No. 249508-V1 Page 4 of 4

COMMENTS:

| Proper Marketer Cocces Dide Organisms 725 (7 (09)  Charles Cocces Cocces Comparisms Commission 25 (7 (09)  Charles Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces Cocces | Samples By Consumm Office: Co. Co. | Charle Luces | Project Marriagon.  Project Marriagon.  Ourier Service: T1  Ourier Service: T1 | Date: Time: Pages,ed t. | John-Mal | Analyses Required | Date Semp  Pains  TPHA  Metals: \$  CCPs / CP | 1 250m Let 00.2A 24 70 70 X | CAN 2878 X | 2S 71 04 X |  |  |  |  |  | Mar Bona # | be advised  Max Report # 249512  ELECTRICAL |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|--------------------------------------------------------------------------------|-------------------------|----------|-------------------|-----------------------------------------------|-----------------------------|------------|------------|--|--|--|--|--|------------|---------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------|--------------------------------------------------------------------------------|-------------------------|----------|-------------------|-----------------------------------------------|-----------------------------|------------|------------|--|--|--|--|--|------------|---------------------------------------------|

Copiese WHITE Sg. out release. YELLOW, it dispersioned to respect to Lab. Lab. Loops on making and the law's full codes. BLUE: To be returned with seasons



ABN - 50 005 085 521

e.mail: mat@matenv.com.au

web: www.mgtenv.com.au

Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

**Coffey Environments Pty Ltd ACT** 2/54 Northbourne Avenue Canberra **ACT 2609** 

Site: EC00233AA

Report Number: 249512-A-V1 Page 1 of 8

Order Number:

Date Received: Jul 31, 2009 Date Sampled: Jul 24, 2009 Date Reported: Aug 7, 2009 Contact: Chris Gunton

#### Methods

- · USEPA 8141A Organophosphorus Pesticides
- USEPA 8081A Organochlorine Pesticides
- USEPA 8270C Polycyclic Aromatic Hydrocarbons
  USEPA 6010B Heavy Metals & USEPA 7470/71
- Method 102 ANZECC % Moisture
- · APHA 4500 pH by Direct Measurement

### Comments

**Notes** 

Authorised Report Number: 249512-A-V1

Michael Wright Senior Principal Chemist NATA Signatory

Onur Mehmet Client Manager **NATA Signatory** 

Orlando Scalzo Chief Organic Chemist NATA Signatory

Tammy Lakeland **Chief Ínorganic Chemist** 







Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mat@matenv.com.au

web: www.matenv.com.au

#### GLOSSARY OF TERMS

#### UNITS

mg/kg milligrams per Kilogram milligrams per litre mg/l micrograms per litre Parts per million ug/l ppm ppb Parts per billion Percentage Organisms per 100 millilitres org/100ml NTII Units

#### TERMS

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

Limit of Reporting. LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**Batch Duplicate** A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. **Batch SPIKE** Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3) TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QC - ACCEPTANCE CRITERIA
RPD Duplicates Result Results <10 times the LOR: No Limit

Results between 10-20 times LOR: RPD must lie between 0-50%

Results >20 times LOR: RPD must lie between 0-20% **LCS Recoveries** Recoveries must lie between 70-130% - Phenols 20-110% **CRM Recoveries** Recoveries must lie between 70-130% - Phenols 20-110%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 20-110% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-110%

#### **GENERAL COMMENTS**

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis

#### **QC DATA GENERAL COMMENTS**

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons - where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6 Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- For Matrix Spikes and LCS results a dash "." in the report means that the specific analyte was not added to the QC sample. 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 249512-A-V1 Page 2 of 8



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



ABN - 50 005 085 521 e.mail: mgt@mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 I NATA Site # 1254 web: www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

| Ltd ACT                          | Client Sample ID |       | QC2A           | QC3A         | QC4A         | QC5A         |
|----------------------------------|------------------|-------|----------------|--------------|--------------|--------------|
| nbourne Avenue                   | Lab Number       |       | M09-JL12275    | M09-JL12276  | M09-JL12277  | M09-JL12278  |
| Canberra                         | Matrix           |       | Soil           | Soil         | Soil         | Soil         |
| ACT 2609                         | Sample Date      |       | Jul 24, 2009   | Jul 27, 2009 | Jul 28, 2009 | Jul 28, 2009 |
| Analysis Type                    | LOR              | Units |                |              |              |              |
| Polycyclic Aromatic Hydrocarbons |                  |       |                |              |              |              |
| Acenaphthene                     | 0.1              | mg/kg | -              | 1            | < 0.1        | < 0.1        |
| Acenaphthylene                   | 0.1              | mg/kg | -              | •            | < 0.1        | < 0.1        |
| Anthracene                       | 0.1              | mg/kg |                |              | < 0.1        | < 0.1        |
| Benz(a)anthracene                | 0.1              | mg/kg | -              | •            | < 0.1        | < 0.1        |
| Benzo(a)pyrene                   | 0.1              | mg/kg |                |              | < 0.1        | < 0.1        |
| Benzo(b)fluoranthene             | 0.1              | mg/kg | -              | •            | < 0.1        | < 0.1        |
| Benzo(g.h.i)perylene             | 0.1              | mg/kg |                |              | < 0.1        | < 0.1        |
| Benzo(k)fluoranthene             | 0.1              | mg/kg |                |              | < 0.1        | < 0.1        |
| Chrysene                         | 0.1              | mg/kg |                |              | < 0.1        | < 0.1        |
| Dibenz(a.h)anthracene            | 0.1              | mg/kg |                | ,            | < 0.1        | < 0.1        |
| Fluoranthene                     | 0.1              | mg/kg |                | ,            | < 0.1        | < 0.1        |
| Fluorene                         | 0.1              | mg/kg |                |              | < 0.1        | < 0.1        |
| Indeno(1.2.3-cd)pyrene           | 0.1              | mg/kg | -              | •            | < 0.1        | < 0.1        |
| Naphthalene                      | 0.1              | mg/kg | -              | 1            | < 0.1        | < 0.1        |
| Phenanthrene                     | 0.1              | mg/kg | -              | 1            | < 0.1        | < 0.1        |
| Pyrene                           | 0.1              | mg/kg | -              | 1            | < 0.1        | < 0.1        |
| Total PAH                        | 0.1              | mg/kg | -              | 1            | < 0.1        | < 0.1        |
| p-Terphenyl-d14 (surr.)          | -                | %     |                |              | 114          | 118          |
| 2-Fluorobiphenyl (surr.)         | -                | %     |                |              | 119          | 123          |
| Organochlorine Pesticides        |                  |       |                |              |              |              |
| 4.4'-DDD                         | 0.05             | mg/kg | <b>90</b> '0 > | 1            | -            | -            |
| 4.4'-DDE                         | 0.05             | mg/kg | > 0.05         | 1            | •            | -            |
| 4.4'-DDT                         | 0.05             | mg/kg | <b>90</b> '0 > | 1            | -            | -            |
| а-ВНС                            | 0.05             | mg/kg | <b>90</b> '0 > | 1            | -            | -            |
| Aldrin                           | 0.05             | mg/kg | < 0.05         | •            | -            | -            |
| р-внс                            | 0.05             | mg/kg | <b>90'0</b> >  | 1            | -            | •            |
| Chlordane                        | 0.1              | mg/kg | < 0.1          | 1            | -            | •            |
| d-BHC                            | 0.05             | mg/kg | > 0.05         | 1            | •            | -            |
| Dieldrin                         | 0.05             | mg/kg | < 0.05         | 1            | •            | •            |
| Endosulfan I                     | 0.05             | mg/kg | \$0.0 >        | ı            |              | 1            |
|                                  |                  |       |                |              |              |              |

COMMENTS:

MGT Report No. 249512-A-V1 Page 3 of 8



e.mail: mgt@mgtenv.com.au ABN - 50 005 085 521

web: www.mgtenv.com.au

3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

**Adelaide** 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

QC5A

QC4A

QC3A

QC2A

Client Sample ID

Coffey Environments Pty Ltd ACT

M09-JL12278 Jul 28, 2009 Soil M09-JL12277 Jul 28, 2009 Soil M09-JL12276 Jul 27, 2009 Soil M09-JL12275 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Jul 24, 2009 < 0.1 113 < 0.2 93 Soil Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % Sample Date LOR Lab Number 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 Matrix **Organophosphorous Pesticides** Tetrachloro-m-xylene (surr.) 2/54 Northbourne Avenue Dibutylchlorendate (surr.) Endosulfan sulphate Hexachlorobenzene Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde Analysis Type Endrin ketone Fensulfothion Methoxychlor Endosulfan II Chlorpyrifos Fenitrothion Demeton-O Toxophene Heptachlor Dichlorvos ACT 2609 Disulfoton Ethoprop Diazinon Fenthion Bolstar Ethion Endrin

MGT Report No. 249512-A-V1 Page 4 of 8

< 0.5

< 0.2

< 0.2

mg/kg mg/kg mg/kg

> 0.2 0.2

> > COMMENTS:

Methyl parathion

Mevinphos

Methyl azinphos

Merphos



web: www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

M09-JL12278 1800 1600 Jul 28, 2009 < 0.1 2800 14 25 93 5 17 QC5A Soil M09-JL12277 Jul 28, 2009 8.0 26 QC4A Soil M09-JL12276 Soil Jul 27, 2009 < 0.1 8.8 0.7 23 39 240 25 390 160 QC3A M09-JL12275 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 Jul 24, 2009 < 0.2 8.4 < 0.1 19 19 93 7 24 63 QC2A Soil Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg units % % Client Sample ID Sample Date LOR Lab Number 0.2 0 0.2 0.2 0.2 0.2 0.2 0. 2.0 0.5 0.1 0.1 2 2 2 2 Matrix Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Triphenylphosphate (surr.) pH (1:5 Aqueous extract) **Analysis Type** Heavy Metals Trichloronate % Moisture Canberra ACT 2609 Chromium Tokuthion Cadmium Phorate Arsenic Mercury Copper Ronnel Naled Nickel Lead

MGT Report No. 249512-A-V1 Page 5 of 8



Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

**Adelaide** 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 web: www.mgtenv.com.au

Method blank Jul 24, 2009 Batch < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.1 < 0.1 mg/kg % Recovery Jul 24, 2009 % Recovery Batch CS 112 115 120 124 124 118 129 129 125 124 113 119 127 127 121 127 127 7 121 83 Soil Jul 24, 2009 SPIKE % Recovery 09-JL12275 Batch Spike % Recovery 82 8 73 90 83 82 9/ 73 79 80 88 9/ 85 92 73 7 8 82 84 Duplicate % RPD Jul 24, 2009 09-JL12275 Batch RPD v v v v v v v v v v v v v v v <u>\_</u> v v v v v v v % RPD Soil Jul 24, 2009 09-JL12275 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Batch < 0.1 < 0.1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Duplicate QC2A Jul 24, 2009 09-JL12275 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Batch < 0.1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.1 < 0.2 < 0.2 Client Sample QC2A Soil QA Description Lab Number Sample Date Matrix Units Coffey Environments Pty Ltd ACT Organophosphorous Pesticides Organochlorine Pesticides 2/54 Northbourne Avenue Endosulfan sulphate Hexachlorobenzene Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde **Analysis Type** Endrin ketone Methoxychlor Endosulfan I Chlorpyrifos Endosulfan Demeton-O **Foxophene** Heptachlor Dichlorvos Chlordane ACT 2609 Disulfoton Sanberra 4.4'-DDD 4.4'-DDE Diazinon 4.4'-DDT Dieldrin Bolstar a-BHC d-BHC b-BHC Endrin Aldrin

MGT Report No. 249512-A-V1 Page 6 of 8



Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217 Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au

Method blank Jul 24, 2009 Batch < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 < 5 < 0.1 < 2 **2** < 5 v 2 v 2 mg/kg Soil % Recovery Jul 24, 2009 Batch % Recovery CS 123 117 5 8 66 96 89 98 87 66 96 Soil Jul 24, 2009 SPIKE 09-JL12275 % Recovery 103 Batch 116 Spike % Recovery 100 75 9/ 85 66 79 82 97 88 85 Soil Duplicate % RPD Jul 24, 2009 09-JL12275 RPD Batch 5.5 2.9 20 2.3 v v <u>۷</u> <u>\_</u> <u>۷</u> v 12 v v v v v <u>۷</u> v v v 7 % RPD Soil Jul 24, 2009 09-JL12275 < 0.5 < 0.5 < 0.2 < 0.2 Batch < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.1 4.8 Duplicate 8.5 100 4 7 7.1 QC2A Soil Jul 24, 2009 09-JL12275 < 0.5 Batch < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.1 9.6 6.9 6.0 ა 7 16 8 Client Sample QC2A Soil Lab Number QA Description Sample Date Matrix Units Coffey Environments Pty Ltd ACT Organophosphorous Pesticides /54 Northbourne Avenue Methyl parathion Methyl azinphos Analysis Type Heavy Metals Fensulfothion Trichloronate Fenitrothion Mevinphos Chromium ACT 2609 Fokuthion Ethoprop Cadmium Sanberra Fenthion Merphos Phorate Arsenic Mercury Ethion Ronnel Copper Naled Nickel Lead

MGT Report No. 249512-A-V1 Page 7 of 8



web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Method blank Jul 28, 2009 Batch < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 ۸ د 0.1 mg/kg Soil % Recovery Jul 28, 2009 Batch % Recovery CS 98 93 89 83 95 92 8 87 82 91 66 80 66 96 90 Soil Jul 28, 2009 SPIKE % Recovery 09-JL12277 Batch Spike % Recovery 106 2 Soil Duplicate % RPD Jul 28, 2009 09-JL12277 RPD Batch 3.0 3.0 8.0 0. 0.9 0. 7.0 v 9 30 47 26 % RPD Soil Jul 28, 2009 09-JL12277 Batch < 0.1 6.0 Duplicate 0.3 0.5 2.3 3.0 3.2 2.0 1.5 2.2 9.0 6. 0.1 3.7 0.1 QC4A Soil Jul 28, 2009 09-JL12277 Batch < 0.1 1.5 0.3 0.5 2.4 4.0 2.5 3.0 3.0 9.0 0.2 6.2 2.7 Client Sample QC4A Soil QA Description Sample Date Lab Number Matrix Units Polycyclic Aromatic Hydrocarbons Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue pH (1:5 Aqueous extract) Indeno(1.2.3-cd)pyrene Dibenz(a.h)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g.h.i)perylene Benz(a)anthracene Benzo(a)pyrene Acenaphthylene **Analysis Type** Acenaphthene Phenanthrene Fluoranthene Naphthalene Anthracene ACT 2609 Chrysene Sanberra Fluorene Pyrene

MGT Report No. 249512-A-V1 Page 8 of 8

Chain of Custody

Laberatory Quaration / Order No:

100 No. 1

100 Kg4

<u>q</u> ....

| Special Laboratory Instructions: |  |  |  |                                         |      | emperate professional and the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control |                                          | Concentrates                                      | PROJECT AND AND AND AND AND AND AND AND AND AND |               | Rollinguished by: |                      | Attention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dispatch to:<br>(Address & A. T. C. C. Phone No.)         |
|----------------------------------|--|--|--|-----------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------|-------------------------------------------------|---------------|-------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                  |  |  |  |                                         |      | ed hadd yn ddiddiddiddia ac ac afan a cen can can can gannau ganda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 m 200                                | Sample Mercand Countries of Type and Preservalive | Fix                                             |               |                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |
|                                  |  |  |  | *************************************** | 9004 | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | 0 C 9 A                                  | (1)                                               |                                                 |               | Over              |                      | Project Manuger:<br>Vapori results (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sampled by:                                               |
| -                                |  |  |  |                                         | X    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | PAHs TPHs VAHs = BTEX Wetats,                     |                                                 |               | Received by       |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |
|                                  |  |  |  |                                         |      | × , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !                                        | OCP<br>Eyande<br>Sulfide                          | Analyses Required                               | 15810100      |                   | Consignment Nate No: | Courier Service.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Consigning Officer: ( , , , , , , , , , , , , , , , , , , |
|                                  |  |  |  |                                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an ann an ann an an an an an an an an an | Sample<br>Candition<br>on Receipt                 |                                                 | 618/59 915egg | Date: Time:       |                      | THE COMMENT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF |                                                           |

Datestion Limits Lawest Level Detection

Capites: WHITE Sign on relates YELLOWA I depositived to insurative law, Lab to eign on receipt and fast back to Coffay. Sittle: To be of beautiful with receipt Transcard Separat Standown

JOS NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

**Coffey Environments Pty Ltd ACT** 2/54 Northbourne Avenue Canberra **ACT 2609** 

Site: EC00233AA

Report Number: 249831-A-V1 Page 1 of 6

Order Number:

Date Received: Aug 06, 2009 Date Sampled: Aug 4, 2009 Date Reported: Aug 14, 2009 Contact: Chris Gunton

### Methods

- USEPA 8081A Organochlorine Pesticides
- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury
  • USEPA 9010B Cyanide

- APHA 4500-S C & D Sulphide
  Method 102 ANZECC % Moisture

Comments

**Notes** 

**Authorised** Report Number: 249831-A-V1

Michael Wright Senior Principal Chemist NATA Signatory

Onur Mehmet Client Manager NATA Signatory

Orlando Scalzo Chief Organic Chemist NATA Signatory Tammy Lakeland **Chief Ínorganic Chemist** 







Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au NA

#### **GLOSSARY OF TERMS**

#### UNITS

 mg/kg
 milligrams per Kilogram
 mg/l
 milligrams per litre

 ug/l
 micrograms per litre
 ppm
 Parts per million

 ppb
 Parts per billion
 %
 Percentage

 org/100ml
 Organisms per 100 millilitres
 NTU
 Units

#### TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

## QC - ACCEPTANCE CRITERIA RPD Duplicates Results

RPD Duplicates Results <10 times the LOR : No Limit

Results between 10-20 times LOR : RPD must lie between 0-50%

Results >20 times LOR : RPD must lie between 0-20%
LCS Recoveries
Recoveries must lie between 70-130% - Phenols 20-110%
Recoveries must lie between 70-130% - Phenols 20-110%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 20-110% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-110%

### **GENERAL COMMENTS**

- 1. All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis.

### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 8. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 9. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 249831-A-V1 Page 2 of 6



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Environmental Laboratories Industry Group



3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 web: www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

**Adelaide** 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

< 0.05 M09-AU01520 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 ۸ 0.1 Aug 5, 2009 QC10A Soil < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 M09-AU01519 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.1 Aug 5, 2009 QC9A Soil M09-AU01518 Soil < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 ۸ 1.0 Aug 4, 2009 QC8A mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Client Sample ID LOR 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Sample Date Lab Number 0.1 Matrix Coffey Environments Pty Ltd ACT Organochlorine Pesticides 2/54 Northbourne Avenue Endosulfan sulphate Hexachlorobenzene Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde Analysis Type Endrin ketone Endosulfan I Endosulfan Heptachlor ACT 2609 Chlordane Canberra 4.4'-DDD 4.4'-DDE 4.4'-DDT Dieldrin a-BHC d-BHC Endrin b-BHC Aldrin

MGT Report No. 249831-A-V1 Page 3 of 6

< 0.5

1.9

< 0.5

mg/kg

0.5

2.0

mg/kg

8.3

37

16

< 0.05

< 0.05

< 0.05 × 0.1

mg/kg mg/kg

0.05

0.

103

%

%

Tetrachloro-m-xylene (surr.) Dibutylchlorendate (surr.)

Methoxychlor

Foxophene

Cyanide (total)

% Moisture

Sulphide (S)

Heavy Metals

78

< 0.1 112

× 0.1

107

82

29

Ξ

8.3 v 2

v

< 5

mg/kg mg/kg

%

0.1 2 , V

13

COMMENTS:

Cadmium

Arsenic



Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au

M09-AU01520 Soil < 0.1 33 Aug 5, 2009 22 28 75 QC10A M09-AU01519 Soil , 0 , 29 23 350 26 750 Aug 5, 2009 QC9A M09-AU01518 Soil < 0.1 16 150 28 11 97 Aug 4, 2009 QC8A Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Client Sample ID Matrix Sample Date LOR Lab Number 0. 2 2 2 Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue ACT 2609 Analysis Type Chromium Canberra Copper Mercury Nickel Lead

MGT Report No. 249831-A-V1 Page 4 of 6



ABN – 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.

Oakleigh Vic 3 Phone : 03 956 web : www.mgtenv.com.au NATA Site # 11

Sydney
se 1a Chilvers Rd
Thornleigh NSW 2120
Phone: 0.2 9484 3300
NATA Site # 18217

**Adelaide** 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

> 3-5 Kingston Town Close 1a Oakleigh Vic 3166 Thone: 03 9564 7055 Ph

Method blank Aug 4, 2009 Batch < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.1 < 0.1 < 0.1 v 2 v mg/kg Soil % Recovery Aug 4, 2009 Batch % Recovery CS 103 111 104 102 112 9 4 110 109 103 2 102 107 100 92 73 10 74 7 97 Soil 09-AU01518 Aug 4, 2009 SPIKE % Recovery Batch Batch Spike % Recovery 113 113 114 114 105 110 112 103 106 125 114 105 109 11 126 127 98 82 84 Soil Duplicate % RPD 09-AU01518 Aug 4, 2009 RPD Batch Batch v v v v v <u>\_</u> v v <u>۷</u> v v v v v v v v v v v v % RPD Soil 09-AU01518 Aug 4, 2009 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Batch Batch < 0.1 < 0.1 < 0.1 v 2 Duplicate v QC8A Soil 09-AU01518 Aug 4, 2009 < 0.05 < 0.05 Batch < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 Batch < 0.1 < 0.1 < 0.1 < 5 v Client Sample QC8A Soil QA Description Lab Number Sample Date Matrix Units Coffey Environments Pty Ltd ACT Organochlorine Pesticides 2/54 Northbourne Avenue Endosulfan sulphate Hexachlorobenzene Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde **Analysis Type** Heavy Metals Cyanide (total) Endrin ketone Methoxychlor Endosulfan I Sulphide (S) Endosulfan **Toxophene** Heptachlor Chlordane ACT 2609 Sanberra 4.4'-DDD 4.4'-DDE Mercury 4.4'-DDT Dieldrin d-BHC a-BHC b-BHC Endrin Aldrin

MGT Report No. 249831-A-V1 Page 5 of 6



web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Method blank Aug 6, 2009 Batch < 0.5 ۷ ۷ ۷ ک v 2 v 2 v 2 v 2 mg/kg Soil % Recovery Aug 6, 2009 Batch % Recovery CS 106 115 105 110 107 107 107 Soil Aug 6, 2009 SPIKE % Recovery Batch Spike % Recovery 105 101 249831\_1 90 66 84 77 Soil Duplicate % RPD Aug 6, 2009 Batch RPD \ -6. 8.6 7.3 249831\_1 26 v 47 % RPD Soil Aug 6, 2009 Batch < 0.5 Duplicate 4.4 26 19 9 16 38 249831\_1 Soil Aug 6, 2009 Batch < 0.5 5.8 249831\_1 22 Ξ 9 9 39 Soil Client Sample ID QA Description Sample Date Lab Number Matrix Units Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Analysis Type Heavy Metals Chromium ACT 2609 Sanberra Cadmium Arsenic Copper Nickel Lead

Zinc

MGT Report No. 249831-A-V1 Page 6 of 6

O Stock



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Canberra ACT 2609

Site: EC00233AA

Report Number: 249970-A-V1 Page 1 of 4

**Order Number:** 

Date Received: Aug 07, 2009 Date Sampled: Aug 6, 2009 Date Reported: Aug 14, 2009 Contact: Chris Gunton

### **Methods**

- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury
- Method 102 ANZECC % Moisture

Comments

**Notes** 

Authorised Report Number: 249970-A-V1

Michael Wright Senior Principal Chemist NATA Signatory Onur Mehmet Client Manager NATA Signatory Tammy Lakeland Chief Inorganic Chemist







Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 web: www.matenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mat@matenv.com.au

UNITS

GLOSSARY OF TERMS

mg/kg milligrams per Kilogram milligrams per litre mg/l micrograms per litre Parts per million ug/l ppm ppb Parts per billion Percentage Organisms per 100 millilitres org/100ml NTII Units

TERMS

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

Limit of Reporting. LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**Batch Duplicate** A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. **Batch SPIKE** Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3) TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QC - ACCEPTANCE CRITERIA
RPD Duplicates Result Results <10 times the LOR: No Limit

Results between 10-20 times LOR: RPD must lie between 0-50%

Results >20 times LOR: RPD must lie between 0-20% **LCS Recoveries** Recoveries must lie between 70-130% - Phenols 20-110% **CRM Recoveries** Recoveries must lie between 70-130% - Phenols 20-110%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 20-110% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-110%

### **GENERAL COMMENTS**

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis

### **QC DATA GENERAL COMMENTS**

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons - where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6 Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- For Matrix Spikes and LCS results a dash "." in the report means that the specific analyte was not added to the QC sample. 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 249970-A-V1 Page 2 of 4



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



2/54 Northbourne Avenue

Analysis Type

ACT 2609 Canberra

Heavy Metals % Moisture

Cadmium Chromium

Mercury

Nickel

Zinc

Copper

Lead

Arsenic

web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au ABN - 50 005 085 521

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

< 0.5 M09-AU02411 Soil 8.6 < 0.1 9.4 460 13 440 20 Aug 6, 2009 QC12A M09-AU02410 Soil < 0.5 < 0.1 130 7.2 22 13 7 4 21 Aug 6, 2009 QC11A mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg % Client Sample ID LOR 2.0 0.5 Lab Number Matrix 0.1 Sample Date 0.1 2 2 2 2 Coffey Environments Pty Ltd ACT

MGT Report No. 249970-A-V1 Page 3 of 4



web: www.mgtenv.com.au e.mail: mgt@mgtenv.com.au

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Method blank Aug 6, 2009 Batch < 0.5 **2** < 0.1 **v** ۷ ک v 2 v 2 v 2 mg/kg Soil % Recovery Aug 6, 2009 Batch % Recovery CS 101 10 83 92 87 92 Soil 09-AU02410 Aug 6, 2009 SPIKE % Recovery Batch Spike % Recovery 108 93 89 78 86 95 79 Soil Duplicate % RPD 09-AU02410 Aug 6, 2009 Batch RPD 6.9 2.3 8.8 6.5 3.8 v v 12 % RPD Soil Aug 6, 2009 09-AU02410 Batch < 0.5 Duplicate < 0.1 9.8 12 140 7.7 29 7 QC11A Soil 09-AU02410 Aug 6, 2009 Batch < 0.5 < 0.1 130 7.2 22 7 Ξ 4 Client Sample QC11A Soil QA Description Lab Number Sample Date Matrix Units Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Analysis Type Heavy Metals Chromium ACT 2609 Sanberra Cadmium Mercury Arsenic Copper Nickel Lead Zinc

MGT Report No. 249970-A-V1 Page 4 of 4

Laboratory Quotation / Order No:

Job No: ECCO 23/324 Sheet 1

Dispatch to:
[Address & MCT
Phone No.] Attention Relinquished by: Special Laboratory Instructions VOLVO Comments Receipts Sample Matrix Container Type and Preservative QC13A OC FR \$ 600 11.30 pm Project Manager: (raport results to) Duchie 2. 4. 5 Sample No 1809 10000 JAMES Date Sampled PAHs TPHs MAHs = BTEX Metals: 🖇 X OCPOPE Courter Service: 777 Date Dispatched: \C\S\O\ Consigning Officer: Consignment Note No: Analyses Required 304 604 28  $\leq$ 17-300 mg Sample Condition

on Receipt

Copies: WHITE: Sign on release このとのみ しゃしゃし

Detection Limits:

YELLOW: It dispatched to intenstate Lab, Lab to sign on receipt and fax back to Coffey - BLUE: To be returned with result-

Ortention

Turnaround Required:

JOB NUMBER WUST BE REFERENCED ON ALL SUBSEQUENT PAGES



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Canberra ACT 2609

Site: EC00233AA

Report Number: 250114-A-V1 Page 1 of 8

Order Number:

Date Received: Aug 11, 2009 Date Sampled: Aug 7, 2009 Date Reported: Aug 19, 2009 Contact: Chris Gunton

### Methods

- · USEPA 8141A Organophosphorus Pesticides
- USEPA 8081A Organochlorine Pesticides
- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury
- Method 102 ANZECC % Moisture

**Comments** 

**Notes** 

Authorised Report Number: 250114-A-V1

Michael Wright Senior Principal Chemist NATA Signatory Onur Mehmet
Client Manager
NATA Signatory

Orlando Scalzo
Chief Organic Chemist
NATA Signatory

Tammy Lakeland
Chief Inorganic Chemist







Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au N

#### GLOSSARY OF TERMS

#### UNITS

 mg/kg
 milligrams per Kilogram
 mg/l
 milligrams per litre

 ug/l
 micrograms per litre
 ppm
 Parts per million

 ppb
 Parts per billion
 %
 Percentage

 org/100ml
 Organisms per 100 millilitres
 NTU
 Units

#### TERMS

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

## QC - ACCEPTANCE CRITERIA RPD Duplicates Results

RPD Duplicates Results <10 times the LOR : No Limit

Results between 10-20 times LOR : RPD must lie between 0-50%

Results >20 times LOR : RPD must lie between 0-20%

LCS Recoveries Recoveries must lie between 70-130% - Phenols 20-110%

CRM Recoveries Recoveries must lie between 70-130% - Phenols 20-110%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 20-110% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-110%

### **GENERAL COMMENTS**

- 1. All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis.

### QC DATA GENERAL COMMENTS

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to
  interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.</li>
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 7. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 8. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 9. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 250114-A-V1 Page 2 of 8



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis

Environmental Laboratories Industry Group ABN - 50 005 085 521 e.mail : mgt@mgtenv.com.au

Melbourne Sydney
3-5 Kingston Town Close 1a Chilvers Rd
Oakleigh Vic 3166
Phone : 03 9564 7055
Phone : 03 9564 3300
web : www.mgtenv.com.au NATA Site # 1254

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Received: Due: 250114 Order No: Report #: Phone: Fax: Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Canberra ACT 2609 Company name: Address:

mgt Client Manager: Onur Mehmet

Aug 11, 2009 12:00 Aug 18, 2009 12:09

Chris Gunton Normal

Contact name:

Priority:

EC00233AA

Client Job No:

| Organophosphorous Pesticid | es                                     | ×                                      |                                      |               |              | ×            |
|----------------------------|----------------------------------------|----------------------------------------|--------------------------------------|---------------|--------------|--------------|
| Organochlorine Pesticides  |                                        | ×                                      |                                      |               |              | ×            |
| Zinc                       |                                        | ×                                      |                                      |               | ×            | ×            |
| Nickel                     |                                        | ×                                      |                                      |               | ×            | ×            |
| Mercury                    |                                        | ×                                      |                                      |               | ×            | ×            |
| Lead                       |                                        | ×                                      |                                      |               | ×            | ×            |
| Copper                     |                                        | ×                                      |                                      |               | ×            | ×            |
| Chromium                   |                                        | ×                                      |                                      |               | ×            | ×            |
| Cadmium                    |                                        | ×                                      |                                      |               | ×            | ×            |
| Arsenic                    |                                        | ×                                      |                                      |               | ×            | ×            |
| % Moisture                 |                                        | ×                                      |                                      |               | ×            | ×            |
|                            |                                        |                                        |                                      | Comment       |              |              |
|                            |                                        |                                        |                                      | LABID         | M09-AU03629  | M09-AU03630  |
| ails                       |                                        |                                        |                                      | Matrix        | Soil         | Soil         |
| Sample Det                 |                                        |                                        |                                      | Sampling Time |              |              |
|                            | Laboratory where analysis is conducted | Melbourne Laboratory - NATA Site #1254 | Sydney Laboratory - NATA Site #18217 | Sample Date   | Aug 07, 2009 | Aug 07, 2009 |
|                            | Laboratory where                       | Melbourne Labora                       | Sydney Laboratory                    | Sample ID     | QC13A        | QC14A        |



3-5 Kingston Town Close Oakleigh Vic 3166 Phone : 03 9564 7055 NATA Site # 1254 web: www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.2 × 0.1 < 0.2 < 0.2 < 0.2 < 0.2 < 0.1 104 M09-AU03630 83 Aug 7, 2009 Soil M09-AU03629 Aug 7, 2009 QC13A Soil mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg Units mg/kg % % Client Sample ID LOR 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0. 0.2 0.2 0.2 0.2 Sample Date Lab Number Matrix Coffey Environments Pty Ltd ACT Organophosphorous Pesticides Organochlorine Pesticides 2/54 Northbourne Avenue Tetrachloro-m-xylene (surr.) Dibutylchlorendate (surr.) Endosulfan sulphate Hexachlorobenzene Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde Analysis Type Endrin ketone Methoxychlor Endosulfan I Chlorpyrifos Demeton-O Endosulfan Toxophene Heptachlor Dichlorvos Canberra ACT 2609 Chlordane Disulfoton 4.4'-DDD 4.4'-DDE 4.4'-DDT Diazinon Bolstar Dieldrin a-BHC b-BHC d-BHC Aldrin Endrin

MGT Report No. 250114-A-V1 Page 4 of 8



web: www.mgtenv.com.au

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.5 < 0.2 < 0.1 M09-AU03630 v 2.7 9.8 75 17 12 9 37 Aug 7, 2009 QC14A Soil 27000 4400 24 450 8.0 M09-AU03629 2.2 12 Ξ 51 Aug 7, 2009 QC13A Soil mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % % Client Sample ID 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.2 0.1 0.1 Sample Date 2 2 2 2 Lab Number Matrix Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Triphenylphosphate (surr.) Methyl parathion Methyl azinphos Analysis Type Heavy Metals Fensulfothion Trichloronate Fenitrothion % Moisture Mevinphos Chromium ACT 2609

Tokuthion

Phorate

Naled

Ronnel

Ethoprop

Ethion

Fenthion Merphos Cadmium

Copper

Lead

Mercury

Nickel

Arsenic

MGT Report No. 250114-A-V1 Page 5 of 8



Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne
3-8 Kingston Town Close
Oakleigh Vic 3166
Phone : 0.3 9564 7055
ABN - 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.mgtenv.com.au NATA Site # 1254

| Coffey Environments Pty Ltd ACT | Client Sample<br>ID | QC13A       | QC13A       | RPD                | SPIKE               | SJT         | Method blank |
|---------------------------------|---------------------|-------------|-------------|--------------------|---------------------|-------------|--------------|
| hbourne Avenue                  | Lab Number          | 09-AU03629  | 09-AU03629  | 09-AU03629         | 09-AU03629          | Batch       | Batch        |
|                                 | QA<br>Description   |             | Duplicate   | Duplicate %<br>RPD | Spike %<br>Recovery | % Recovery  |              |
| ACT 2609                        | Matrix              | Soil        | Soil        | Soil               | Soil                | Soil        | Soil         |
|                                 | Sample Date         | Aug 7, 2009 | Aug 7, 2009 | Aug 7, 2009        | Aug 7, 2009         | Aug 7, 2009 | Aug 7, 2009  |
| Analysis Type                   | Units               |             |             | % RPD              | % Recovery          | % Recovery  | mg/kg        |
| Organochlorine Pesticides       |                     | Batch       | Batch       | Batch              | Batch               |             |              |
| 4.4'-DDD                        |                     | < 0.05      | < 0.05      | ۰<br>۲             | 124                 | 88          | < 0.05       |
| 4.4-DDE                         |                     | < 0.05      | < 0.05      | ^                  | 121                 | 82          | < 0.05       |
| 4.4-DDT                         |                     | < 0.05      | < 0.05      | ^                  | 72                  | 91          | < 0.05       |
| а-ВНС                           |                     | < 0.05      | < 0.05      | ^                  | 126                 | 83          | < 0.05       |
| Aldrin                          |                     | < 0.05      | < 0.05      | ^                  | 130                 | 79          | < 0.05       |
| b-BHC                           |                     | < 0.05      | < 0.05      | ^                  | 126                 | 91          | < 0.05       |
| Chlordane                       |                     | < 0.1       | < 0.1       | ^                  |                     | ,           | < 0.1        |
| d-BHC                           |                     | < 0.05      | < 0.05      | ^                  | 129                 | 87          | < 0.05       |
| Dieldrin                        |                     | < 0.05      | < 0.05      | ۲>                 | 126                 | 80          | < 0.05       |
| Endosulfan I                    |                     | < 0.05      | < 0.05      | ^                  | 129                 | 80          | < 0.05       |
| Endosulfan II                   |                     | < 0.05      | < 0.05      | ۲>                 | 126                 | 81          | < 0.05       |
| Endosulfan sulphate             |                     | < 0.05      | < 0.05      | < 1                | 123                 | 94          | < 0.05       |
| Endrin                          |                     | < 0.05      | < 0.05      | < 1                | 103                 | 84          | < 0.05       |
| Endrin aldehyde                 |                     | < 0.05      | < 0.05      | < 1                | 120                 | 85          | < 0.05       |
| Endrin ketone                   |                     | < 0.05      | < 0.05      | ۲>                 | 129                 | 91          | < 0.05       |
| g-BHC (Lindane)                 |                     | < 0.05      | < 0.05      | ^                  | 127                 | 85          | < 0.05       |
| Heptachlor                      |                     | < 0.05      | < 0.05      | ^                  | 116                 | 84          | < 0.05       |
| Heptachlor epoxide              |                     | < 0.05      | < 0.05      | ۲>                 | 128                 | 81          | < 0.05       |
| Hexachlorobenzene               |                     | < 0.05      | < 0.05      | ۲>                 | 128                 | 88          | < 0.05       |
| Methoxychlor                    |                     | < 0.05      | < 0.05      | < 1                | 73                  | 86          | < 0.05       |
| Toxophene                       |                     | < 0.1       | < 0.1       | ۲>                 | -                   | •           | < 0.1        |
| Heavy Metals                    |                     | Batch       | Batch       | Batch              | Batch               |             |              |
| Arsenic                         |                     | 2.7         | 2.4         | 6.6                | 88                  | 96          | < 2          |
| Cadmium                         |                     | < 0.5       | < 0.5       | < 1                | 101                 | 102         | < 0.5        |
| Chromium                        |                     | 32          | 68          | 19                 | 106                 | 107         | < 5          |
| Copper                          |                     | 17          | 21          | 16                 | 121                 | 105         | < 5          |
| Lead                            |                     | 24          | 24          | < 1                | 82                  | 92          | < 5          |
| Mercury                         |                     | < 0.1       | × 0.1       | <u>^</u>           | 73                  | 95          | × 0.1        |

MGT Report No. 250114-A-V1 Page 6 of 8



Coffey Environments Pty Ltd ACT /54 Northbourne Avenue

Analysis Type Heavy Metals

Nickel Zinc

ACT 2609

Sanberra

e.mail: mgt@mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

web: www.mgtenv.com.au

**Method blank** Aug 7, 2009 Batch < 5 v 2 mg/kg Soil % Recovery Aug 7, 2009 LCS Batch % Recovery 101 Soil Aug 7, 2009 09-AU03629 SPIKE % Recovery Batch Spike % Recovery 103 126 Soil Duplicate % RPD 09-AU03629 Aug 7, 2009 Batch RPD 8.4 13 % RPD Soil 09-AU03629 Aug 7, 2009 Batch 650 Duplicate က္တ QC13A Soil Client Sample QC13A Lab Number 09-AU03629 Aug 7, 2009 Batch 740 28 Soil QA Description Sample Date Matrix Units

MGT Report No. 250114-A-V1 Page 7 of 8



**Analysis Type** 

ACT 2609

Sanberra

Chlorpyrifos

Bolstar

Demeton-O

Diazinon

Dichlorvos

Disulfoton

Ethion

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Method blank Aug 7, 2009 Batch < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 mg/kg Soil % Recovery Aug 7, 2009 Batch % Recovery CS 106 122 72 78 72 Soil 09-AU03630 Aug 7, 2009 SPIKE % Recovery Batch Spike % Recovery 109 82 82 93 77 Soil Duplicate % RPD Aug 7, 2009 09-AU03630 Batch RPD V V v v v v v v v v v v v <u>۷</u> <u>۷</u> v v v v % RPD Soil Aug 7, 2009 09-AU03630 Batch < 0.2 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 Duplicate <del>ر</del> QC14A Soil 09-AU03630 Aug 7, 2009 Batch < 0.2 < 0.5 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 v Client Sample QC14A Soil QA Description Lab Number Sample Date Matrix Units Coffey Environments Pty Ltd ACT Organophosphorous Pesticides 2/54 Northbourne Avenue

Methyl parathion Methyl azinphos

Mevinphos

Phorate Ronnel

Naled

Trichloronate

**Fokuthion** 

Fensulfothion

Fenthion Merphos

Fenitrothion

Ethoprop

MGT Report No. 250114-A-V1 Page 8 of 8

Chain of Custody

つついれれず Sheet of / No: 26383

| Wades 7 Vicels, March QC16 | Comments  A container Type  and Preservative   |     | Relinquished by: Charlis Lucas Date: | Attention: Sample Receipts (res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dispatch to: (Address & MCCT Phone No.)               | Lat                              |
|----------------------------|------------------------------------------------|-----|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------|
| A (3/8/09                  | Date Sampled  PAHs  TPHs  MAHs = BTEX  Metals: |     | Time:                                | Project Manager: Character Cultar (report results to) Character Cultar Cultar Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Character Characte | Cherice Lucas                                         | Laboratory Quotation / Order No: |
|                            | OCP/OPP<br>Sulphote Analyses Required          | 65) | Date:                                | Courier Service: TTUT  Consignment Note No: 50 9 604 303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Consigning Officer: Cabarra  Date Dispatched: (3/8/09 | JOB NO: FCGGCCASA Sheet 1 of     |
|                            | Sample<br>Condition<br>on Receipt              |     | Time:                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                  |

Copies: WHITE: Sign on release. YELLOW: If dispatched to interstate Lab, Lab to sign on receipt and fax back to Coffey. BLUE: To be returned with results. Detection Limits: Lowest Level Ostection



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

**Coffey Environments Pty Ltd ACT** 2/54 Northbourne Avenue Canberra **ACT 2609** 

Site: EC00233AA

Report Number: 250262-B-V1 Page 1 of 7

Order Number:

Date Received: Aug 14, 2009 Date Sampled: Aug 13, 2009 Date Reported: Aug 21, 2009 Contact: Julian Howard

### Methods

- · USEPA 8141A Organophosphorus Pesticides
- USEPA 8081A Organochlorine Pesticides
- USEPA 6020 Heavy Metals & USEPA 7470/71 Mercury
  APHA 4500-SO4 (SO4 by Discrete Analyser)

Comments

**Notes** 

Authorised Report Number: 250262-B-V1

Michael Wright Senior Principal Chemist NATA Signatory

Onur Mehmet Client Manager **NATA Signatory** 

Orlando Scalzo Chief Organic Chemist NATA Signatory

Tammy Lakeland **Chief Ínorganic Chemist** 







Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mat@matenv.com.au

web: www.matenv.com.au

#### GLOSSARY OF TERMS

#### UNITS

mg/kg milligrams per Kilogram milligrams per litre mg/l micrograms per litre Parts per million ug/l ppm ppb Parts per billion Percentage Organisms per 100 millilitres org/100ml NTII Units

#### TERMS

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

Limit of Reporting. LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**Batch Duplicate** A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. **Batch SPIKE** Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QC - ACCEPTANCE CRITERIA
RPD Duplicates Result Results <10 times the LOR: No Limit

Results between 10-20 times LOR: RPD must lie between 0-50%

Results >20 times LOR: RPD must lie between 0-20% **LCS Recoveries** Recoveries must lie between 70-130% - Phenols 20-110% **CRM Recoveries** Recoveries must lie between 70-130% - Phenols 20-110%

Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 20-110% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-110%

### **GENERAL COMMENTS**

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis

### **QC DATA GENERAL COMMENTS**

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons - where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6 Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- For Matrix Spikes and LCS results a dash "." in the report means that the specific analyte was not added to the QC sample. 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 250262-B-V1 Page 2 of 7



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne Sydney
3-5 Kingston Town Close 1a Chilvers Rd
Oakleigh Vic 3166 Thomleigh NSW 2120
Phone : 03 9564 70555 Phone : 02 9484 3300
NATA Site # 1254 NATA Site # 18217

Aug 14, 2009 12:00 Aug 21, 2009 12:01 Received: Due: web: www.mgtenv.com.au 02 6248 7154 02 6248 7157 250262 e.mail: mgt@mgtenv.com.au Report #: Phone: Order No: ABN - 50 005 085 521 Coffey Environments Pty Ltd ACT 2/54 Northbourne Avenue Company name:

Julian Howard Normal Contact name: **Priority:** 

Fax:

Canberra ACT 2609

Address:

EC00233AA

Client Job No:

mgt Client Manager: Onur Mehmet

Organophosphorous Pesticides × Organochlorine Pesticides × × Zinc × × Sulphate (S) × Nickel × × × × × × × Mercury × Lead × Copper Chromium × Cadmium × Arsenic × Comment LOWEST LEVEL DETECTION. LABID Sample Details M09-AU04674 Matrix Water Sampling Time Laboratory where analysis is conducted Melbourne Laboratory - NATA Site #1254 Sydney Laboratory - NATA Site #18217
Sample ID Sample Date Sacrite Aug 13, 2009



web: www.mgtenv.com.au

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217 Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

< 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 M09-AU04674 Aug 13, 2009 QC16A Water Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L 0.0001 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 LOR Client Sample ID Sample Date Lab Number Matrix Coffey Environments Pty Ltd ACT Organochlorine Pesticides 2/54 Northbourne Avenue Endosulfan sulphate Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde Analysis Type Endrin ketone Endosulfan I Endosulfan Heptachlor Canberra ACT 2609 Chlordane 4.4'-DDD 4.4'-DDE 4.4'-DDT d-BHC Dieldrin a-BHC Endrin b-BHC Aldrin

MGT Report No. 250262-B-V1 Page 4 of 7

< 0.0005

mg/L

0.0005

% %

143 66 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002

> mg/L mg/L mg/L mg/L mg/L

mg/L

0.002

Organophosphorous Pesticides

Chlorpyrifos

Bolstar

Demeton-O

Dichlorvos

Diazinon

Disulfoton

Tetrachloro-m-xylene (surr.) Dibutylchlorendate (surr.)

Hexachlorobenzene

Methoxychlor

Toxophene

0.002 0.002 0.002 0.002 0.002

< 0.0001 < 0.0001

mg/L mg/L

0.0001 0.0001



Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217 Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone : 0.3 9564 7055
ABN - 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.mgtenv.com.au NATA Site # 1284

| Coffey Environments Ptv Ltd ACT | Client Sample ID |                           | loc16A       |
|---------------------------------|------------------|---------------------------|--------------|
|                                 |                  |                           |              |
| lbourne Avenue                  | Lab Number       |                           | M09-AU04674  |
| Canberra                        | Matrix           |                           | Water        |
| ACT 2609                        | Sample Date      |                           | Aug 13, 2009 |
| Analysis Type                   | LOR              | Units                     |              |
| Ethion                          | 0.002            | mg/L                      | < 0.002      |
| Ethoprop                        | 0.002            | mg/L                      | < 0.002      |
| Fenitrothion                    | 0.002            | mg/L                      | < 0.002      |
| Fensulfothion                   | 0.002            | mg/L                      | < 0.005      |
| Fenthion                        | 0.002            | mg/L                      | < 0.002      |
| Merphos                         | 0.002            | mg/L                      | < 0.002      |
| Methyl azinphos                 | 0.002            | mg/L                      | < 0.002      |
| Methyl parathion                | 0.002            | mg/L                      | < 0.002      |
| Mevinphos                       | 0.002            | mg/L                      | < 0.002      |
| Naled                           | 0.002            | mg/L                      | < 0.002      |
| Phorate                         | 0.002            | mg/L                      | < 0.002      |
| Ronnel                          | 0.002            | mg/L                      | < 0.002      |
| Tokuthion                       | 0.002            | mg/L                      | < 0.002      |
| Trichloronate                   | 0.002            | mg/L                      | < 0.002      |
| Triphenylphosphate (surr.)      | 1                | %                         | 82           |
|                                 |                  |                           |              |
| Sulphate (S)                    | 5                | mg/L                      | 5.5          |
| Heavy Metals                    |                  |                           |              |
| Arsenic                         | 0.001            | mg/L                      | < 0.001      |
| Cadmium                         | 0.0002           | mg/L                      | < 0.0002     |
| Chromium                        | 0.001            | mg/L                      | < 0.001      |
| Copper                          | 0.001            | mg/L                      | < 0.001      |
| Lead                            | 0.001            | mg/L                      | < 0.001      |
| Mercury                         | 0.0001           | mg/L                      | < 0.0001     |
| Nickel                          | 0.001            | mg/L                      | < 0.001      |
| Zinc                            | 0.001            | mg/L                      | 0.003        |
|                                 |                  |                           |              |
|                                 |                  |                           |              |
| COMMITTE.                       |                  | Y a caccac all transa TOM | 2            |

MGT Report No. 250262-B-V1 Page 5 of 7



Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

**Adelaide** 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 web: www.mgtenv.com.au

Method blank Aug 13, 2009 < 0.0001 < 0.0005 < 0.0005 < 0.0001 < 0.002 Batch < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.002 < 0.002 < 0.002 < 0.002 v 2 Water mg/L Aug 13, 2009 % Recovery % Recovery Batch CS 78 75 8 75 98 88 95 9/ 80 85 83 83 90 83 83 95 88 90 80 95 8 Water Aug 13, 2009 09-AU04674 SPIKE % Recovery Batch Batch 110 118 116 116 Spike % Recovery 119 104 109 114 104 101 107 79 75 79 98 9 92 92 94 Water Aug 13, 2009 Duplicate % RPD 09-AU04674 RPD Batch Batch v v v v v v v v v v v v v v v v v v v v v v % RPD Water Aug 13, 2009 09-AU04674 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.001 Batch Batch v 2 **Duplicate** QC16A Water Aug 13, 2009 09-AU04674 < 0.0001 < 0.0001 < 0.0001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0001 < 0.0001 < 0.001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.001 Batch < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 Batch v 2 Client Sample QC16A Water Lab Number QA Description Sample Date Matrix Units Coffey Environments Pty Ltd ACT **Organophosphorous Pesticides** Organochlorine Pesticides 2/54 Northbourne Avenue Endosulfan sulphate Hexachlorobenzene Heptachlor epoxide g-BHC (Lindane) Endrin aldehyde Analysis Type Endrin ketone Methoxychlor Sulphate (S) Endosulfan I Chlorpyrifos Endosulfan **Foxophene** Demeton-O Heptachlor Dichlorvos Chlordane ACT 2609 Sanberra 4.4'-DDD 4.4'-DDE Diazinon 4.4'-DDT Dieldrin Bolstar a-BHC b-BHC d-BHC Endrin Aldrin

MGT Report No. 250262-B-V1 Page 6 of 7



web: www.mgtenv.com.au

3-5 Kingston Town Close Oakleigh Vic 3166 Phone : 03 9564 7055 NATA Site # 1254

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

**Adelaide** 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Method blank Aug 13, 2009 < 0.002 < 0.002 < 0.002 < 0.0002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 Batch < 0.001 < 0.001 < 0.001 < 0.001 < 0.0001 < 0.001 Water T/bw Aug 13, 2009 % Recovery Batch % Recovery CCS 12 104 90 85 96 8 84 93 91 91 97 Water Aug 13, 2009 09-AU04674 SPIKE % Recovery Batch Batch 118 Spike % Recovery 100 102 88 7 98 66 96 98 94 97 Water Aug 13, 2009 Duplicate % RPD 09-AU04674 RPD Batch Batch <u>۲</u> \ V 5.9 v <u>\_</u> v V v <del>ر</del> <del>ر</del> v v v v v v v 4.7 v v v <del>-</del> % RPD Water Aug 13, 2009 < 0.002 < 0.002 < 0.002 09-AU04674 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.0002 < 0.002 < 0.002 < 0.002 < 0.001 < 0.0001 < 0.001 Batch 0.002 < 0.001 0.004 Duplicate QC16A Water Aug 13, 2009 09-AU04674 < 0.002 < 0.002 < 0.002 < 0.0002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.001 < 0.001 < 0.001 Batch < 0.002 Batch 0.004 < 0.0001 0.001 Client Sample |QC16A Water Lab Number Sample Date QA Description Matrix Units Coffey Environments Pty Ltd ACT Organophosphorous Pesticides /54 Northbourne Avenue Methyl parathion Methyl azinphos Analysis Type Heavy Metals Fensulfothion Trichloronate Fenitrothion Mevinphos Chromium **ACT 2609** Disulfoton **Fokuthion** Cadmium Sanberra Ethoprop Fenthion Merphos **Phorate** Arsenic Mercury Ethion Ronnel Copper Naled Nickel Lead

MGT Report No. 250262-B-V1 Page 7 of 7

< 0.001

93

95

<del>-</del>

0.008

0.008

coffey 🌮

Chain of Custody

TNT. 309609483

No: 26309

Dispatch to:
(Address & MC)
Phone No.) Sample Receipts Project Manager: (report results to) Sampled by: Laboratory Quotation / Order No. Charlie Jolian Howard Lucas Consignment Note No: 3-9609 483 Courier Service: Date Dispatched: 25/11/09 Consigning Officer: Carberra Job No: ECCO233AA Sheet 1 of 1

Attention:

| Comments          | Comments                          |            |        |  |  |  |  |  | Special Laboratory Instructions: |
|-------------------|-----------------------------------|------------|--------|--|--|--|--|--|----------------------------------|
| ole Matrix        | Sample M                          | 58:1       | +      |  |  |  |  |  |                                  |
| Container Type    | Container Type and Preservative   | 250-11-5-5 | t      |  |  |  |  |  |                                  |
| Sample No.        | Sample No.                        | aciona     | QC101A |  |  |  |  |  |                                  |
|                   | Date Samp                         | 25/11/09   | 4:     |  |  |  |  |  |                                  |
| BTEX              | PAHs TPHs MAHs = BTEX             |            |        |  |  |  |  |  |                                  |
| Analyses Required |                                   |            |        |  |  |  |  |  |                                  |
|                   |                                   |            |        |  |  |  |  |  |                                  |
| ple<br>tion       | Sample<br>Condition<br>on Receipt |            |        |  |  |  |  |  |                                  |

Copies: WHITE: Sign on release. YELLOW: If dispatched to interstate Lab, Lab to sign on receipt and fax back to Coffey. BLUE: To be returned with results.

Turnaround Required: Standard

Rport # 255840

JOB NUMBER MUST BE REFERENCED ON ALL SUBSEQUENT PAGES

Detection Limits: Lowest Lavel Detection



ABN - 50 005 085 521

e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

# **CERTIFICATE OF ANALYSIS**

Coffey Environments Pty Ltd ACT 17 Torrens St Braddon ACT 2612 Site: EC00233AA Report Number: 255840-A-V1 Page 1 of 5

**Order Number:** 

Date Received: Nov 26, 2009 Date Sampled: Nov 25, 2009 Date Reported: Dec 3, 2009 Contact: Julian Howard

### Methods

- USEPA 6010B Heavy Metals & USEPA 7470/71 Mercury
- Method 102 ANZECC % Moisture

Comments

**Notes** 

Authorised Report Number: 255840-A-V1

Michael Wright Senior Principal Chemist NATA Signatory Onur Mehmet
Client Manager
NATA Signatory

Andrew Cook
Chief Inorganic Chemist







Melbourne Oakleigh Vic 3166
Phone: 03 9564 7055
NATA Site # 1254 Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone: 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

ABN - 50 005 085 521

e.mail: mat@matenv.com.au

web: www.matenv.com.au

#### GLOSSARY OF TERMS

### UNITS

mg/kg milligrams per Kilogram milligrams per litre mg/l micrograms per litre Parts per million ug/l ppm ppb Parts per billion Percentage Organisms per 100 millilitres org/100ml NTII Units

### TERMS

Where a moisture has been determined on a solid sample the result is expressed on a dry basis. Dry

Limit of Reporting. LOR

SPIKE Addition of the analyte to the sample and reported as percentage recovery. RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands.

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

**Batch Duplicate** A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis. **Batch SPIKE** Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environment Protection Authority

APHA American Public Health Association

ASLP Australian Standard Leaching Procedure (AS4439.3)

TCLP Toxicity Characteristic Leaching Procedure

coc Chain of Custody SRA Sample Receipt Advice

QC - ACCEPTANCE CRITERIA
RPD Duplicates Result Results <10 times the LOR: No Limit

Results between 10-20 times LOR: RPD must lie between 0-50%

Results >20 times LOR: RPD must lie between 0-20% **LCS Recoveries** Recoveries must lie between 70-130% - Phenols 30-130%

**CRM Recoveries** Recoveries must lie between 70-130% - Phenols 30-130% Method Blanks Not to exceed LOR

SPIKE Recoveries Recoveries must lie between 70-130% - Phenols 30-130% Surrogate RecoveriesRecoveries must lie between 50-150% - Phenols 20-130%

## **GENERAL COMMENTS**

- All results in this report supersede any previously corresponded results.
- All soil results are reported on a dry basis.
- 3. Samples are analysed on an as received basis

# **QC DATA GENERAL COMMENTS**

- Where a result is reported as a less than (<), higher than the nominated LOR this is due to either Matrix Interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- Orgaonchlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons - where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6 Recovery Data (Spikes & Surrogates) - where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- For Matrix Spikes and LCS results a dash "." in the report means that the specific analyte was not added to the QC sample. 8.
- Duplicate RPD's are calculated from raw analytical data thus it is possible to have two two sets of data below the LOR with a positive RPD eg: LOR 0.1, Result A = <0.1 (raw data is 0.02) & Result B = <0.1 (raw data is 0.03) resulting in a RPD of 40% calculated from the raw data.

REPORT SPECIFIC NOTES

MGT Report No. 255840-A-V1 Page 2 of 5



Environmental Laboratory Air Analysis Water Analysis Soil Contamination Analysis NATA Accreditation NATA Accreditation Stack Emission Sampling & Analysis Trade Waste Sampling & Analysis Groundwater Sampling & Analysis



e.mail: mgt@mgtenv.com.au

web: www.mgtenv.com.au

**Sydney** 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3163 Phone: 03 9564 7055 NATA Site # 1254

Received: Due: Priority: Contact name:

Order No.: Report #: Phone: Fax:

Coffey Environments Pty Ltd ACT 17 Torrens St Braddon ACT 2612

Company Name: Address:

Nov 26, 2009 12:00 Dec 3, 2009 11:57 5 Day Julian Howard

mgt Client Manager: Onur Mehmet

EC00233AA Client Job No.:

| Zinc          |                                        | ×                      |                                      |                           | ×            |
|---------------|----------------------------------------|------------------------|--------------------------------------|---------------------------|--------------|
| Nickel        |                                        | ×                      |                                      |                           | ×            |
| Mercury       |                                        | ×                      |                                      |                           | X            |
| Lead          |                                        | ×                      |                                      |                           | ×            |
| Copper        |                                        | ×                      |                                      |                           | ×            |
| Chromium      |                                        | ×                      |                                      |                           | ×            |
| Cadmium       |                                        | ×                      |                                      |                           | ×            |
| Arsenic       |                                        | ×                      |                                      |                           | ×            |
| % Moisture    |                                        | ×                      |                                      |                           | ×            |
|               |                                        |                        |                                      | LAB ID                    | M09-No08194  |
|               |                                        |                        |                                      | Matrix                    | Soil         |
| Sample Detail | nducted                                | NATA Site #1254        | #18217                               | Sampling Time             |              |
| Sa            | Laboratory where analysis is conducted | oratory - NATA Si      | Sydney Laboratory - NATA Site #18217 | Sample Date Sampling Time | Nov 25, 2009 |
|               | Laboratory whe                         | Melbourne Laboratory - | Sydney Laborat                       | Sample ID                 | QC100A       |



Analysis Type

ACT 2612

Braddon

Heavy Metals % Moisture

Arsenic

Chromium Cadmium

Copper

Lead

Mercury

Nickel

Zinc

17 Torrens St

ABN – 50 005 085 521 e.mail : mgt@mgtenv.com.au web : www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Adelaide 140 Richmond Rd Marleston SA 5033 Phone: 08 8443 4430

Sydney 1a Chilvers Rd Thornleigh NSW 2120 Phone : 02 9484 3300 NATA Site # 18217

< 0.5 < 0.1 120 2.1 100 40 19 23 4 M09-No08194 Soil Nov 25, 2009 QC100A Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg % LOR Client Sample ID 2.0 0. 0.1 2 2 2 2 2 Lab Number Matrix Sample Date Coffey Environments Pty Ltd ACT

MGT Report No. 255840-A-V1 Page 4 of 5

COMMENTS:



e.mail: mgt@mgtenv.com.au ABN - 50 005 085 521

web: www.mgtenv.com.au

Melbourne 3-5 Kingston Town Close Oakleigh Vic 3166 Phone: 03 9564 7055 NATA Site # 1254

Sydney
1a Chilvers Rd
Thornleigh NSW 2120
Phone: 02 9484 3300
NATA Site # 18217

Adelaide 140 Richmond Rd Marleston SA 5033 Phone : 08 8443 4430

Method blank Nov 25, 2009 Batch < 0.5 < 0.1 **v** ۷ ۷ ۷ ک v 2 v 2 v 2 mg/kg Soil Nov 25, 2009 % Recovery % Recovery Batch CS 100 106 100 5 2 10 93 Soil Nov 25, 2009 09-No08194 Spike % Recovery SPIKE % Recovery Batch 88 98 9 72 89 87 Soil Duplicate % RPD Nov 25, 2009 09-No08194 Batch RPD \ \_ 2.2 4 40 v 16 27 v % RPD Soil Nov 25, 2009 09-No08194 Batch < 0.5 Duplicate < 0.1 6.5 33 12 24 88 3 QC100A Soil Nov 25, 2009 09-No08194 Batch < 0.5 < 0.1 6.5 45 16 5 4 33 Client Sample QC100A Soil QA Description Lab Number Sample Date Matrix Units Coffey Environments Pty Ltd ACT Analysis Type Heavy Metals 17 Torrens St Chromium ACT 2612 Cadmium **3raddon** Mercury Arsenic Copper Nickel Lead Zinc

MGT Report No. 255840-A-V1 Page 5 of 5

COMMENTS:



# ANALYTICAL REPORT

18 August 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Chris Gunton

Your Reference: EC00233AA

Our Reference: SE71274 Samples: 28 Soils, 5 Waters

Received: 11/8/09

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

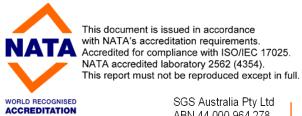
Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

Nick Salarmis
Inorganics Signatory

Organics Signatory


WORLD RECOGNISED
ACCREDITATION

Huong **Erawford**Metals Signatory

This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354).

This report must not be reproduced except in full.

| OC Pesticides in Soil                   |       |            |            |            |            |            |
|-----------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                          | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  |
|                                         |       | 5          | 6          | 7          | 8          | 9          |
| Your Reference                          |       | DC1        | DC2        | DC5        | DC6        | DC7        |
| Sample Matrix                           |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled<br>Depth                   |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Date Extracted                          |       | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Date Analysed                           |       | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| НСВ                                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-BHC                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| gamma-BHC (Lindane)                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor                              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Aldrin                                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-BHC                                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| delta-BHC                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Heptachlor Epoxide                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| o,p-DDE                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| alpha-Endosulfan                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| trans-Chlordane                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| cis-Chlordane                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| trans-Nonachlor                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| p,p-DDE                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Dieldrin                                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin                                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| o,p-DDD                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| o,p-DDT                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| beta-Endosulfan                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| p,p-DDD                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| p,p-DDT                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endosulfan Sulphate                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Aldehyde                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Methoxychlor                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Endrin Ketone                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 109        | 110        | 119        | 101        | 102        |



| OC Pesticides in Soil                   |       |                |                |                |                |                |
|-----------------------------------------|-------|----------------|----------------|----------------|----------------|----------------|
| Our Reference:                          | UNITS | SE71274-2<br>0 | SE71274-2<br>1 | SE71274-2<br>2 | SE71274-2<br>4 | SE71274-2<br>7 |
| Your Reference                          |       | DC8            | DC9            | DC10           | QC14           | DC13           |
| Sample Matrix                           |       | Soil           | Soil           | Soil           | Soil           | Soil           |
| Date Sampled<br>Depth                   |       | 7/08/2009      | 7/08/2009      | 7/08/2009      | 7/08/2009      | 10/08/200      |
| Date Extracted                          |       | 14/08/2009     | 14/08/2009     | 14/08/2009     | 14/08/2009     | 14/08/200      |
| Date Analysed                           |       | 14/08/2009     | 14/08/2009     | 14/08/2009     | 14/08/2009     | 14/08/200      |
| HCB                                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| alpha-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Heptachlor                              | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Aldrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| beta-BHC                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| delta-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Heptachlor Epoxide                      | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| <i>alpha-</i> Endosulfan                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| trans-Chlordane                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| cis-Chlordane                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| trans-Nonachlor                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Dieldrin                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| beta-Endosulfan                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endosulfan Sulphate                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin Aldehyde                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Methoxychlor                            | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin Ketone                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 108            | 104            | 105            | 101            | 94             |



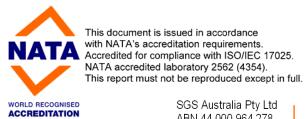
| OC Pesticides in Soil                   |       |                |            |            |
|-----------------------------------------|-------|----------------|------------|------------|
| Our Reference:                          | UNITS | SE71274-2<br>8 | SE71274-3  | SE71274-3  |
| Your Reference                          |       | DC12           | DC3        | DC4        |
| Sample Matrix                           |       | Soil           | Soil       | Soil       |
| Date Sampled                            |       | 10/08/2009     | 10/08/2009 | 10/08/2009 |
| Depth                                   |       |                |            |            |
| Date Extracted                          |       | 14/08/2009     | 14/08/2009 | 14/08/2009 |
| Date Analysed                           |       | 14/08/2009     | 14/08/2009 | 14/08/2009 |
| НСВ                                     | mg/kg | <0.1           | <0.1       | <0.1       |
| alpha-BHC                               | mg/kg | <0.1           | <0.1       | <0.1       |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           | <0.1       | <0.1       |
| Heptachlor                              | mg/kg | <0.1           | <0.1       | <0.1       |
| Aldrin                                  | mg/kg | <0.1           | <0.1       | <0.1       |
| beta-BHC                                | mg/kg | <0.1           | <0.1       | <0.1       |
| delta-BHC                               | mg/kg | <0.1           | <0.1       | <0.1       |
| Heptachlor Epoxide                      | mg/kg | <0.1           | <0.1       | <0.1       |
| o,p-DDE                                 | mg/kg | <0.1           | <0.1       | <0.1       |
| alpha-Endosulfan                        | mg/kg | <0.1           | <0.1       | <0.1       |
| trans-Chlordane                         | mg/kg | <0.1           | <0.1       | <0.1       |
| cis-Chlordane                           | mg/kg | <0.1           | <0.1       | <0.1       |
| trans-Nonachlor                         | mg/kg | <0.1           | <0.1       | <0.1       |
| p,p-DDE                                 | mg/kg | <0.1           | <0.1       | <0.1       |
| Dieldrin                                | mg/kg | <0.1           | <0.1       | <0.1       |
| Endrin                                  | mg/kg | <0.1           | <0.1       | <0.1       |
| o,p-DDD                                 | mg/kg | <0.1           | <0.1       | <0.1       |
| o,p-DDT                                 | mg/kg | <0.1           | <0.1       | <0.1       |
| beta-Endosulfan                         | mg/kg | <0.1           | <0.1       | <0.1       |
| p,p-DDD                                 | mg/kg | <0.1           | <0.1       | <0.1       |
| p,p-DDT                                 | mg/kg | <0.1           | <0.1       | <0.1       |
| Endosulfan Sulphate                     | mg/kg | <0.1           | <0.1       | <0.1       |
| Endrin Aldehyde                         | mg/kg | <0.1           | <0.1       | <0.1       |
| Methoxychlor                            | mg/kg | <0.1           | <0.1       | <0.1       |
| Endrin Ketone                           | mg/kg | <0.1           | <0.1       | <0.1       |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 106            | 103        | 104        |

| OP Pesticides in Soil by GCMS |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  |
|                               |       | 5          | 6          | 7          | 8          | 9          |
| Your Reference                |       | DC1        | DC2        | DC5        | DC6        | DC7        |
| Sample Matrix                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled Depth            |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Date Extracted                |       | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Date Analysed                 |       | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 108        | 120        | 116        | 104        | 104        |
| d14-p-Terphenyl (Surr)        | %     | 120        | 120        | 112        | 108        | 104        |

| OP Pesticides in Soil by GCMS |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                | UNITS | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  |
|                               |       | 0          | 1          | 2          | 4          | 7          |
| Your Reference                |       | DC8        | DC9        | DC10       | QC14       | DC13       |
| Sample Matrix                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled<br>Depth         |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 10/08/2009 |
| Date Extracted                |       | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Date Analysed                 |       | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 108        | 112        | 112        | 104        | 112        |
| d14-p-Terphenyl (Surr)        | %     | 112        | 104        | 112        | 112        | 108        |

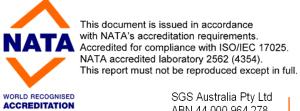
| 0000 (111 1 0 111 00110       |       |            |            |            |
|-------------------------------|-------|------------|------------|------------|
| OP Pesticides in Soil by GCMS |       |            |            |            |
| Our Reference:                | UNITS | SE71274-2  | SE71274-3  | SE71274-3  |
|                               |       | 8          | 0          | 1          |
| Your Reference                |       | DC12       | DC3        | DC4        |
| Sample Matrix                 |       | Soil       | Soil       | Soil       |
| Date Sampled                  |       | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Depth                         |       |            |            |            |
| Date Extracted                |       | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Date Analysed                 |       | 14/08/2009 | 14/08/2009 | 14/08/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 108        | 104        | 116        |
| d14-p-Terphenyl (Surr)        | %     | 108        | 104        | 116        |

| Inorganics                           |          |            |            |            |
|--------------------------------------|----------|------------|------------|------------|
| Our Reference:                       | UNITS    | SE71274-2  | SE71274-8  | SE71274-2  |
|                                      |          |            |            | 5          |
| Your Reference                       |          | MS4-30_0.  | MS4-34_0.  | WB7        |
|                                      |          | 0-0.2      | 0-0.2      |            |
| Sample Matrix                        |          | Soil       | Soil       | Water      |
| Date Sampled                         |          | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                                |          |            |            |            |
| Date Extracted- (pH 1:5 soil: Water) |          | 13/08/2009 | 13/08/2009 | [NA]       |
| Date Analysed (pH 1:5 Soil: Water)   |          | 13/08/2009 | 13/08/2009 | [NA]       |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 6.4        | 6.6        | [NA]       |
| Date Extracted (pH)                  |          | [NA]       | [NA]       | 13/08/2009 |
| Date Analysed (pH)                   |          | [NA]       | [NA]       | 13/08/2009 |
| рН                                   | pH Units | [NA]       | [NA]       | 6.2        |


| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71274-1  | SE71274-2  | SE71274-3  | SE71274-4  | SE71274-5  |
| Your Reference            |       | MS4-29_0.  | MS4-30_0.  | MS4-30_0.  | MS4-31_0.  | MS4-32_0.  |
|                           |       | 0-0.2      | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Metals)    |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Arsenic                   | mg/kg | 9          | 9          | 7          | 8          | 6          |
| Cadmium                   | mg/kg | 0.6        | 0.6        | 0.5        | 0.5        | 0.3        |
| Chromium                  | mg/kg | 19         | 19         | 22         | 20         | 14         |
| Copper                    | mg/kg | 13         | 12         | 8.9        | 12         | 16         |
| Lead                      | mg/kg | 120        | 130        | 94         | 110        | 110        |
| Nickel                    | mg/kg | 12         | 12         | 13         | 13         | 12         |
| Zinc                      | mg/kg | 280        | 230        | 190        | 200        | 110        |
|                           |       |            |            |            |            |            |

| Metals in Soil by ICP-OES |       |            |            |            |            |                |
|---------------------------|-------|------------|------------|------------|------------|----------------|
| Our Reference:            | UNITS | SE71274-6  | SE71274-7  | SE71274-8  | SE71274-9  | SE71274-1<br>0 |
| Your Reference            |       | MS4-33_0.  | MS4-33_0.  | MS4-34_0.  | MS4-34_0.  | MS4-35_0.      |
|                           |       | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2          |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled<br>Depth     |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009      |
| Date Extracted (Metals)   |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009     |
| Date Analysed (Metals)    |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009     |
| Arsenic                   | mg/kg | 4          | 6          | 5          | 5          | 7              |
| Cadmium                   | mg/kg | 0.4        | 0.3        | 0.5        | 0.3        | 0.3            |
| Chromium                  | mg/kg | 16         | 16         | 18         | 16         | 15             |
| Copper                    | mg/kg | 9.0        | 11         | 10         | 9.6        | 15             |
| Lead                      | mg/kg | 86         | 190        | 86         | 130        | 110            |
| Nickel                    | mg/kg | 12         | 12         | 13         | 10         | 13             |
| Zinc                      | mg/kg | 130        | 120        | 140        | 120        | 130            |

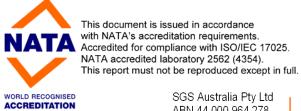



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  |
|                           |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |       | MS4-36_0.  | MS4-37_0.  | MS4-38_0.  | MS4-39_0.  | DC1        |
|                           |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |            |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Metals)    |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Arsenic                   | mg/kg | 6          | 44         | 51         | 46         | 9          |
| Cadmium                   | mg/kg | <0.3       | 2.7        | 2.4        | 2.3        | <0.3       |
| Chromium                  | mg/kg | 14         | 17         | 16         | 18         | 23         |
| Copper                    | mg/kg | 11         | 350        | 340        | 340        | 17         |
| Lead                      | mg/kg | 26         | 33,000     | 25,000     | 23,000     | 26         |
| Nickel                    | mg/kg | 18         | 8.7        | 7.4        | 8.6        | 18         |
| INICKCI                   | g,g   |            |            |            |            |            |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-2  |
|                           |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference            |       | DC2        | DC5        | DC6        | DC7        | DC8        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Metals)    |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Arsenic                   | mg/kg | 4          | 3          | 5          | 5          | 6          |
| Cadmium                   | mg/kg | 0.4        | 0.3        | 0.3        | 0.3        | <0.3       |
| Chromium                  | mg/kg | 14         | 15         | 16         | 19         | 17         |
| Copper                    | mg/kg | 15         | 15         | 11         | 8.9        | 8.1        |
| Lead                      | mg/kg | 130        | 13         | 9.4        | 13         | 11         |
| Nickel                    | mg/kg | 15         | 13         | 17         | 18         | 17         |
| Zinc                      | mg/kg | 210        | 61         | 68         | 76         | 46         |



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  |
|                           |       | 1          | 2          | 3          | 4          | 7          |
| Your Reference            |       | DC9        | DC10       | QC13       | QC14       | DC13       |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 10/08/2009 |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Metals)    |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Arsenic                   | mg/kg | 8          | 5          | 49         | 6          | 33         |
| Cadmium                   | mg/kg | 0.4        | 0.3        | 2.4        | <0.3       | 0.7        |
| Chromium                  | mg/kg | 20         | 16         | 18         | 20         | 19         |
| Copper                    | mg/kg | 18         | 10         | 330        | 10         | 24         |
| Lead                      | mg/kg | 12         | 12         | 22,000     | 13         | 94         |
| Nickel                    | mg/kg | 19         | 18         | 8.6        | 17         | 26         |
| Zinc                      | mg/kg | 67         | 61         | 2,300      | 49         | 180        |


| Metals in Soil by ICP-OES |       |            |            |            |
|---------------------------|-------|------------|------------|------------|
| Our Reference:            | UNITS | SE71274-2  | SE71274-3  | SE71274-3  |
|                           |       | 8          | 0          | 1          |
| Your Reference            |       | DC12       | DC3        | DC4        |
| Sample Matrix             |       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Depth                     |       |            |            |            |
| Date Extracted (Metals)   |       | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Metals)    |       | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Arsenic                   | mg/kg | <3         | 5          | 5          |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       |
| Chromium                  | mg/kg | 12         | 20         | 17         |
| Copper                    | mg/kg | 6.9        | 17         | 7.8        |
| Lead                      | mg/kg | 9          | 12         | 9.0        |
| Nickel                    | mg/kg | 9.1        | 23         | 18         |
| Zinc                      | mg/kg | 18         | 52         | 36         |



| Mercury Cold Vapor/Hg Analyser |       |                    |                    |                    |                    |                    |
|--------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:                 | UNITS | SE71274-1          | SE71274-2          | SE71274-3          | SE71274-4          | SE71274-5          |
| Your Reference                 |       | MS4-29_0.<br>0-0.2 | MS4-30_0.<br>0-0.2 | MS4-30_0.<br>5-0.6 | MS4-31_0.<br>0-0.2 | MS4-32_0.<br>0-0.2 |
| Sample Matrix                  |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled Depth             |       | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          |
| Date Extracted (Mercury)       |       | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         |
| Date Analysed (Mercury)        |       | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         |
| Mercury                        | mg/kg | <0.05              | <0.05              | <0.05              | <0.05              | <0.05              |

| Mercury Cold Vapor/Hg Analyser | LINITO | 0574074.0  | CE74074.7  | CE74074 0  | CE74074 0  | CE74074 4      |
|--------------------------------|--------|------------|------------|------------|------------|----------------|
| Our Reference:                 | UNITS  | SE71274-6  | SE71274-7  | SE71274-8  | SE71274-9  | SE71274-1<br>0 |
| Your Reference                 |        | MS4-33_0.  | MS4-33_0.  | MS4-34_0.  | MS4-34_0.  | MS4-35_0.      |
|                                |        | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2          |
| Sample Matrix                  |        | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled                   |        | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009      |
| Depth                          |        |            |            |            |            |                |
| Date Extracted (Mercury)       |        | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009     |
| Date Analysed (Mercury)        |        | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009     |
| Mercury                        | mg/kg  | <0.05      | <0.05      | <0.05      | <0.05      | <0.05          |

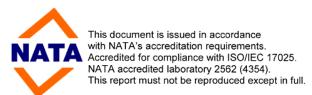
| Mercury Cold Vapor/Hg Analyser |       |                    |                    |                    |                    |                |
|--------------------------------|-------|--------------------|--------------------|--------------------|--------------------|----------------|
| Our Reference:                 | UNITS | SE71274-1<br>1     | SE71274-1<br>2     | SE71274-1<br>3     | SE71274-1<br>4     | SE71274-1<br>5 |
| Your Reference                 |       | MS4-36_0.<br>0-0.2 | MS4-37_0.<br>0-0.2 | MS4-38_0.<br>0-0.2 | MS4-39_0.<br>0-0.2 | DC1            |
| Sample Matrix                  |       | Soil               | Soil               | Soil               | Soil               | Soil           |
| Date Sampled<br>Depth          |       | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009      |
| Date Extracted (Mercury)       |       | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009     |
| Date Analysed (Mercury)        |       | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009     |
| Mercury                        | mg/kg | <0.05              | 3.2                | 2.2                | 2.5                | <0.05          |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-2  |
|                                |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference                 |       | DC2        | DC5        | DC6        | DC7        | DC8        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Mercury)        |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  |
|                                |       | 1          | 2          | 3          | 4          | 7          |
| Your Reference                 |       | DC9        | DC10       | QC13       | QC14       | DC13       |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 10/08/2009 |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Mercury)        |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | 2.6        | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71274-2  | SE71274-3  | SE71274-3  |
|                                |       | 8          | 0          | 1          |
| Your Reference                 |       | DC12       | DC3        | DC4        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Depth                          |       |            |            |            |
| Date Extracted (Mercury)       |       | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Date Analysed (Mercury)        |       | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      |




| BTEX in Water (µg/L)  |       |            |            |            |
|-----------------------|-------|------------|------------|------------|
| Our Reference:        | UNITS | SE71274-2  | SE71274-3  | SE71274-3  |
|                       |       | 6          | 2          | 3          |
| Your Reference        |       | TB9        | TB10       | TS5        |
| Sample Matrix         |       | Water      | Water      | Water      |
| Date Sampled          |       | 7/08/2009  | 10/08/2009 | 10/08/2009 |
| Depth                 |       |            |            |            |
| Date Extracted (BTEX) |       | 15/08/2009 | 15/08/2009 | 15/08/2009 |
| Date Analysed (BTEX)  |       | 15/08/2009 | 15/08/2009 | 15/08/2009 |
| Benzene               | μg/L  | <0.5       | <0.5       | 210        |
| Toluene               | μg/L  | <0.5       | <0.5       | 220        |
| Ethylbenzene          | μg/L  | <0.5       | <0.5       | 200        |
| Total Xylenes         | μg/L  | <1.5       | <1.5       | 230        |
| Surrogate             | %     | 64         | 71         | 72         |

| Our Reference:         UNITS         SE71274-3 4 4 WB8           Your Reference Sample Matrix         WB8         Water           Date Sampled Depth         10/08/2009         11/08/2009           Date Extracted         17/08/2009         17/08/2009           Date Analysed         17/08/2009         17/08/2009           HCB         μg/L         <0.2           alpha-BHC         μg/L         <0.2           gamma -BHC(lindane)         μg/L         <0.2           Heptachlor         μg/L         <0.2           Aldrin         μg/L         <0.2           Aldrin         μg/L         <0.2           beta-BHC         μg/L         <0.2           delta-BHC         μg/L         <0.2           delta-BHC         μg/L         <0.2           0,p-DDE         μg/L         <0.2           alpha-Endosulfan         μg/L         <0.2           trans-Chlordane         μg/L         <0.2           trans-Nonachlor         μg/L         <0.2           p.p-DDE         μg/L         <0.2           p.p-DDD         μg/L         <0.2           p.p-DDD         μg/L         <0.2           p.p-DDD         μg/L </th <th>OC Pesticides in Water</th> <th></th> <th></th> | OC Pesticides in Water                  |       |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|------------|
| Sample Matrix         Water           Date Sampled Depth         10/08/2009           Date Extracted         17/08/2009           Date Analysed         17/08/2009           HCB         µg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Our Reference:                          | UNITS |            |
| Date Sampled Depth         10/08/2009           Date Extracted         17/08/2009           Date Analysed         17/08/2009           HCB         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Your Reference                          |       | WB8        |
| Depth         17/08/2009           Date Extracted         17/08/2009           Date Analysed         17/08/2009           HCB         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Matrix                           |       | Water      |
| Date Extracted         17/08/2009           Date Analysed         17/08/2009           HCB         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date Sampled                            |       | 10/08/2009 |
| Date Analysed   17/08/2009     HCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Depth                                   |       |            |
| HCB         μg/L         <0.2           alpha-BHC         μg/L         <0.2           gamma-BHC(lindane)         μg/L         <0.2           Heptachlor         μg/L         <0.2           Aldrin         μg/L         <0.2           beta-BHC         μg/L         <0.2           delta-BHC         μg/L         <0.2           Heptachlor Epoxide         μg/L         <0.2           0,p-DDE         μg/L         <0.2           alpha-Endosulfan         μg/L         <0.2           trans-Chlordane         μg/L         <0.2           trans-Nonachlor         μg/L         <0.2           p,p-DDE         μg/L         <0.2           p,p-DDE         μg/L         <0.2           Endrin         μg/L         <0.2           Endrin         μg/L         <0.2           o,p-DDD         μg/L         <0.2           p,p-DDD         μg/L         <0.2           p,p-DDT         μg/L         <0.2           p,p-DDT         μg/L         <0.2           Endrin Aldehyde         μg/L         <0.2           Endrin Aldehyde         μg/L         <0.2           Methoxychlor                                                                                                     | Date Extracted                          |       | 17/08/2009 |
| alpha-BHC         µg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Analysed                           |       | 17/08/2009 |
| gamma -BHC(lindane)         μg/L         <0.2           Heptachlor         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | HCB                                     | μg/L  | <0.2       |
| Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | alpha-BHC                               | μg/L  | <0.2       |
| Aldrin         μg/L         < 0.2           beta-BHC         μg/L         < 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | gamma-BHC(lindane)                      | μg/L  | <0.2       |
| beta-BHC         μg/L         <0.2           delta-BHC         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heptachlor                              | μg/L  | <0.2       |
| delta-BHC         μg/L         <0.2           Heptachlor Epoxide         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Aldrin                                  | μg/L  | <0.2       |
| Heptachlor Epoxide         μg/L         <0.2           o,p-DDE         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | beta-BHC                                | μg/L  | <0.2       |
| o,p-DDE         μg/L         <0.2           alpha-Endosulfan         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | delta-BHC                               | μg/L  | <0.2       |
| alpha-Endosulfan         μg/L         <0.2           trans-Chlordane         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heptachlor Epoxide                      | μg/L  | <0.2       |
| trans-Chlordane       μg/L       <0.2         cis-Chlordane       μg/L       <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o,p-DDE                                 | μg/L  | <0.2       |
| cis-Chlordane         µg/L         <0.2           trans-Nonachlor         µg/L         <0.2           p,p-DDE         µg/L         <0.2           Dieldrin         µg/L         <0.2           Endrin         µg/L         <0.2           o,p-DDD         µg/L         <0.2           o,p-DDT         µg/L         <0.2           beta-Endosulfan         µg/L         <0.2           p,p-DDD         µg/L         <0.2           Endosulfan Sulphate         µg/L         <0.2           Endrin Aldehyde         µg/L         <0.2           Methoxychlor         µg/L         <0.2           Endrin Ketone         µg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | alpha-Endosulfan                        | μg/L  | <0.2       |
| trans-Nonachlor $\mu g/L$ $< 0.2$ $p,p$ -DDE $\mu g/L$ $< 0.2$ Dieldrin $\mu g/L$ $< 0.2$ Endrin $\mu g/L$ $< 0.2$ $o,p$ -DDD $\mu g/L$ $< 0.2$ $o,p$ -DDT $\mu g/L$ $< 0.2$ $p,p$ -DDD $\mu g/L$ $< 0.2$ $p,p$ -DDT $\mu g/L$ $< 0.2$ Endosulfan Sulphate $\mu g/L$ $< 0.2$ Endrin Aldehyde $\mu g/L$ $< 0.2$ Methoxychlor $\mu g/L$ $< 0.2$ Endrin Ketone $\mu g/L$ $< 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-Chlordane                         | μg/L  | <0.2       |
| p,p-DDE         μg/L         <0.2           Dieldrin         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cis-Chlordane                           | μg/L  | <0.2       |
| Dieldrin         μg/L         <0.2           Endrin         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trans-Nonachlor                         | μg/L  | <0.2       |
| Endrin         μg/L         <0.2           o,p-DDD         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | p,p-DDE                                 | μg/L  | <0.2       |
| o,p-DDD         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dieldrin                                | μg/L  | <0.2       |
| o,p-DDT       μg/L       <0.2         beta-Endosulfan       μg/L       <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Endrin                                  | μg/L  | <0.2       |
| beta-Endosulfan         μg/L         <0.2           p,p-DDD         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o,p-DDD                                 | μg/L  | <0.2       |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o,p-DDT                                 | μg/L  | <0.2       |
| p,p-DDT         μg/L         <0.2           Endosulfan Sulphate         μg/L         <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | beta-Endosulfan                         | μg/L  | <0.2       |
| Endosulfan Sulphate μg/L <0.2  Endrin Aldehyde μg/L <0.2  Methoxychlor μg/L <0.2  Endrin Ketone μg/L <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p,p-DDD                                 | μg/L  | <0.2       |
| $ \begin{array}{cccc} Endrin  Aldehyde & \mu g/L & < 0.2 \\ Methoxychlor & \mu g/L & < 0.2 \\ Endrin  Ketone & \mu g/L & < 0.2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p,p-DDT                                 | μg/L  | <0.2       |
| Methoxychlor μg/L <0.2 Endrin Ketone μg/L <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Endosulfan Sulphate                     | μg/L  | <0.2       |
| Endrin Ketone μg/L <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Endrin Aldehyde                         | μg/L  | <0.2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methoxychlor                            | μg/L  | <0.2       |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate % 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Endrin Ketone                           | μg/L  | <0.2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 82         |



| OP Pesticides in Water by GCMS |       |            |
|--------------------------------|-------|------------|
| Our Reference:                 | UNITS | SE71274-3  |
|                                |       | 4          |
| Your Reference                 |       | WB8        |
| Sample Matrix                  |       | Water      |
| Date Sampled                   |       | 10/08/2009 |
| Depth                          |       |            |
| Date Extracted                 |       | 14/08//09  |
| Date Analysed                  |       | 14/08/2009 |
| Dichlorvos                     | μg/L  | <1         |
| Dimethoate                     | μg/L  | <1         |
| Diazinon                       | μg/L  | <0.5       |
| Fenitrothion                   | μg/L  | <0.2       |
| Malathion                      | μg/L  | <0.20      |
| Chlorpyrifos-ethyl             | μg/L  | <0.2       |
| Parathion-ethyl                | μg/L  | <0.2       |
| Bromofos-ethyl                 | μg/L  | <0.2       |
| Methidathion                   | μg/L  | <0.5       |
| Ethion                         | μg/L  | <0.2       |
| Azinphos-methyl                | μg/L  | <0.20      |
| 2-fluorobiphenyl (Surr)        | %     | 110        |
| d14-p-Terphenyl (Surr)         | %     | 113        |



| Trace HM (ICP-MS)-Dissolved   |       |            |            |
|-------------------------------|-------|------------|------------|
| Our Reference:                | UNITS | SE71274-2  | SE71274-3  |
|                               |       | 5          | 4          |
| Your Reference                |       | WB7        | WB8        |
| Sample Matrix                 |       | Water      | Water      |
| Date Sampled                  |       | 7/08/2009  | 10/08/2009 |
| Depth                         |       |            |            |
| Date Extracted (Metals-ICPMS) |       | 12/08/2009 | 12/08/2009 |
| Date Analysed (Metals-ICPMS)  |       | 12/08/2009 | 12/08/2009 |
| Arsenic                       | μg/L  | <1         | <1         |
| Cadmium                       | μg/L  | <0.1       | <0.1       |
| Chromium                      | μg/L  | <1         | <1         |
| Copper                        | μg/L  | <1         | <1         |
| Lead                          | μg/L  | <1         | <1         |
| Nickel                        | μg/L  | <1         | <1         |
| Zinc                          | μg/L  | 4          | 3          |

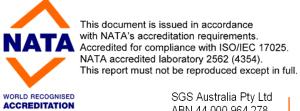
| Mercury Cold Vapor/Hg Analyser |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference:                 | UNITS | SE71274-2  | SE71274-3  |
|                                |       | 5          | 4          |
| Your Reference                 |       | WB7        | WB8        |
| Sample Matrix                  |       | Water      | Water      |
| Date Sampled                   |       | 7/08/2009  | 10/08/2009 |
| Depth                          |       |            |            |
| Date Extracted (Mercury)       |       | 14/08/09A  | 14/08/09A  |
| Date Analysed (Mercury)        |       | 14/08/2009 | 14/08/2009 |
| Mercury at MDL - Dissolved     | mg/L  | <0.0001    | <0.0001    |

| Moisture                 |       |                    |                    |                    |                    |                    |
|--------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:           | UNITS | SE71274-1          | SE71274-2          | SE71274-3          | SE71274-4          | SE71274-5          |
| Your Reference           |       | MS4-29_0.<br>0-0.2 | MS4-30_0.<br>0-0.2 | MS4-30_0.<br>5-0.6 | MS4-31_0.<br>0-0.2 | MS4-32_0.<br>0-0.2 |
| Sample Matrix            |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled Depth       |       | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          |
| Date Analysed (moisture) |       | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         |
| Moisture                 | %     | 14                 | 14                 | 12                 | 13                 | 8                  |

| Moisture<br>Our Reference: | UNITS | SE71274-6          | SE71274-7          | SE71274-8          | SE71274-9          | SE71274-1<br>0     |
|----------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Your Reference             |       | MS4-33_0.<br>0-0.2 | MS4-33_0.<br>5-0.6 | MS4-34_0.<br>0-0.2 | MS4-34_0.<br>5-0.6 | MS4-35_0.<br>0-0.2 |
| Sample Matrix              |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled<br>Depth      |       | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          | 7/08/2009          |
| Date Analysed (moisture)   |       | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         | 13/08/2009         |
| Moisture                   | %     | 11                 | 10                 | 13                 | 9                  | 8                  |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS4-36_0.  | MS4-37_0.  | MS4-38_0.  | MS4-39_0.  | DC1        |
|                          |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |            |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Moisture                 | %     | 7          | 7          | 7          | 9          | 6          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-1  | SE71274-2  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | DC2        | DC5        | DC6        | DC7        | DC8        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Moisture                 | %     | 20         | 39         | 3          | 7          | 4          |




This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  | SE71274-2  |
|                          |       | 1          | 2          | 3          | 4          | 7          |
| Your Reference           |       | DC9        | DC10       | QC13       | QC14       | DC13       |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 7/08/2009  | 7/08/2009  | 7/08/2009  | 7/08/2009  | 10/08/2009 |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Moisture                 | %     | 6          | 9          | 11         | 3          | 4          |

| Moisture                 |       |            |            |            |
|--------------------------|-------|------------|------------|------------|
| Our Reference:           | UNITS | SE71274-2  | SE71274-3  | SE71274-3  |
|                          |       | 8          | 0          | 1          |
| Your Reference           |       | DC12       | DC3        | DC4        |
| Sample Matrix            |       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Depth                    |       |            |            |            |
| Date Analysed (moisture) |       | 13/08/2009 | 13/08/2009 | 13/08/2009 |
| Moisture                 | %     | 7          | 7          | 4          |



| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEO-005   | OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082. |
| AN420     | Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates, and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD/FID technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                           |
| AN101     | pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).                                       |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                    |
| SEM-005   | Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.                                                                                                                                                                                                              |
| SEO-018   | BTEX / C6-C9 Hydrocarbons - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.                                                                             |
| AN318     | Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.                                                                                                                                                                                                                                                |
| AN002     | Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 $\pm$ 5°C.                                                                                                                        |



| QUALITY CONTROL       | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate                   | Spike Sm#      | Matrix Spike %<br>Recovery |
|-----------------------|-------|-----|---------|--------------|------------------|-----------------------------|----------------|----------------------------|
| OC Pesticides in Soil |       |     |         |              |                  | Base + Duplicate + %RPD     |                | Duplicate + %RPD           |
| Date Extracted        |       |     |         | 14/08/0      | SE71274-3<br>0   | 14/08/2009   <br>14/08/2009 | SE71274-1<br>6 | 14/08/09                   |
| Date Analysed         |       |     |         | 14/08/0<br>9 | SE71274-3<br>0   | 14/08/2009   <br>14/08/2009 | SE71274-1<br>6 | 14/08/09                   |
| HCB                   | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| alpha-BHC             | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| gamma-BHC (Lindane)   | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| Heptachlor            | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | SE71274-1<br>6 | 124%                       |
| Aldrin                | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | SE71274-1<br>6 | 130%                       |
| beta-BHC              | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| delta-BHC             | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | SE71274-1<br>6 | 122%                       |
| Heptachlor Epoxide    | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| o,p-DDE               | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| alpha-Endosulfan      | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| trans-Chlordane       | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| cis-Chlordane         | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| trans-Nonachlor       | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| p,p-DDE               | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| Dieldrin              | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | SE71274-1<br>6 | 127%                       |
| Endrin                | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | SE71274-1<br>6 | 122%                       |
| o,p-DDD               | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| o,p-DDT               | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| beta-Endosulfan       | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| p,p-DDD               | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | [NR]           | [NR]                       |
| ρ,ρ-DDT               | mg/kg | 0.1 | SEO-005 | <0.1         | SE71274-3<br>0   | <0.1    <0.1                | SE71274-1<br>6 | 130%                       |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                          | UNITS | LOR | METHOD  | Blank | Duplicate<br>Sm# | Duplicate                  | Spike Sm#      | Matrix Spike %<br>Recovery |
|------------------------------------------|-------|-----|---------|-------|------------------|----------------------------|----------------|----------------------------|
| OC Pesticides in Soil                    |       |     |         |       |                  | Base + Duplicate +<br>%RPD |                | Duplicate + %RPD           |
| Endosulfan Sulphate                      | mg/kg | 0.1 | SEO-005 | <0.1  | SE71274-3<br>0   | <0.1    <0.1               | [NR]           | [NR]                       |
| Endrin Aldehyde                          | mg/kg | 0.1 | SEO-005 | <0.1  | SE71274-3<br>0   | <0.1    <0.1               | [NR]           | [NR]                       |
| Methoxychlor                             | mg/kg | 0.1 | SEO-005 | <0.1  | SE71274-3<br>0   | <0.1    <0.1               | [NR]           | [NR]                       |
| Endrin Ketone                            | mg/kg | 0.1 | SEO-005 | <0.1  | SE71274-3<br>0   | <0.1    <0.1               | [NR]           | [NR]                       |
| 2,4,5,6-Tetrachloro-m-xy lene (Surrogate | %     | 0   | SEO-005 | 107   | SE71274-3<br>0   | 103    104    RPD: 1       | SE71274-1<br>6 | 118%                       |

| QUALITY CONTROL                  | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate                   | Spike Sm#      | Matrix Spike %<br>Recovery |
|----------------------------------|-------|-----|--------|--------------|------------------|-----------------------------|----------------|----------------------------|
| OP Pesticides in Soil by<br>GCMS |       |     |        |              |                  | Base + Duplicate +<br>%RPD  |                | Duplicate + %RPD           |
| Date Extracted                   |       |     |        | 14/08/0      | SE71274-3<br>0   | 14/08/2009   <br>14/08/2009 | SE71274-1<br>7 | 14/08/09                   |
| Date Analysed                    |       |     |        | 14/08/0<br>9 | SE71274-3<br>0   | 14/08/2009   <br>14/08/2009 | SE71274-1<br>7 | 14/08/09                   |
| Dichlorvos                       | mg/kg | 1   | AN420  | <1           | SE71274-3<br>0   | <1    <1                    | SE71274-1<br>7 | 80%                        |
| Dimethoate                       | mg/kg | 1   | AN420  | <1           | SE71274-3<br>0   | <1    <1                    | [NR]           | [NR]                       |
| Diazinon                         | mg/kg | 0.5 | AN420  | <0.5         | SE71274-3<br>0   | <0.5    <0.5                | SE71274-1<br>7 | 88%                        |
| Fenitrothion                     | mg/kg | 0.2 | AN420  | <0.2         | SE71274-3<br>0   | <0.2    <0.2                | [NR]           | [NR]                       |
| Malathion                        | mg/kg | 0.2 | AN420  | <0.20        | SE71274-3<br>0   | <0.20    <0.20              | [NR]           | [NR]                       |
| Chlorpyrifos-ethyl               | mg/kg | 0.2 | AN420  | <0.2         | SE71274-3<br>0   | <0.2    <0.2                | SE71274-1<br>7 | 86%                        |
| Parathion-ethyl                  | mg/kg | 0.2 | AN420  | <0.2         | SE71274-3<br>0   | <0.2    <0.2                | [NR]           | [NR]                       |
| Bromofos-ethyl                   | mg/kg | 0.2 | AN420  | <0.2         | SE71274-3<br>0   | <0.2    <0.2                | [NR]           | [NR]                       |
| Methidathion                     | mg/kg | 0.5 | AN420  | <0.5         | SE71274-3<br>0   | <0.5    <0.5                | [NR]           | [NR]                       |
| Ethion                           | mg/kg | 0.2 | AN420  | <0.2         | SE71274-3<br>0   | <0.2    <0.2                | SE71274-1<br>7 | 107%                       |
| Azinphos-methyl                  | mg/kg | 0.2 | AN420  | <0.20        | SE71274-3<br>0   | <0.20    <0.20              | SE71274-1<br>7 | 100%                       |
| 2-fluorobiphenyl (Surr)          | %     | 0   | AN420  | 108          | SE71274-3<br>0   | 104    108    RPD: 4        | SE71274-1<br>7 | 120%                       |
| d14-p-Terphenyl (Surr)           | %     | 0   | AN420  | 108          | SE71274-3<br>0   | 104    108    RPD: 4        | SE71274-1<br>7 | 116%                       |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                       | UNITS    | LOR | METHOD | Blank |
|---------------------------------------|----------|-----|--------|-------|
| Inorganics                            |          |     |        |       |
| Date Extracted- (pH 1:5 soil: Water)  |          |     |        | [NT]  |
| Date Analysed (pH 1:5<br>Soil: Water) |          |     |        | [NT]  |
| pH 1:5 soil:water 1:5 soil:water      | pH Units | 0   | AN101  | [NT]  |
| Date Extracted (pH)                   |          |     |        | [NT]  |
| Date Analysed (pH)                    |          |     |        | [NT]  |
| рН                                    | pH Units | 0   | AN101  | [NT]  |

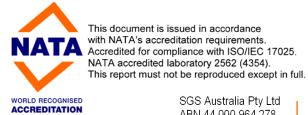
| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |                |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 13/08/2<br>009 | SE71274-1        | 13/08/2009   <br>13/08/2009 | SE71274-2 | 13/08/2009                 |
| Date Analysed (Metals)    |       |     |         | 13/08/2<br>009 | SE71274-1        | 13/08/2009   <br>13/08/2009 | SE71274-2 | 13/08/2009                 |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3             | SE71274-1        | 9    11    RPD: 20          | SE71274-2 | 90%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3           | SE71274-1        | 0.6    0.6    RPD: 0        | SE71274-2 | 84%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3           | SE71274-1        | 19    20    RPD: 5          | SE71274-2 | 87%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE71274-1        | 13    12    RPD: 8          | SE71274-2 | 91%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1             | SE71274-1        | 120    120    RPD: 0        | SE71274-2 | 79%                        |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE71274-1        | 12    13    RPD: 8          | SE71274-2 | 83%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5           | SE71274-1        | 280    260    RPD: 7        | SE71274-2 | 118%                       |

| QUALITY CONTROL       | UNITS | LOR  | METHOD  | Blank   | Duplicate | Duplicate          | Spike Sm# | Matrix Spike %   |
|-----------------------|-------|------|---------|---------|-----------|--------------------|-----------|------------------|
|                       |       |      |         |         | Sm#       |                    |           | Recovery         |
| Mercury Cold Vapor/Hg |       |      |         |         |           | Base + Duplicate + |           | Duplicate + %RPD |
| Analyser              |       |      |         |         |           | %RPD               |           |                  |
| Date Extracted        |       |      |         | 13/08/0 | SE71274-1 | 13/08/2009         | SE71274-2 | 13/08/09         |
| (Mercury)             |       |      |         | 9       |           | 13/08/2009         |           |                  |
| Date Analysed         |       |      |         | 13/08/0 | SE71274-1 | 13/08/2009         | SE71274-2 | 13/08/09         |
| (Mercury)             |       |      |         | 9       |           | 13/08/2009         |           |                  |
| Mercury               | mg/kg | 0.05 | SEM-005 | <0.05   | SE71274-1 | <0.05    <0.05     | SE71274-2 | 113%             |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| QUALITY CONTROL  BTEX in Water (µg/L) | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|---------------------------------------|-------|-----|---------|--------------|------------------|-------------------------------------|-----------|------------------------------------------------|
| Date Extracted (BTEX)                 |       |     |         | 15/08/0<br>9 | [NT]             | [NT]                                | LCS       | 15/08/09                                       |
| Date Analysed (BTEX)                  |       |     |         | 15/08/0<br>9 | [NT]             | [NT]                                | LCS       | 15/08/09                                       |
| Benzene                               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 96%                                            |
| Toluene                               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 98%                                            |
| Ethylbenzene                          | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 97%                                            |
| Total Xylenes                         | μg/L  | 1.5 | SEO-018 | <1.5         | [NT]             | [NT]                                | LCS       | 97%                                            |
| Surrogate                             | %     | 0   | SEO-018 | 100          | [NT]             | [NT]                                | LCS       | 123%                                           |


| QUALITY CONTROL        | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------|-------|-----|---------|--------------|------------------|-------------------------|-----------|----------------------------|
| OC Pesticides in Water |       |     |         |              |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted         |       |     |         | 17/08/0      | [NT]             | [NT]                    | LCS       | 17/08/09                   |
| Date Analysed          |       |     |         | 17/08/0<br>9 | [NT]             | [NT]                    | LCS       | 17/08/09                   |
| HCB                    | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| alpha-BHC              | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| gamma-BHC(lindane)     | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Heptachlor             | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 107%                       |
| Aldrin                 | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 114%                       |
| beta-BHC               | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| delta-BHC              | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 104%                       |
| Heptachlor Epoxide     | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| o,p-DDE                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| alpha-Endosulfan       | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| trans-Chlordane        | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| cis-Chlordane          | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| trans-Nonachlor        | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| p,p-DDE                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Dieldrin               | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 107%                       |
| Endrin                 | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 110%                       |
| o,p-DDD                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| o,p-DDT                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| beta-Endosulfan        | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| p,p-DDD                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| p,p-DDT                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 112%                       |
| Endosulfan Sulphate    | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Endrin Aldehyde        | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                          | UNITS | LOR | METHOD  | Blank | Duplicate | Duplicate               | Spike Sm# | Matrix Spike %            |
|------------------------------------------|-------|-----|---------|-------|-----------|-------------------------|-----------|---------------------------|
| OC Pesticides in Water                   |       |     |         |       | Sm#       | Base + Duplicate + %RPD |           | Recovery Duplicate + %RPD |
| Methoxychlor                             | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]      | [NT]                    | [NR]      | [NR]                      |
| Endrin Ketone                            | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]      | [NT]                    | [NR]      | [NR]                      |
| 2,4,5,6-Tetrachloro-m-xy lene (Surrogate | %     | 0   | SEO-005 | 95    | [NT]      | [NT]                    | LCS       | 103%                      |

| QUALITY CONTROL                   | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|-----|--------|--------------|------------------|----------------------------|-----------|----------------------------|
| OP Pesticides in Water<br>by GCMS |       |     |        |              |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| Date Extracted                    |       |     |        | 14/08/0      | [NT]             | [NT]                       | LCS       | 14/08/09                   |
| Date Analysed                     |       |     |        | 14/08/0<br>9 | [NT]             | [NT]                       | LCS       | 14/08/09                   |
| Dichlorvos                        | μg/L  | 1   | AN420  | <1           | [NT]             | [NT]                       | LCS       | 87%                        |
| Dimethoate                        | μg/L  | 1   | AN420  | <1           | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Diazinon                          | μg/L  | 0.5 | AN420  | <0.5         | [NT]             | [NT]                       | LCS       | 104%                       |
| Fenitrothion                      | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Malathion                         | μg/L  | 0.2 | AN420  | <0.20        | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Chlorpyrifos-ethyl                | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | LCS       | 128%                       |
| Parathion-ethyl                   | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Bromofos-ethyl                    | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Methidathion                      | μg/L  | 0.5 | AN420  | <0.5         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Ethion                            | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | LCS       | 105%                       |
| Azinphos-methyl                   | μg/L  | 0.2 | AN420  | <0.20        | [NT]             | [NT]                       | LCS       | 76%                        |
| 2-fluorobiphenyl (Surr)           | %     | 0   | AN420  | 80           | [NT]             | [NT]                       | LCS       | 73%                        |
| d14-p-Terphenyl (Surr)            | %     | 0   | AN420  | 80           | [NT]             | [NT]                       | LCS       | 80%                        |



| QUALITY CONTROL                 | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------------|-------|-----|--------|--------------|------------------|-------------------------|-----------|----------------------------|
| Trace HM (ICP-MS)-Dissolved     |       |     |        |              |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted (Metals-ICPMS)   |       |     |        | 12/08/0<br>9 | [NT]             | [NT]                    | LCS       | 12/08/09                   |
| Date Analysed<br>(Metals-ICPMS) |       |     |        | 12/08/0<br>9 | [NT]             | [NT]                    | LCS       | 12/08/09                   |
| Arsenic                         | μg/L  | 1   | AN318  | <1           | [NT]             | [NT]                    | LCS       | 93%                        |
| Cadmium                         | μg/L  | 0.1 | AN318  | <0.1         | [NT]             | [NT]                    | LCS       | 102%                       |
| Chromium                        | μg/L  | 1   | AN318  | <1           | [NT]             | [NT]                    | LCS       | 100%                       |
| Copper                          | μg/L  | 1   | AN318  | <1           | [NT]             | [NT]                    | LCS       | 104%                       |
| Lead                            | μg/L  | 1   | AN318  | <1           | [NT]             | [NT]                    | LCS       | 105%                       |
| Nickel                          | μg/L  | 1   | AN318  | <1           | [NT]             | [NT]                    | LCS       | 101%                       |
| Zinc                            | μg/L  | 1   | AN318  | <1           | [NT]             | [NT]                    | LCS       | 109%                       |

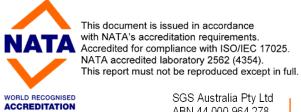
| QUALITY CONTROL                   | UNITS | LOR    | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|--------|---------|--------------|------------------|----------------------------|-----------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |        |         |              |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       |        |         | 14/08/0<br>9 | [NT]             | [NT]                       | LCS       | 14/08/09                   |
| Date Analysed<br>(Mercury)        |       |        |         | 14/08/0<br>9 | [NT]             | [NT]                       | LCS       | 14/08/09                   |
| Mercury at MDL -<br>Dissolved     | mg/L  | 0.0001 | SEM-005 | <0.000<br>1  | [NT]             | [NT]                       | LCS       | 105%                       |

| QUALITY CONTROL          | UNITS | LOR | METHOD | Blank |
|--------------------------|-------|-----|--------|-------|
| Moisture                 |       |     |        |       |
| Date Analysed (moisture) |       |     |        | [NT]  |
| Moisture                 | %     | 1   | AN002  | <1    |

| QUALITY CONTROL<br>OC Pesticides in Soil | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted                           |       | SE71274-1<br>5 | 14/08/2009   <br>14/08/2009       |
| Date Analysed                            |       | SE71274-1<br>5 | 14/08/2009   <br>14/08/2009       |
| НСВ                                      | mg/kg | SE71274-1<br>5 | <0.1    <0.1                      |
| alpha-BHC                                | mg/kg | SE71274-1<br>5 | <0.1    <0.1                      |
| gamma-BHC (Lindane)                      | mg/kg | SE71274-1<br>5 | <0.1    <0.1                      |



This document is issued in accordance with NATA's accreditation requirements. NATA with NATA's accreditation requirements.


Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| PROJECT.                                   | EC00233AA |                |                                   |
|--------------------------------------------|-----------|----------------|-----------------------------------|
| QUALITY CONTROL<br>OC Pesticides in Soil   | UNITS     | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
| Heptachlor                                 | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Aldrin                                     | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| beta-BHC                                   | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| delta-BHC                                  | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Heptachlor Epoxide                         | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| o,p-DDE                                    | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| alpha-Endosulfan                           | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| trans-Chlordane                            | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| cis-Chlordane                              | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| trans-Nonachlor                            | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| p,p-DDE                                    | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Dieldrin                                   | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Endrin                                     | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| o,p-DDD                                    | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| o,p-DDT                                    | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| beta-Endosulfan                            | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| p,p-DDD                                    | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| p,p-DDT                                    | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Endosulfan Sulphate                        | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Endrin Aldehyde                            | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Methoxychlor                               | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| Endrin Ketone                              | mg/kg     | SE71274-1<br>5 | <0.1    <0.1                      |
| 2,4,5,6-Tetrachloro-m-xyle<br>e (Surrogate | en %      | SE71274-1<br>5 | 109    110    RPD: 1              |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| QUALITY CONTROL                  | UNITS | Dup. Sm#       | Duplicate                   |
|----------------------------------|-------|----------------|-----------------------------|
| OP Pesticides in Soil by<br>GCMS |       | ·              | Base + Duplicate +<br>%RPD  |
| Date Extracted                   |       | SE71274-1<br>5 | 14/08/2009   <br>14/08/2009 |
| Date Analysed                    |       | SE71274-1<br>5 | 14/08/2009   <br>14/08/2009 |
| Dichlorvos                       | mg/kg | SE71274-1<br>5 | <1    <1                    |
| Dimethoate                       | mg/kg | SE71274-1<br>5 | <1    <1                    |
| Diazinon                         | mg/kg | SE71274-1<br>5 | <0.5    <0.5                |
| Fenitrothion                     | mg/kg | SE71274-1<br>5 | <0.2    <0.2                |
| Malathion                        | mg/kg | SE71274-1<br>5 | <0.20    <0.20              |
| Chlorpyrifos-ethyl               | mg/kg | SE71274-1<br>5 | <0.2    <0.2                |
| Parathion-ethyl                  | mg/kg | SE71274-1<br>5 | <0.2    <0.2                |
| Bromofos-ethyl                   | mg/kg | SE71274-1<br>5 | <0.2    <0.2                |
| Methidathion                     | mg/kg | SE71274-1<br>5 | <0.5    <0.5                |
| Ethion                           | mg/kg | SE71274-1<br>5 | <0.2    <0.2                |
| Azinphos-methyl                  | mg/kg | SE71274-1<br>5 | <0.20    <0.20              |
| 2-fluorobiphenyl (Surr)          | %     | SE71274-1<br>5 | 108    116    RPD: 7        |
| d14-p-Terphenyl (Surr)           | %     | SE71274-1<br>5 | 120    104    RPD: 14       |



| QUALITY CONTROL<br>Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD |  |
|----------------------------------------------|-------|----------------|-------------------------------------|--|
| Date Extracted (Metals)                      |       | SE71274-1      | 13/08/2009   <br>13/08/2009         |  |
| Date Analysed (Metals)                       |       | SE71274-1      | 13/08/2009   <br>13/08/2009         |  |
| Arsenic                                      | mg/kg | SE71274-1<br>1 | 6    6    RPD: 0                    |  |
| Cadmium                                      | mg/kg | SE71274-1<br>1 | <0.3    <0.3                        |  |
| Chromium                                     | mg/kg | SE71274-1<br>1 | 14    14    RPD: 0                  |  |
| Copper                                       | mg/kg | SE71274-1<br>1 | 11    10    RPD: 10                 |  |
| Lead                                         | mg/kg | SE71274-1      | 26    24    RPD: 8                  |  |
| Nickel                                       | mg/kg | SE71274-1      | 18    18    RPD: 0                  |  |
| Zinc                                         | mg/kg | SE71274-1<br>1 | 51    51    RPD: 0                  |  |

| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   | Spike Sm#      | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|----------------|-----------------------------|----------------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |                | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       | SE71274-1      | 13/08/2009   <br>13/08/2009 | SE71274-2<br>2 | 13/08/09                   |
| Date Analysed (Mercury)           |       | SE71274-1<br>1 | 13/08/2009   <br>13/08/2009 | SE71274-2<br>2 | 13/08/09                   |
| Mercury                           | mg/kg | SE71274-1<br>1 | <0.05    <0.05              | SE71274-2<br>2 | 119%                       |

| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE71274-2<br>1 | 13/08/2009   <br>13/08/2009 |
| Date Analysed (Mercury)           |       | SE71274-2<br>1 | 13/08/2009   <br>13/08/2009 |
| Mercury                           | mg/kg | SE71274-2<br>1 | <0.05    <0.05              |



### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

## **Report Comments**

pH: Insufficient time was allowed to analyse samples within holding time Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced: 15/08/09 NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

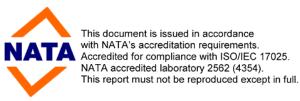
# **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

# **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





# ANALYTICAL REPORT

14 August 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 **CANBERRA** ACT 2602

**Attention: Chris Gunton** 

Your Reference: EC00233AA

Our Reference: SE71199 Samples: 44 Soils, 2 Waters

> Received: 7/8/09

**Preliminary Report Sent:** Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

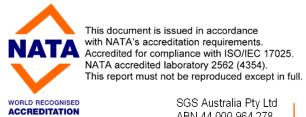
**Client Services:** Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: **Edward Ibrahim** Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

Nick Salarmis **Inorganics Signatory** 


**Organics Signatory** 

Huong Erawford

Metals Signatory

| Inorganics                           |          |            |            |            |            |            |
|--------------------------------------|----------|------------|------------|------------|------------|------------|
| Our Reference:                       | UNITS    | SE71199-1  | SE71199-7  | SE71199-1  | SE71199-1  | SE71199-1  |
|                                      |          |            |            | 3          | 7          | 9          |
| Your Reference                       |          | MS4-1_0.0- | MS4-4_0.0- | MS4-7_0.0- | MS4-11_0.  | MS4-12_0.  |
|                                      |          | 0.2        | 0.2        | 0.2        | 0-0.2      | 0-0.2      |
| Sample Matrix                        |          | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                         |          | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                                |          |            |            |            |            |            |
| Date Extracted- (pH 1:5 soil: Water) |          | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (pH 1:5 Soil: Water)   |          | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 7.1        | 7.3        | 7.9        | 7.6        | 7.1        |

| Inorganics                           |          |            |            |            |            |            |
|--------------------------------------|----------|------------|------------|------------|------------|------------|
| Our Reference:                       | UNITS    | SE71199-2  | SE71199-2  | SE71199-3  | SE71199-3  | SE71199-4  |
|                                      |          | 3          | 7          | 1          | 9          | 5          |
| Your Reference                       |          | MS4-14_0.  | MS4-18_0.  | MS4-21_0.  | MS4-26A_0  | WB6        |
|                                      |          | 0-0.2      | 0-0.2      | 0-0.2      | .0-0.2     |            |
| Sample Matrix                        |          | Soil       | Soil       | Soil       | Soil       | Water      |
| Date Sampled                         |          | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                                |          |            |            |            |            |            |
| Date Extracted- (pH 1:5 soil: Water) |          | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | [NA]       |
| Date Analysed (pH 1:5 Soil: Water)   |          | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | [NA]       |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 7.2        | 7.2        | 7.6        | 8.9        | [NA]       |
| Date Extracted (pH)                  |          | [NA]       | [NA]       | [NA]       | [NA]       | 10/08/2009 |
| Date Analysed (pH)                   |          | [NA]       | [NA]       | [NA]       | [NA]       | 10/08/2009 |
| рН                                   | pH Units | [NA]       | [NA]       | [NA]       | [NA]       | 6.4        |



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71199-1  | SE71199-2  | SE71199-3  | SE71199-4  | SE71199-5  |
| Your Reference            |       | MS4-1_0.0- | MS4-1_0.5- | MS4-2_0.0- | MS4-2_0.5- | MS4-3_0.0- |
|                           |       | 0.2        | 0.6        | 0.2        | 0.6        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Metals)    |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Arsenic                   | mg/kg | 6          | 6          | 6          | 9          | 4          |
| Cadmium                   | mg/kg | 0.3        | <0.3       | 0.4        | <0.3       | <0.3       |
| Chromium                  | mg/kg | 21         | 25         | 22         | 27         | 17         |
| Copper                    | mg/kg | 11         | 13         | 12         | 15         | 10         |
| Lead                      | mg/kg | 63         | 41         | 65         | 29         | 45         |
| Nickel                    | mg/kg | 16         | 16         | 19         | 18         | 12         |
| Zinc                      | mg/kg | 130        | 76         | 140        | 53         | 96         |

| Metals in Soil by ICP-OES |       |                   |                   |                   |                   |                   |
|---------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:            | UNITS | SE71199-6         | SE71199-7         | SE71199-8         | SE71199-9         | SE71199-1<br>0    |
| Your Reference            |       | MS4-3_0.5-<br>0.6 | MS4-4_0.0-<br>0.2 | MS4-4_0.5-<br>0.6 | MS4-5_0.0-<br>0.2 | MS4-5_0.5-<br>0.6 |
| Sample Matrix             |       | Soil              | Soil              | Soil              | Soil              | Soil              |
| Date Sampled Depth        |       | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         |
| Date Extracted (Metals)   |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Date Analysed (Metals)    |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Arsenic                   | mg/kg | 5                 | 5                 | 5                 | 7                 | 7                 |
| Cadmium                   | mg/kg | 0.3               | 0.5               | 0.5               | 0.4               | 0.4               |
| Chromium                  | mg/kg | 20                | 20                | 21                | 20                | 19                |
| Copper                    | mg/kg | 13                | 14                | 14                | 15                | 16                |
| Lead                      | mg/kg | 48                | 47                | 45                | 58                | 53                |
| Nickel                    | mg/kg | 15                | 14                | 16                | 20                | 21                |
| Zinc                      | mg/kg | 110               | 120               | 110               | 180               | 160               |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  |
|                           |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |       | MS4-6_0.0- | MS4-6_0.5- | MS4-7_0.0- | MS4-8_0.0- | MS4-9_0.0- |
|                           |       | 0.2        | 0.6        | 0.2        | 0.2        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Metals)    |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Arsenic                   | mg/kg | 9          | 8          | 26         | 26         | 33         |
| Cadmium                   | mg/kg | 0.5        | 0.4        | 7.4        | 7.6        | 7.2        |
| Chromium                  | mg/kg | 24         | 22         | 18         | 18         | 21         |
| Copper                    | mg/kg | 15         | 15         | 120        | 130        | 52         |
| Lead                      | mg/kg | 85         | 74         | 6,300      | 7,400      | 1,300      |
| Nickel                    | mg/kg | 22         | 21         | 19         | 17         | 20         |
| Zinc                      | mg/kg | 190        | 170        | 11,000     | 8,900      | 2,400      |

| Metals in Soil by ICP-OES |       |                    |                    |                    |                    |                    |
|---------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:            | UNITS | SE71199-1          | SE71199-1          | SE71199-1<br>8     | SE71199-1          | SE71199-2<br>0     |
| Your Reference            |       | MS4-10_0.<br>0-0.2 | MS4-11_0.<br>0-0.2 | MS4-11_0.<br>5-0.6 | MS4-12_0.<br>0-0.2 | MS4-12_0.<br>5-0.6 |
| Sample Matrix             |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled Depth        |       | 6/08/2009          | 6/08/2009          | 6/08/2009          | 6/08/2009          | 6/08/2009          |
| Date Extracted (Metals)   |       | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         |
| Date Analysed (Metals)    |       | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         |
| Arsenic                   | mg/kg | 8                  | 9                  | 6                  | 8                  | 8                  |
| Cadmium                   | mg/kg | 0.4                | 0.4                | <0.3               | 0.5                | 0.4                |
| Chromium                  | mg/kg | 24                 | 22                 | 18                 | 21                 | 24                 |
| Copper                    | mg/kg | 16                 | 16                 | 15                 | 17                 | 17                 |
| Lead                      | mg/kg | 130                | 69                 | 43                 | 490                | 390                |
| Nickel                    | mg/kg | 21                 | 21                 | 16                 | 15                 | 18                 |
| Zinc                      | mg/kg | 200                | 170                | 130                | 410                | 360                |



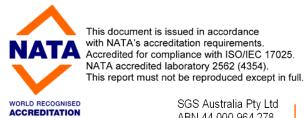
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  |
|                           |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |       | MS4-13_0.  | MS4-13_0.  | MS4-14_0.  | MS4-15_0.  | MS4-16_0.  |
|                           |       | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Metals)    |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Arsenic                   | mg/kg | 8          | 8          | 55         | 13         | 9          |
| Cadmium                   | mg/kg | 0.4        | 0.4        | 48         | 3.5        | 0.5        |
| Chromium                  | mg/kg | 19         | 20         | 12         | 18         | 20         |
| Copper                    | mg/kg | 15         | 15         | 130        | 28         | 12         |
| Lead                      | mg/kg | 440        | 420        | 14,000     | 1,100      | 38         |
| Nickel                    | mg/kg | 14         | 15         | 10         | 14         | 18         |
| Zinc                      | mg/kg | 410        | 410        | 20,000     | 1,200      | 210        |

| Metals in Soil by ICP-OES |       |                    |                    |                    |                    |                    |
|---------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:            | UNITS | SE71199-2          | SE71199-2          | SE71199-2<br>8     | SE71199-2          | SE71199-3<br>0     |
| Your Reference            |       | MS4-17_0.<br>0-0.2 | MS4-18_0.<br>0-0.2 | MS4-18_0.<br>5-0.6 | MS4-19_0.<br>0-0.2 | MS4-20_0.<br>0-0.2 |
| Sample Matrix             |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled Depth        |       | 6/08/2009          | 6/08/2009          | 6/08/2009          | 6/08/2009          | 6/08/2009          |
| Date Extracted (Metals)   |       | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         |
| Date Analysed (Metals)    |       | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         |
| Arsenic                   | mg/kg | 8                  | 8                  | 10                 | 10                 | 9                  |
| Cadmium                   | mg/kg | 0.6                | 1.9                | 0.97               | 0.6                | 0.5                |
| Chromium                  | mg/kg | 19                 | 22                 | 32                 | 19                 | 20                 |
| Copper                    | mg/kg | 11                 | 18                 | 22                 | 13                 | 14                 |
| Lead                      | mg/kg | 35                 | 370                | 160                | 44                 | 39                 |
| Nickel                    | mg/kg | 17                 | 20                 | 24                 | 17                 | 18                 |
| Zinc                      | mg/kg | 210                | 770                | 700                | 220                | 170                |



| Metals in Soil by ICP-OES |         |            |            |            |            |            |
|---------------------------|---------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS   | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  |
|                           |         | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |         | MS4-21_0.  | MS4-22_0.  | MS4-23_0.  | MS4-24_0.  | MS4-24_0.  |
|                           |         | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 5-0.6      |
| Sample Matrix             |         | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |         | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                     |         |            |            |            |            |            |
| Date Extracted (Metals)   |         | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Metals)    |         | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Arsenic                   | mg/kg   | 10         | 20         | 23         | 12         | 9          |
| Cadmium                   | mg/kg   | 0.6        | 1.8        | 4.2        | 2.8        | 1.1        |
| Chromium                  | mg/kg   | 20         | 20         | 14         | 20         | 34         |
| Copper                    | mg/kg   | 13         | 39         | 120        | 27         | 26         |
| Lead                      | mg/kg   | 48         | 1,300      | 5,100      | 1,300      | 200        |
| Nickel                    | mg/kg   | 18         | 15         | 11         | 14         | 24         |
| 1                         | l mg/kg |            |            |            |            |            |

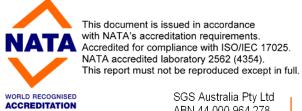
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-4  |
|                           |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference            |       | MS4-25_0.  | MS4-25_0.  | MS4-26_0.  | MS4-26A_0  | MS4-26A_0  |
|                           |       | 0-0.2      | 5-0.6      | 0-0.2      | .0-0.2     | .5-0.6     |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Metals)    |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Arsenic                   | mg/kg | 9          | 10         | 6          | 5          | 18         |
| Cadmium                   | mg/kg | 0.5        | 1.1        | 0.4        | 0.5        | 240        |
| Chromium                  | mg/kg | 22         | 22         | 20         | 2.2        | 11         |
| Copper                    | mg/kg | 20         | 19         | 10         | 4.1        | 52         |
| Lead                      | mg/kg | 510        | 650        | 350        | 15         | 1,400      |
| Nickel                    | mg/kg | 15         | 15         | 16         | 2.0        | 13         |
| Zinc                      | mg/kg | 490        | 640        | 220        | 180        | 57,000     |




| Metals in Soil by ICP-OES |       |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71199-4  | SE71199-4  | SE71199-4  | SE71199-4  |
|                           |       | 1          | 2          | 3          | 4          |
| Your Reference            |       | MS4-27_0.  | MS4-28_0.  | QC11       | QC12       |
|                           |       | 0-0.2      | 0-0.2      |            |            |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                     |       |            |            |            |            |
| Date Extracted (Metals)   |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Metals)    |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Arsenic                   | mg/kg | 80         | 17         | 6          | 8          |
| Cadmium                   | mg/kg | 11         | 0.4        | <0.3       | 0.5        |
| Chromium                  | mg/kg | 11         | 25         | 20         | 20         |
| Copper                    | mg/kg | 530        | 12         | 11         | 15         |
| Lead                      | mg/kg | 46,000     | 39         | 60         | 450        |
| Nickel                    | mg/kg | 7.1        | 20         | 16         | 14         |
| Zinc                      | mg/kg | 10,000     | 83         | 120        | 440        |

| Mercury Cold Vapor/Hg Analyser |       |                   |                   |                   |                   |                   |
|--------------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:                 | UNITS | SE71199-1         | SE71199-2         | SE71199-3         | SE71199-4         | SE71199-5         |
| Your Reference                 |       | MS4-1_0.0-<br>0.2 | MS4-1_0.5-<br>0.6 | MS4-2_0.0-<br>0.2 | MS4-2_0.5-<br>0.6 | MS4-3_0.0-<br>0.2 |
| Sample Matrix                  |       | Soil              | Soil              | Soil              | Soil              | Soil              |
| Date Sampled                   |       | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         |
| Depth                          |       |                   |                   |                   |                   |                   |
| Date Extracted (Mercury)       |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Date Analysed (Mercury)        |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Mercury                        | mg/kg | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |
|                                |       |                   |                   |                   |                   |                   |

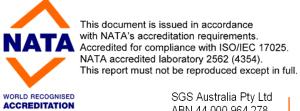
| Mercury Cold Vapor/Hg Analyser |       |                   |                   |                   |                   |                   |
|--------------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:                 | UNITS | SE71199-6         | SE71199-7         | SE71199-8         | SE71199-9         | SE71199-1<br>0    |
| Your Reference                 |       | MS4-3_0.5-<br>0.6 | MS4-4_0.0-<br>0.2 | MS4-4_0.5-<br>0.6 | MS4-5_0.0-<br>0.2 | MS4-5_0.5-<br>0.6 |
| Sample Matrix                  |       | Soil              | Soil              | Soil              | Soil              | Soil              |
| Date Sampled<br>Depth          |       | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         |
| Date Extracted (Mercury)       |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Date Analysed (Mercury)        |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Mercury                        | mg/kg | <0.05             | <0.05             | <0.05             | <0.05             | <0.05             |


| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | MS4-6_0.0- | MS4-6_0.5- | MS4-7_0.0- | MS4-8_0.0- | MS4-9_0.0- |
|                                |       | 0.2        | 0.6        | 0.2        | 0.2        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | 0.54       | 0.63       | 0.18       |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-2  |
|                                |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference                 |       | MS4-10_0.  | MS4-11_0.  | MS4-11_0.  | MS4-12_0.  | MS4-12_0.  |
|                                |       | 0-0.2      | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | MS4-13_0.  | MS4-13_0.  | MS4-14_0.  | MS4-15_0.  | MS4-16_0.  |
|                                |       | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | 0.67       | 0.12       | <0.05      |


| Mercury Cold Vapor/Hg Analyser |       |                    |                    |                    |                    |                    |
|--------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:                 | UNITS | SE71199-2<br>6     | SE71199-2<br>7     | SE71199-2<br>8     | SE71199-2<br>9     | SE71199-3<br>0     |
| Your Reference                 |       | MS4-17_0.<br>0-0.2 | MS4-18_0.<br>0-0.2 | MS4-18_0.<br>5-0.6 | MS4-19_0.<br>0-0.2 | MS4-20_0.<br>0-0.2 |
| Sample Matrix                  |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled<br>Depth          |       | 6/08/2009          | 6/08/2009          | 6/08/2009          | 6/08/2009          | 6/08/2009          |
| Date Extracted (Mercury)       |       | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         |
| Date Analysed (Mercury)        |       | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         | 11/08/2009         |
| Mercury                        | mg/kg | <0.05              | <0.05              | <0.05              | <0.05              | <0.05              |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | MS4-21_0.  | MS4-22_0.  | MS4-23_0.  | MS4-24_0.  | MS4-24_0.  |
|                                |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 5-0.6      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Mercury                        | mg/kg | <0.05      | 0.27       | 0.85       | 0.12       | 0.07       |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-4  |
|                                |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference                 |       | MS4-25_0.  | MS4-25_0.  | MS4-26_0.  | MS4-26A_0  | MS4-26A_0  |
|                                |       | 0-0.2      | 5-0.6      | 0-0.2      | .0-0.2     | .5-0.6     |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71199-4  | SE71199-4  | SE71199-4  | SE71199-4  |
|                                |       | 1          | 2          | 3          | 4          |
| Your Reference                 |       | MS4-27_0.  | MS4-28_0.  | QC11       | QC12       |
|                                |       | 0-0.2      | 0-0.2      |            |            |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                          |       |            |            |            |            |
| Date Extracted (Mercury)       |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Mercury                        | mg/kg | 3.7        | <0.05      | <0.05      | <0.05      |



| BTEX in Water (µg/L)  |       |            |
|-----------------------|-------|------------|
| Our Reference:        | UNITS | SE71199-4  |
|                       |       | 6          |
| Your Reference        |       | TB8        |
| Sample Matrix         |       | Water      |
| Date Sampled          |       | 6/08/2009  |
| Depth                 |       |            |
| Date Extracted (BTEX) |       | 10/08/2009 |
| Date Analysed (BTEX)  |       | 10/08/2009 |
| Benzene               | μg/L  | <0.5       |
| Toluene               | μg/L  | <0.5       |
| Ethylbenzene          | μg/L  | <0.5       |
| Total Xylenes         | μg/L  | <1.5       |
| Surrogate             | %     | 71         |

WORLD RECOGNISED
ACCREDITATION

| Trace HM (ICP-MS)-Dissolved   |       |            |
|-------------------------------|-------|------------|
| Our Reference:                | UNITS | SE71199-4  |
|                               |       | 5          |
| Your Reference                |       | WB6        |
| Sample Matrix                 |       | Water      |
| Date Sampled                  |       | 6/08/2009  |
| Depth                         |       |            |
| Date Extracted (Metals-ICPMS) |       | 10/08/2009 |
| Date Analysed (Metals-ICPMS)  |       | 10/08/2009 |
| Arsenic                       | μg/L  | <1         |
| Cadmium                       | μg/L  | <0.1       |
| Chromium                      | μg/L  | <1         |
| Copper                        | μg/L  | <1         |
| Lead                          | μg/L  | <1         |
| Nickel                        | μg/L  | <1         |
| Zinc                          | μg/L  | <1         |

| Mercury Cold Vapor/Hg Analyser |       |            |
|--------------------------------|-------|------------|
| Our Reference:                 | UNITS | SE71199-4  |
|                                |       | 5          |
| Your Reference                 |       | WB6        |
| Sample Matrix                  |       | Water      |
| Date Sampled                   |       | 6/08/2009  |
| Depth                          |       |            |
| Date Extracted (Mercury)       |       | 11/08/2009 |
| Date Analysed (Mercury)        |       | 11/08/2009 |
| Mercury at MDL - Dissolved     | mg/L  | <0.0001    |

| Moisture                 |       |                   |                   |                   |                   |                   |
|--------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Our Reference:           | UNITS | SE71199-1         | SE71199-2         | SE71199-3         | SE71199-4         | SE71199-5         |
| Your Reference           |       | MS4-1_0.0-<br>0.2 | MS4-1_0.5-<br>0.6 | MS4-2_0.0-<br>0.2 | MS4-2_0.5-<br>0.6 | MS4-3_0.0-<br>0.2 |
| Sample Matrix            |       | Soil              | Soil              | Soil              | Soil              | Soil              |
| Date Sampled Depth       |       | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         |
| Date Analysed (moisture) |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Moisture                 | %     | 16                | 12                | 14                | 11                | 9                 |

| Moisture<br>Our Reference: | UNITS | SE71199-6         | SE71199-7         | SE71199-8         | SE71199-9         | SE71199-1<br>0    |
|----------------------------|-------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Your Reference             |       | MS4-3_0.5-<br>0.6 | MS4-4_0.0-<br>0.2 | MS4-4_0.5-<br>0.6 | MS4-5_0.0-<br>0.2 | MS4-5_0.5-<br>0.6 |
| Sample Matrix              |       | Soil              | Soil              | Soil              | Soil              | Soil              |
| Date Sampled Depth         |       | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         | 6/08/2009         |
| Date Analysed (moisture)   |       | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        | 11/08/2009        |
| Moisture                   | %     | 10                | 12                | 12                | 16                | 17                |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS4-6_0.0- | MS4-6_0.5- | MS4-7_0.0- | MS4-8_0.0- | MS4-9_0.0- |
|                          |       | 0.2        | 0.6        | 0.2        | 0.2        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) | ·     | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 9.9        | 11         | 7          | 8          | 9          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-1  | SE71199-2  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | MS4-10_0.  | MS4-11_0.  | MS4-11_0.  | MS4-12_0.  | MS4-12_0.  |
|                          |       | 0-0.2      | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 14         | 16         | 10         | 12         | 9          |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS4-13_0.  | MS4-13_0.  | MS4-14_0.  | MS4-15_0.  | MS4-16_0.  |
|                          |       | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 14         | 13         | 3          | 15         | 4          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-2  | SE71199-3  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | MS4-17_0.  | MS4-18_0.  | MS4-18_0.  | MS4-19_0.  | MS4-20_0.  |
|                          |       | 0-0.2      | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 3          | 16         | 19         | 2          | 4          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS4-21_0.  | MS4-22_0.  | MS4-23_0.  | MS4-24_0.  | MS4-24_0.  |
|                          |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 5-0.6      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 4          | 9          | 9          | 14         | 17         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-3  | SE71199-4  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | MS4-25_0.  | MS4-25_0.  | MS4-26_0.  | MS4-26A_0  | MS4-26A_0  |
|                          |       | 0-0.2      | 5-0.6      | 0-0.2      | .0-0.2     | .5-0.6     |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 14         | 12         | 11         | 28         | 15         |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| Moisture                 |       |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71199-4  | SE71199-4  | SE71199-4  | SE71199-4  |
|                          |       | 1          | 2          | 3          | 4          |
| Your Reference           |       | MS4-27_0.  | MS4-28_0.  | QC11       | QC12       |
|                          |       | 0-0.2      | 0-0.2      |            |            |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 6/08/2009  | 6/08/2009  | 6/08/2009  | 6/08/2009  |
| Depth                    |       |            |            |            |            |
| Date Analysed (moisture) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Moisture                 | %     | 13         | 8          | 14         | 12         |

| Methodology Summary                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling). |
| Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                              |
| Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.                                                                                                                                                                        |
| BTEX / C6-C9 Hydrocarbons - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.                                       |
| Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.                                                                                                                                                                                                          |
| Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 $\pm$ 5°C.                                                                                  |
|                                                                                                                                                                                                                                                                                                                  |

| QUALITY CONTROL                       | UNITS    | LOR | METHOD | Blank |
|---------------------------------------|----------|-----|--------|-------|
| Inorganics                            |          |     |        |       |
| Date Extracted- (pH 1:5 soil: Water)  |          |     |        | [NT]  |
| Date Analysed (pH 1:5<br>Soil: Water) |          |     |        | [NT]  |
| pH 1:5 soil:water 1:5 soil:water      | pH Units | 0   | AN101  | [NT]  |
| Date Extracted (pH)                   |          |     |        | [NT]  |
| Date Analysed (pH)                    |          |     |        | [NT]  |
| рН                                    | pH Units | 0   | AN101  | [NT]  |

| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |                |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 11/08/2<br>009 | SE71199-1        | 11/08/2009   <br>11/08/2009 | SE71199-2 | 11/08/2009                 |
| Date Analysed (Metals)    |       |     |         | 11/08/2<br>009 | SE71199-1        | 11/08/2009   <br>11/08/2009 | SE71199-2 | 11/08/2009                 |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3             | SE71199-1        | 6    6    RPD: 0            | SE71199-2 | 85%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3           | SE71199-1        | 0.3    0.3    RPD: 0        | SE71199-2 | 85%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3           | SE71199-1        | 21    21    RPD: 0          | SE71199-2 | 83%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE71199-1        | 11    12    RPD: 9          | SE71199-2 | 87%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1             | SE71199-1        | 63    75    RPD: 17         | SE71199-2 | 77%                        |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE71199-1        | 16    16    RPD: 0          | SE71199-2 | 84%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5           | SE71199-1        | 130    140    RPD: 7        | SE71199-2 | 90%                        |

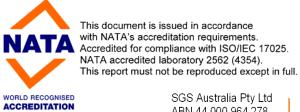
| QUALITY CONTROL                   | UNITS | LOR  | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|------|---------|--------------|------------------|-----------------------------|-----------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |      |         |              |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       |      |         | 12/08/0<br>9 | SE71199-1        | 11/08/2009   <br>11/08/2009 | SE71199-2 | 11/08/09                   |
| Date Analysed<br>(Mercury)        |       |      |         | 12/08/0<br>9 | SE71199-1        | 11/08/2009   <br>11/08/2009 | SE71199-2 | 11/08/09                   |
| Mercury                           | mg/kg | 0.05 | SEM-005 | <0.05        | SE71199-1        | <0.05    <0.05              | SE71199-2 | 114%                       |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| QUALITY CONTROL  BTEX in Water (µg/L) | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|---------------------------------------|-------|-----|---------|--------------|------------------|-------------------------------------|-----------|------------------------------------------------|
| Date Extracted (BTEX)                 |       |     |         | 10/08/0      | [NT]             | [NT]                                | LCS       | 10/08/09                                       |
| Date Analysed (BTEX)                  |       |     |         | 10/08/0<br>9 | [NT]             | [NT]                                | LCS       | 10/08/09                                       |
| Benzene                               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 103%                                           |
| Toluene                               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 105%                                           |
| Ethylbenzene                          | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 105%                                           |
| Total Xylenes                         | μg/L  | 1.5 | SEO-018 | <1.5         | [NT]             | [NT]                                | LCS       | 104%                                           |
| Surrogate                             | %     | 0   | SEO-018 | 98           | [NT]             | [NT]                                | LCS       | 81%                                            |

| QUALITY CONTROL                 | UNITS | LOR | METHOD | Blank          | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------------|-------|-----|--------|----------------|------------------|-------------------------|-----------|----------------------------|
| Trace HM<br>(ICP-MS)-Dissolved  |       |     |        |                |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted (Metals-ICPMS)   |       |     |        | 10/08/2<br>009 | [NT]             | [NT]                    | SE71199-1 | 10/08/2009                 |
| Date Analysed<br>(Metals-ICPMS) |       |     |        | 10/08/2<br>009 | [NT]             | [NT]                    | SE71199-1 | 10/08/2009                 |
| Arsenic                         | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                    | SE71199-1 | 114%                       |
| Cadmium                         | μg/L  | 0.1 | AN318  | <0.1           | [NT]             | [NT]                    | SE71199-1 | 100%                       |
| Chromium                        | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                    | SE71199-1 | 99%                        |
| Copper                          | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                    | SE71199-1 | 99%                        |
| Lead                            | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                    | SE71199-1 | 108%                       |
| Nickel                          | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                    | SE71199-1 | 97%                        |
| Zinc                            | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                    | SE71199-1 | 101%                       |


| QUALITY CONTROL  Mercury Cold Vapor/Hg  Analyser | UNITS | LOR    | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------------|-------|--------|---------|--------------|------------------|-------------------------------------|-----------|------------------------------------------|
| Date Extracted (Mercury)                         |       |        |         | 11/08/0      | [NT]             | [NT]                                | LCS       | 11/08/09                                 |
| Date Analysed<br>(Mercury)                       |       |        |         | 11/08/0<br>9 | [NT]             | [NT]                                | LCS       | 11/08/09                                 |
| Mercury at MDL -<br>Dissolved                    | mg/L  | 0.0001 | SEM-005 | <0.000       | [NT]             | [NT]                                | LCS       | 108%                                     |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL | UNITS | LOR | METHOD | Blank |
|-----------------|-------|-----|--------|-------|
| Moisture        |       |     |        |       |
| Date Analysed   |       |     |        | [NT]  |
| (moisture)      |       |     |        |       |
| Moisture        | %     | 1   | AN002  | <1    |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|--------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------------|
| Date Extracted (Metals)                    |       | SE71199-1      | 11/08/2009   <br>11/08/2009         | SE71199-2<br>2 | 11/08/2009                                     |
| Date Analysed (Metals)                     |       | SE71199-1<br>1 | 11/08/2009   <br>11/08/2009         | SE71199-2<br>2 | 11/08/2009                                     |
| Arsenic                                    | mg/kg | SE71199-1<br>1 | 9    9    RPD: 0                    | SE71199-2<br>2 | 87%                                            |
| Cadmium                                    | mg/kg | SE71199-1<br>1 | 0.5    0.5    RPD: 0                | SE71199-2<br>2 | 86%                                            |
| Chromium                                   | mg/kg | SE71199-1<br>1 | 24    24    RPD: 0                  | SE71199-2<br>2 | 86%                                            |
| Copper                                     | mg/kg | SE71199-1<br>1 | 15    14    RPD: 7                  | SE71199-2<br>2 | 88%                                            |
| Lead                                       | mg/kg | SE71199-1<br>1 | 85    93    RPD: 9                  | [NR]           | [NR]                                           |
| Nickel                                     | mg/kg | SE71199-1<br>1 | 22    20    RPD: 10                 | SE71199-2<br>2 | 82%                                            |
| Zinc                                       | mg/kg | SE71199-1<br>1 | 190    210    RPD: 10               | [NR]           | [NR]                                           |



| QUALITY CONTROL  Mercury Cold Vapor/Hg  Analyser | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------|
| Date Extracted (Mercury)                         |       | SE71199-1      | 11/08/2009   <br>11/08/2009         | SE71199-2<br>2 | 11/08/09                                 |
| Date Analysed (Mercury)                          |       | SE71199-1<br>1 | 11/08/2009   <br>11/08/2009         | SE71199-2<br>2 | 11/08/09                                 |
| Mercury                                          | mg/kg | SE71199-1<br>1 | <0.05    <0.05                      | SE71199-2<br>2 | 110%                                     |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate + %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------|-------|----------------|------------------------------------|----------------|------------------------------------------|
| Date Extracted (Metals)                    |       | SE71199-2<br>1 | 11/08/2009   <br>11/08/2009        | SE71199-4<br>2 | 11/08/2009                               |
| Date Analysed (Metals)                     |       | SE71199-2<br>1 | 11/08/2009   <br>11/08/2009        | SE71199-4<br>2 | 11/08/2009                               |
| Arsenic                                    | mg/kg | SE71199-2<br>1 | 8    8    RPD: 0                   | SE71199-4<br>2 | 79%                                      |
| Cadmium                                    | mg/kg | SE71199-2<br>1 | 0.4    0.4    RPD: 0               | SE71199-4<br>2 | 71%                                      |
| Chromium                                   | mg/kg | SE71199-2<br>1 | 19    21    RPD: 10                | SE71199-4<br>2 | 73%                                      |
| Copper                                     | mg/kg | SE71199-2<br>1 | 15    16    RPD: 6                 | SE71199-4<br>2 | 80%                                      |
| Lead                                       | mg/kg | SE71199-2<br>1 | 440    440    RPD: 0               | [NR]           | [NR]                                     |
| Nickel                                     | mg/kg | SE71199-2<br>1 | 14    15    RPD: 7                 | SE71199-4<br>2 | 72%                                      |
| Zinc                                       | mg/kg | SE71199-2<br>1 | 410    410    RPD: 0               | SE71199-4<br>2 | 92%                                      |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate  Duplicate        |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE71199-2<br>1 | 11/08/2009   <br>11/08/2009 |
| Date Analysed (Mercury)           |       | SE71199-2<br>1 | 11/08/2009   <br>11/08/2009 |
| Mercury                           | mg/kg | SE71199-2<br>1 | <0.05    <0.05              |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------|-------|----------------|-------------------------------------|-----------|------------------------------------------|
| Date Extracted (Metals)                    |       | SE71199-3      | 11/08/2009   <br>11/08/2009         | LCS       | 11/08/2009                               |
| Date Analysed (Metals)                     |       | SE71199-3<br>1 | 11/08/2009   <br>11/08/2009         | LCS       | 11/08/2009                               |
| Arsenic                                    | mg/kg | SE71199-3<br>1 | 10    9    RPD: 11                  | [NR]      | [NR]                                     |
| Cadmium                                    | mg/kg | SE71199-3<br>1 | 0.6    0.5    RPD: 18               | [NR]      | [NR]                                     |
| Chromium                                   | mg/kg | SE71199-3<br>1 | 20    19    RPD: 5                  | [NR]      | [NR]                                     |
| Copper                                     | mg/kg | SE71199-3<br>1 | 13    13    RPD: 0                  | [NR]      | [NR]                                     |
| Lead                                       | mg/kg | SE71199-3<br>1 | 48    44    RPD: 9                  | LCS       | 97%                                      |
| Nickel                                     | mg/kg | SE71199-3<br>1 | 18    17    RPD: 6                  | [NR]      | [NR]                                     |
| Zinc                                       | mg/kg | SE71199-3<br>1 | 220    190    RPD: 15               | LCS       | 97%                                      |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE71199-3<br>1 | 11/08/2009   <br>11/08/2009 |
| Date Analysed (Mercury)           |       | SE71199-3<br>1 | 11/08/2009   <br>11/08/2009 |
| Mercury                           | mg/kg | SE71199-3<br>1 | <0.05    <0.05              |

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|-------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Metals)                   |       | SE71199-4<br>1 | 11/08/2009   <br>11/08/2009       |
| Date Analysed (Metals)                    |       | SE71199-4<br>1 | 11/08/2009   <br>11/08/2009       |
| Arsenic                                   | mg/kg | SE71199-4<br>1 | 80    65    RPD: 21               |
| Cadmium                                   | mg/kg | SE71199-4<br>1 | 11    9.4    RPD: 16              |
| Chromium                                  | mg/kg | SE71199-4<br>1 | 11    12    RPD: 9                |
| Copper                                    | mg/kg | SE71199-4<br>1 | 530    410    RPD: 26             |
| Lead                                      | mg/kg | SE71199-4<br>1 | 46000    27000   <br>RPD: 52      |
| Nickel                                    | mg/kg | SE71199-4<br>1 | 7.1    7.7    RPD: 8              |
| Zinc                                      | mg/kg | SE71199-4<br>1 | 10000    9000    RPD:<br>11       |



#### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

#### **Report Comments**

-METALS\_ESDAT\_S: duplicate of # 41 is out of criteria due to sample's inhomogeneity.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

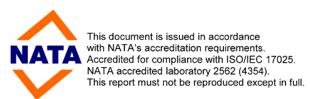
### **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

## **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





# ANALYTICAL REPORT

17 August 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 **CANBERRA** ACT 2602

**Attention: Chris Gunton** 

Your Reference: EC00233AA

Our Reference: SE71167 Samples: 54 Soils, 4 Waters

> Received: 6/8/09

**Preliminary Report Sent:** Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

**Client Services:** Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: **Edward Ibrahim** Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

**Edward Ibrahim** 

Laboratory Manager

**Organics Signatory** 

Nick Salarmis

**Inorganics Signatory** 

Huong Erawford

Metals Signatory



| OC Pesticides in Soil                   |       |            |            |                |                |                |
|-----------------------------------------|-------|------------|------------|----------------|----------------|----------------|
| Our Reference:                          | UNITS | SE71167-1  | SE71167-4  | SE71167-1<br>0 | SE71167-2<br>4 | SE71167-2<br>7 |
| Your Reference                          |       | MP1_0.0-0. | MP2_0.0-0. | MP4_0.0-0.     | MP9_0.0-0.     | MP10_0.0-0     |
| Sample Matrix                           |       | Soil       | Soil       | Soil           | Soil           | Soil           |
| Date Sampled                            |       | 4/08/2009  | 4/08/2009  | 4/08/2009      | 4/08/2009      | 4/08/2009      |
| Depth                                   |       |            |            |                |                |                |
| Date Extracted                          |       | 10/08/2009 | 10/08/2009 | 10/08/2009     | 10/08/2009     | 10/08/2009     |
| Date Analysed                           |       | 10/08/2009 | 10/08/2009 | 10/08/2009     | 10/08/2009     | 10/08/2009     |
| HCB                                     | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| alpha-BHC                               | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| gamma-BHC (Lindane)                     | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Heptachlor                              | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Aldrin                                  | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| beta-BHC                                | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| delta-BHC                               | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Heptachlor Epoxide                      | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| o,p-DDE                                 | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| alpha-Endosulfan                        | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| trans-Chlordane                         | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| cis-Chlordane                           | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| trans-Nonachlor                         | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| p,p-DDE                                 | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Dieldrin                                | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Endrin                                  | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| o,p-DDD                                 | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| o,p-DDT                                 | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| beta-Endosulfan                         | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| p,p-DDD                                 | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| p,p-DDT                                 | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Endosulfan Sulphate                     | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Endrin Aldehyde                         | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Methoxychlor                            | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| Endrin Ketone                           | mg/kg | <0.1       | <0.1       | <0.1           | <0.1           | <0.1           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 107        | 104        | 105            | 107            | 107            |

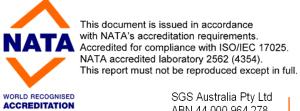


| OC Pesticides in Soil                   |       |                |                |                |                |                |
|-----------------------------------------|-------|----------------|----------------|----------------|----------------|----------------|
| Our Reference:                          | UNITS | SE71167-2<br>9 | SE71167-3<br>5 | SE71167-3<br>8 | SE71167-4<br>1 | SE71167-4<br>9 |
| Your Reference                          |       | MP11_0.0-0     | MP13_0.0-0     | QC8            | MP14_0.0-0     | MPSUMP-1       |
| Sample Matrix                           |       | Soil           | Soil           | Soil           | Soil           | Soil           |
| Date Sampled<br>Depth                   |       | 4/08/2009      | 4/08/2009      | 4/08/2009      | 5/08/2009      | 5/08/2009      |
| Date Extracted                          |       | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/2009     |
| Date Analysed                           |       | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/2009     |
| HCB                                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| alpha-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Heptachlor                              | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Aldrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| beta-BHC                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| delta-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Heptachlor Epoxide                      | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| alpha-Endosulfan                        | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| trans-Chlordane                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| cis-Chlordane                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| trans-Nonachlor                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Dieldrin                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| o,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| beta-Endosulfan                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| p,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endosulfan Sulphate                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin Aldehyde                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Methoxychlor                            | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| Endrin Ketone                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 104            | 98             | 95             | 97             | 112            |
|                                         |       | 1              | 1              | 1              | 1              | 1              |



| OC Pesticides in Soil                   |       |                |                |                |                |           |
|-----------------------------------------|-------|----------------|----------------|----------------|----------------|-----------|
| Our Reference:                          | UNITS | SE71167-5<br>0 | SE71167-5<br>1 | SE71167-5<br>2 | SE71167-5<br>3 | SE71167-5 |
| Your Reference                          |       | MPSUMP-2       | SP1            | SP2            | SP3            | SP4       |
| Sample Matrix                           |       | Soil           | Soil           | Soil           | Soil           | Soil      |
| Date Sampled<br>Depth                   |       | 5/08/2009      | 5/08/2009      | 5/08/2009      | 5/08/2009      | 5/08/2009 |
| Date Extracted                          |       | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/200 |
| Date Analysed                           |       | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/2009     | 10/08/200 |
| HCB                                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| alpha-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Heptachlor                              | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Aldrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| beta-BHC                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| delta-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Heptachlor Epoxide                      | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| o,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| alpha-Endosulfan                        | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| trans-Chlordane                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| cis-Chlordane                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| trans-Nonachlor                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| p,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Dieldrin                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Endrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| o,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| o,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| beta-Endosulfan                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| p,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| p,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Endosulfan Sulphate                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Endrin Aldehyde                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Methoxychlor                            | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| Endrin Ketone                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1      |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 120            | 99             | 95             | 94             | 93        |




| OC Pesticides in Soil                   |       |                |
|-----------------------------------------|-------|----------------|
| Our Reference:                          | UNITS | SE71167-5<br>5 |
| Your Reference                          |       | QC9            |
| Sample Matrix                           |       | Soil           |
| Date Sampled                            |       | 5/08/2009      |
| Depth                                   |       |                |
| Date Extracted                          |       | 10/08/2009     |
| Date Analysed                           |       | 10/08/2009     |
| НСВ                                     | mg/kg | <0.1           |
| alpha-BHC                               | mg/kg | <0.1           |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           |
| Heptachlor                              | mg/kg | <0.1           |
| Aldrin                                  | mg/kg | <0.1           |
| beta-BHC                                | mg/kg | <0.1           |
| delta-BHC                               | mg/kg | <0.1           |
| Heptachlor Epoxide                      | mg/kg | <0.1           |
| o,p-DDE                                 | mg/kg | <0.1           |
| alpha-Endosulfan                        | mg/kg | <0.1           |
| trans-Chlordane                         | mg/kg | <0.1           |
| cis-Chlordane                           | mg/kg | <0.1           |
| trans-Nonachlor                         | mg/kg | <0.1           |
| p,p-DDE                                 | mg/kg | <0.1           |
| Dieldrin                                | mg/kg | <0.1           |
| Endrin                                  | mg/kg | <0.1           |
| o,p-DDD                                 | mg/kg | <0.1           |
| o,p-DDT                                 | mg/kg | <0.1           |
| beta-Endosulfan                         | mg/kg | <0.1           |
| p,p-DDD                                 | mg/kg | <0.1           |
| p,p-DDT                                 | mg/kg | <0.1           |
| Endosulfan Sulphate                     | mg/kg | <0.1           |
| Endrin Aldehyde                         | mg/kg | <0.1           |
| Methoxychlor                            | mg/kg | <0.1           |
| Endrin Ketone                           | mg/kg | <0.1           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 91             |



| Cyanide                        |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-1  | SE71167-4  | SE71167-1  | SE71167-2  | SE71167-2  |
|                                |       |            |            | 0          | 4          | 7          |
| Your Reference                 |       | MP1_0.0-0. | MP2_0.0-0. | MP4_0.0-0. | MP9_0.0-0. | MP10_0.0-0 |
|                                |       | 2          | 2          | 2          | 2          | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Total Cyanide) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Total Cyanide)  |       | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 |
| Total Cyanide                  | mg/kg | 0.2        | 0.1        | 0.1        | <0.1       | 0.2        |

| Cyanide                        |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-2  | SE71167-3  | SE71167-3  | SE71167-4  | SE71167-4  |
|                                |       | 9          | 5          | 8          | 1          | 9          |
| Your Reference                 |       | MP11_0.0-0 | MP13_0.0-0 | QC8        | MP14_0.0-0 | MPSUMP-1   |
|                                |       | .2         | .2         |            | .2         |            |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Total Cyanide) |       | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 | 11/08/2009 |
| Date Analysed (Total Cyanide)  |       | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 |
| Total Cyanide                  | mg/kg | 0.2        | 0.2        | 0.2        | 0.5        | 0.6        |

| Cyanide                        |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference:                 | UNITS | SE71167-5  | SE71167-5  |
|                                |       | 0          | 5          |
| Your Reference                 |       | MPSUMP-2   | QC9        |
| Sample Matrix                  |       | Soil       | Soil       |
| Date Sampled                   |       | 5/08/2009  | 5/08/2009  |
| Depth                          |       |            |            |
| Date Extracted (Total Cyanide) |       | 11/08/2009 | 11/08/2009 |
| Date Analysed (Total Cyanide)  |       | 12/08/2009 | 12/08/2009 |
| Total Cyanide                  | mg/kg | 1.4        | 0.4        |



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71167-1  | SE71167-2  | SE71167-4  | SE71167-5  | SE71167-7  |
| Your Reference            |       | MP1_0.0-0. | MP1_0.5-0. | MP2_0.0-0. | MP2_0.5-0. | MP3_0.0-0. |
|                           |       | 2          | 6          | 2          | 6          | 2          |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Metals)    |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Arsenic                   | mg/kg | 12         | 11         | 13         | 11         | 10         |
| Cadmium                   | mg/kg | 0.5        | 0.3        | 0.6        | 0.4        | 0.4        |
| Chromium                  | mg/kg | 26         | 27         | 24         | 26         | 22         |
| Copper                    | mg/kg | 14         | 14         | 13         | 13         | 17         |
| Lead                      | mg/kg | 120        | 89         | 120        | 95         | 110        |
| Nickel                    | mg/kg | 14         | 12         | 13         | 13         | 16         |
| Zinc                      | mg/kg | 160        | 110        | 180        | 130        | 320        |
|                           |       |            |            |            |            |            |

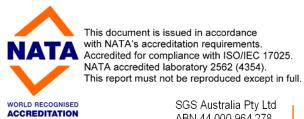
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71167-8  | SE71167-1  | SE71167-1  | SE71167-1  | SE71167-1  |
|                           |       |            | 0          | 1          | 3          | 4          |
| Your Reference            |       | MP3_0.5-0. | MP4_0.0-0. | MP4_0.5-0. | MP5_0.0-0. | MP5_0.5-0. |
|                           |       | 6          | 2          | 6          | 2          | 6          |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Metals)    |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Arsenic                   | mg/kg | 10         | 20         | 15         | 20         | 21         |
| Cadmium                   | mg/kg | 0.3        | 0.6        | 0.4        | 0.6        | 0.6        |
| Chromium                  | mg/kg | 22         | 28         | 28         | 30         | 31         |
| Copper                    | mg/kg | 17         | 28         | 22         | 26         | 26         |
| Lead                      | mg/kg | 97         | 190        | 160        | 230        | 200        |
| Nickel                    | mg/kg | 16         | 18         | 18         | 25         | 25         |
| Zinc                      | mg/kg | 230        | 300        | 240        | 350        | 350        |



| Metals in Soil by ICP-OES |                |            |            |            |            |            |
|---------------------------|----------------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS          | SE71167-1  | SE71167-1  | SE71167-1  | SE71167-2  | SE71167-2  |
|                           |                | 6          | 7          | 9          | 0          | 2          |
| Your Reference            |                | MP6_0.0-0. | MP6_0.5-0. | MP7_0.0-0. | MP7_0.5-0. | MP8_0.0-0. |
|                           |                | 2          | 6          | 2          | 6          | 2          |
| Sample Matrix             |                | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |                | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                     |                |            |            |            |            |            |
| Date Extracted (Metals)   |                | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Metals)    |                | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Arsenic                   | mg/kg          | 22         | 18         | 7          | 7          | 10         |
| Cadmium                   | mg/kg          | 1.1        | 0.8        | <0.3       | <0.3       | 0.3        |
| Chromium                  | mg/kg          | 26         | 35         | 24         | 24         | 21         |
|                           |                |            |            |            |            |            |
| Copper                    | mg/kg          | 17         | 11         | 4.5        | 4.3        | 9.7        |
| Copper<br>Lead            | mg/kg<br>mg/kg | 17<br>310  | 11<br>210  | 4.5<br>39  | 4.3        | 9.7        |
|                           |                |            |            |            |            |            |

| Metals in Soil by ICP-OES |       |                 |                 |                 |                  |                  |
|---------------------------|-------|-----------------|-----------------|-----------------|------------------|------------------|
| Our Reference:            | UNITS | SE71167-2<br>3  | SE71167-2<br>4  | SE71167-2<br>5  | SE71167-2<br>7   | SE71167-2<br>8   |
| Your Reference            |       | MP8_0.5-0.<br>6 | MP9_0.0-0.<br>2 | MP9_0.5-0.<br>6 | MP10_0.0-0<br>.2 | MP10_0.5-0<br>.6 |
| Sample Matrix             |       | Soil            | Soil            | Soil            | Soil             | Soil             |
| Date Sampled Depth        |       | 4/08/2009       | 4/08/2009       | 4/08/2009       | 4/08/2009        | 4/08/2009        |
| Date Extracted (Metals)   |       | 10/08/2009      | 10/08/2009      | 10/08/2009      | 10/08/2009       | 10/08/2009       |
| Date Analysed (Metals)    |       | 10/08/2009      | 10/08/2009      | 10/08/2009      | 10/08/2009       | 10/08/2009       |
| Arsenic                   | mg/kg | 11              | 26              | 37              | 28               | 28               |
| Cadmium                   | mg/kg | 0.4             | 0.5             | 0.7             | 0.6              | 0.5              |
| Chromium                  | mg/kg | 22              | 27              | 34              | 27               | 28               |
| Copper                    | mg/kg | 10              | 26              | 32              | 24               | 25               |
| Lead                      | mg/kg | 150             | 140             | 170             | 130              | 120              |
| Nickel                    | mg/kg | 11              | 23              | 24              | 20               | 21               |
| Zinc                      | mg/kg | 220             | 220             | 330             | 250              | 260              |



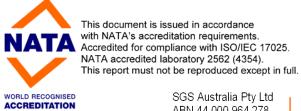

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71167-2  | SE71167-3  | SE71167-3  | SE71167-3  | SE71167-3  |
|                           |       | 9          | 0          | 2          | 3          | 5          |
| Your Reference            |       | MP11_0.0-0 | MP11_0.5-0 | MP12_0.0-0 | MP12_0.5-0 | MP13_0.0-0 |
|                           |       | .2         | .6         | .2         | .6         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Metals)    |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Arsenic                   | mg/kg | 40         | 35         | 21         | 20         | 21         |
| Cadmium                   | mg/kg | 0.7        | 0.5        | 0.5        | 0.5        | 0.4        |
| Chromium                  | mg/kg | 30         | 25         | 25         | 23         | 26         |
| Copper                    | mg/kg | 29         | 23         | 19         | 20         | 19         |
| Lead                      | mg/kg | 190        | 110        | 97         | 94         | 99         |
| Nickel                    | mg/kg | 23         | 24         | 22         | 19         | 19         |
|                           |       |            |            |            |            |            |

| Metals in Soil by ICP-OES |       |                  |            |                  |                  |                  |
|---------------------------|-------|------------------|------------|------------------|------------------|------------------|
| Our Reference:            | UNITS | SE71167-3        | SE71167-3  | SE71167-4        | SE71167-4        | SE71167-4        |
| Value Dafarra             |       | 6                | 8          | 1<br>MD44 0 0 0  | 2                | 4                |
| Your Reference            |       | MP13_0.5-0<br>.6 | QC8        | MP14_0.0-0<br>.2 | MP14_0.5-0<br>.6 | MP15_0.0-0<br>.2 |
| Sample Matrix             |       | Soil             | Soil       | Soil             | Soil             | Soil             |
| Date Sampled<br>Depth     |       | 4/08/2009        | 4/08/2009  | 5/08/2009        | 5/08/2009        | 5/08/2009        |
| Date Extracted (Metals)   |       | 10/08/2009       | 10/08/2009 | 10/08/2009       | 10/08/2009       | 10/08/2009       |
| Date Analysed (Metals)    |       | 10/08/2009       | 10/08/2009 | 10/08/2009       | 10/08/2009       | 10/08/2009       |
| Arsenic                   | mg/kg | 22               | 10         | 33               | 30               | 45               |
| Cadmium                   | mg/kg | 0.4              | 0.4        | 2.2              | 2.3              | 2.1              |
| Chromium                  | mg/kg | 27               | 23         | 25               | 25               | 27               |
| Copper                    | mg/kg | 20               | 12         | 22               | 21               | 25               |
| Lead                      | mg/kg | 100              | 100        | 300              | 320              | 400              |
| Nickel                    | mg/kg | 20               | 12         | 20               | 19               | 22               |
| Zinc                      | mg/kg | 190              | 140        | 610              | 620              | 720              |



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71167-4  | SE71167-4  | SE71167-4  | SE71167-4  | SE71167-5  |
|                           |       | 5          | 6          | 7          | 9          | 0          |
| Your Reference            |       | MP15_0.5-0 | MP16_0.0-0 | MP16_0.5-0 | MPSUMP-1   | MPSUMP-2   |
|                           |       | .6         | .2         | .6         |            |            |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Metals)    |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Arsenic                   | mg/kg | 41         | 17         | 18         | 96         | 45         |
| Cadmium                   | mg/kg | 2.1        | 0.94       | 1.3        | 1.8        | 9.6        |
| Chromium                  | mg/kg | 25         | 25         | 25         | 58         | 19         |
| Copper                    | mg/kg | 23         | 14         | 15         | 87         | 91         |
| Lead                      | mg/kg | 360        | 310        | 330        | 220        | 240        |
| Nickel                    | mg/kg | 20         | 14         | 16         | 19         | 22         |
| Zinc                      | mg/kg | 660        | 370        | 420        | 1,800      | 8,100      |

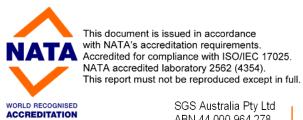
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71167-5  | SE71167-5  | SE71167-5  | SE71167-5  | SE71167-5  |
|                           |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |       | SP1        | SP2        | SP3        | SP4        | QC9        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                     |       |            |            |            |            |            |
| Date Extracted (Metals)   |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Metals)    |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Arsenic                   | mg/kg | 17         | 11         | 12         | 12         | 32         |
| Cadmium                   | mg/kg | 0.7        | 0.7        | 0.6        | 0.6        | 1.9        |
| Chromium                  | mg/kg | 21         | 21         | 19         | 22         | 24         |
| Copper                    | mg/kg | 23         | 17         | 18         | 17         | 20         |
| Lead                      | mg/kg | 90         | 62         | 60         | 60         | 300        |
| Nickel                    | mg/kg | 31         | 25         | 23         | 24         | 19         |
| Zinc                      | mg/kg | 450        | 200        | 210        | 180        | 580        |




| Metals in Soil by ICP-OES |       |            |
|---------------------------|-------|------------|
| Our Reference:            | UNITS | SE71167-5  |
|                           |       | 6          |
| Your Reference            |       | QC10       |
| Sample Matrix             |       | Soil       |
| Date Sampled              |       | 5/08/2009  |
| Depth                     |       |            |
| Date Extracted (Metals)   |       | 10/08/2009 |
| Date Analysed (Metals)    |       | 10/08/2009 |
| Arsenic                   | mg/kg | 15         |
| Cadmium                   | mg/kg | 0.8        |
| Chromium                  | mg/kg | 22         |
| Copper                    | mg/kg | 24         |
| Lead                      | mg/kg | 73         |
| Nickel                    | mg/kg | 30         |
| Zinc                      | mg/kg | 460        |

| Mercury Cold Vapor/Hg Analyser |       |            |                 |            |            |            |
|--------------------------------|-------|------------|-----------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-1  | SE71167-2       | SE71167-4  | SE71167-5  | SE71167-7  |
| Your Reference                 |       | MP1_0.0-0. | MP1_0.5-0.<br>6 | MP2_0.0-0. | MP2_0.5-0. | MP3_0.0-0. |
| Sample Matrix                  |       | Soil       | Soil            | Soil       | Soil       | Soil       |
| Date Sampled Depth             |       | 4/08/2009  | 4/08/2009       | 4/08/2009  | 4/08/2009  | 4/08/2009  |
|                                |       |            |                 |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009      | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009      | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05           | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-8  | SE71167-1  | SE71167-1  | SE71167-1  | SE71167-1  |
|                                |       |            | 0          | 1          | 3          | 4          |
| Your Reference                 |       | MP3_0.5-0. | MP4_0.0-0. | MP4_0.5-0. | MP5_0.0-0. | MP5_0.5-0. |
|                                |       | 6          | 2          | 6          | 2          | 6          |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |


| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-1  | SE71167-1  | SE71167-1  | SE71167-2  | SE71167-2  |
|                                |       | 6          | 7          | 9          | 0          | 2          |
| Your Reference                 |       | MP6_0.0-0. | MP6_0.5-0. | MP7_0.0-0. | MP7_0.5-0. | MP8_0.0-0. |
|                                |       | 2          | 6          | 2          | 6          | 2          |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-2  | SE71167-2  | SE71167-2  | SE71167-2  | SE71167-2  |
|                                |       | 3          | 4          | 5          | 7          | 8          |
| Your Reference                 |       | MP8_0.5-0. | MP9_0.0-0. | MP9_0.5-0. | MP10_0.0-0 | MP10_0.5-0 |
|                                |       | 6          | 2          | 6          | .2         | .6         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |                  |                  |                  |                  |                  |
|--------------------------------|-------|------------------|------------------|------------------|------------------|------------------|
| Our Reference:                 | UNITS | SE71167-2<br>9   | SE71167-3<br>0   | SE71167-3<br>2   | SE71167-3<br>3   | SE71167-3<br>5   |
| Your Reference                 |       | MP11_0.0-0<br>.2 | MP11_0.5-0<br>.6 | MP12_0.0-0<br>.2 | MP12_0.5-0<br>.6 | MP13_0.0-0<br>.2 |
| Sample Matrix                  |       | Soil             | Soil             | Soil             | Soil             | Soil             |
| Date Sampled<br>Depth          |       | 4/08/2009        | 4/08/2009        | 4/08/2009        | 4/08/2009        | 4/08/2009        |
| Date Extracted (Mercury)       |       | 10/08/2009       | 10/08/2009       | 10/08/2009       | 10/08/2009       | 10/08/2009       |
| Date Analysed (Mercury)        |       | 10/08/2009       | 10/08/2009       | 10/08/2009       | 10/08/2009       | 10/08/2009       |
| Mercury                        | mg/kg | <0.05            | <0.05            | <0.05            | <0.05            | <0.05            |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-3  | SE71167-3  | SE71167-4  | SE71167-4  | SE71167-4  |
|                                |       | 6          | 8          | 1          | 2          | 4          |
| Your Reference                 |       | MP13_0.5-0 | QC8        | MP14_0.0-0 | MP14_0.5-0 | MP15_0.0-0 |
|                                |       | .6         |            | .2         | .6         | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 4/08/2009  | 4/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-4  | SE71167-4  | SE71167-4  | SE71167-4  | SE71167-5  |
|                                |       | 5          | 6          | 7          | 9          | 0          |
| Your Reference                 |       | MP15_0.5-0 | MP16_0.0-0 | MP16_0.5-0 | MPSUMP-1   | MPSUMP-2   |
|                                |       | .6         | .2         | .6         |            |            |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | 0.08       | 0.15       |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71167-5  | SE71167-5  | SE71167-5  | SE71167-5  | SE71167-5  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | SP1        | SP2        | SP3        | SP4        | QC9        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                          |       |            |            |            |            |            |
| Date Extracted (Mercury)       |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed (Mercury)        |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser Our Reference: | UNITS | SE71167-5         |
|-----------------------------------------------|-------|-------------------|
| Your Reference                                |       | 6<br>QC10         |
| Sample Matrix Date Sampled                    |       | Soil<br>5/08/2009 |
| Depth                                         |       |                   |
| Date Extracted (Mercury)                      |       | 10/08/2009        |
| Date Analysed (Mercury)  Mercury              | mg/kg | 10/08/2009        |



| Subcontracted Analysis       |         |            |            |            |            |            |
|------------------------------|---------|------------|------------|------------|------------|------------|
| Our Reference:               | UNITS   | SE71167-1  | SE71167-4  | SE71167-1  | SE71167-2  | SE71167-2  |
|                              |         |            |            | 0          | 4          | 7          |
| Your Reference               |         | MP1_0.0-0. | MP2_0.0-0. | MP4_0.0-0. | MP9_0.0-0. | MP10_0.0-0 |
|                              |         | 2          | 2          | 2          | 2          | .2         |
| Sample Matrix                |         | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                 |         | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                        |         |            |            |            |            |            |
| Date Extracted               |         | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed                |         | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 |
| Total Sulphur#               | %w/w    | 0.011      | 0.012      | 0.016      | <0.0050    | 0.012      |
| SO <sup>4</sup> -S^          | %w/w as | 0.007      | 0.008      | 0.010      | <0.005     | 0.007      |
| Total Oxidisable Sulfur TOS# | % w/w   | <0.005     | <0.005     | 0.005      | <0.005     | <0.005     |

| Subcontracted Analysis       |         |            |            |            |            |            |
|------------------------------|---------|------------|------------|------------|------------|------------|
| Our Reference:               | UNITS   | SE71167-2  | SE71167-3  | SE71167-3  | SE71167-4  | SE71167-4  |
|                              |         | 9          | 5          | 8          | 1          | 9          |
| Your Reference               |         | MP11_0.0-0 | MP13_0.0-0 | QC8        | MP14_0.0-0 | MPSUMP-1   |
|                              |         | .2         | .2         |            | .2         |            |
| Sample Matrix                |         | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                 |         | 4/08/2009  | 4/08/2009  | 4/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                        |         |            |            |            |            |            |
| Date Extracted               |         | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Date Analysed                |         | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 | 12/08/2009 |
| Total Sulphur#               | %w/w    | 0.011      | 0.010      | 0.011      | 0.014      | 0.16       |
| SO <sup>4</sup> -S^          | %w/w as | 0.008      | 0.007      | 0.007      | 0.011      | 0.037      |
| Total Oxidisable Sulfur TOS# | % w/w   | <0.005     | <0.005     | <0.005     | <0.005     | 0.1        |

| Subcontracted Analysis       |         |            |            |
|------------------------------|---------|------------|------------|
| Our Reference:               | UNITS   | SE71167-5  | SE71167-5  |
|                              |         | 0          | 5          |
| Your Reference               |         | MPSUMP-2   | QC9        |
| Sample Matrix                |         | Soil       | Soil       |
| Date Sampled                 |         | 5/08/2009  | 5/08/2009  |
| Depth                        |         |            |            |
| Date Extracted               |         | 10/08/2009 | 10/08/2009 |
| Date Analysed                |         | 12/08/2009 | 12/08/2009 |
| Total Sulphur#               | %w/w    | 0.46       | 0.016      |
| SO <sup>4</sup> -S^          | %w/w as | 0.090      | 0.012      |
| Total Oxidisable Sulfur TOS# | % w/w   | 0.4        | <0.005     |



| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-1  | SE71167-2  | SE71167-4  | SE71167-5  | SE71167-7  |
| Your Reference           |       | MP1_0.0-0. | MP1_0.5-0. | MP2_0.0-0. | MP2_0.5-0. | MP3_0.0-0. |
|                          |       | 2          | 6          | 2          | 6          | 2          |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 13         | 12         | 13         | 12         | 15         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-8  | SE71167-1  | SE71167-1  | SE71167-1  | SE71167-1  |
|                          |       |            | 0          | 1          | 3          | 4          |
| Your Reference           |       | MP3_0.5-0. | MP4_0.0-0. | MP4_0.5-0. | MP5_0.0-0. | MP5_0.5-0. |
|                          |       | 6          | 2          | 6          | 2          | 6          |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 14         | 12         | 10         | 16         | 18         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-1  | SE71167-1  | SE71167-1  | SE71167-2  | SE71167-2  |
|                          |       | 6          | 7          | 9          | 0          | 2          |
| Your Reference           |       | MP6_0.0-0. | MP6_0.5-0. | MP7_0.0-0. | MP7_0.5-0. | MP8_0.0-0. |
|                          |       | 2          | 6          | 2          | 6          | 2          |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 15         | 12         | 12         | 12         | 9          |

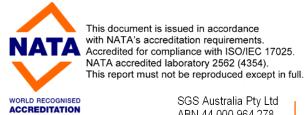
| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-2  | SE71167-2  | SE71167-2  | SE71167-2  | SE71167-2  |
|                          |       | 3          | 4          | 5          | 7          | 8          |
| Your Reference           |       | MP8_0.5-0. | MP9_0.0-0. | MP9_0.5-0. | MP10_0.0-0 | MP10_0.5-0 |
|                          |       | 6          | 2          | 6          | .2         | .6         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 9          | 11         | 11         | 13         | 12         |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-2  | SE71167-3  | SE71167-3  | SE71167-3  | SE71167-3  |
|                          |       | 9          | 0          | 2          | 3          | 5          |
| Your Reference           |       | MP11_0.0-0 | MP11_0.5-0 | MP12_0.0-0 | MP12_0.5-0 | MP13_0.0-0 |
|                          |       | .2         | .6         | .2         | .6         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 11         | 9          | 12         | 14         | 9          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-3  | SE71167-3  | SE71167-4  | SE71167-4  | SE71167-4  |
|                          |       | 6          | 8          | 1          | 2          | 4          |
| Your Reference           |       | MP13_0.5-0 | QC8        | MP14_0.0-0 | MP14_0.5-0 | MP15_0.0-0 |
|                          |       | .6         |            | .2         | .6         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 4/08/2009  | 4/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 9          | 12         | 10         | 10         | 14         |


| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-4  | SE71167-4  | SE71167-4  | SE71167-4  | SE71167-5  |
|                          |       | 5          | 6          | 7          | 9          | 0          |
| Your Reference           |       | MP15_0.5-0 | MP16_0.0-0 | MP16_0.5-0 | MPSUMP-1   | MPSUMP-2   |
|                          |       | .6         | .2         | .6         |            |            |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 15         | 12         | 13         | 56         | 85         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71167-5  | SE71167-5  | SE71167-5  | SE71167-5  | SE71167-5  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | SP1        | SP2        | SP3        | SP4        | QC9        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  | 5/08/2009  |
| Depth                    |       |            |            |            |            |            |
| Date Analysed (moisture) |       | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 | 10/08/2009 |
| Moisture                 | %     | 11         | 6          | 5          | 4          | 8          |

| Moisture                 |       |            |
|--------------------------|-------|------------|
| Our Reference:           | UNITS | SE71167-5  |
|                          |       | 6          |
| Your Reference           |       | QC10       |
| Sample Matrix            |       | Soil       |
| Date Sampled             |       | 5/08/2009  |
| Depth                    |       |            |
| Date Analysed (moisture) |       | 10/08/2009 |
| Moisture                 | %     | 12         |



| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                             |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEO-005   | OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082.          |
| AN287     | Cyanide (Total or Free) - Total Cyanide is determined by colourimetric method using Discrete Analyser, following distillation of the acidified sample. Free Cyanide is determined by colourimetric method using Discrete Analyser on filtered sample. Complex Cyanide is the difference of Total and Free Cyanide. Based on APHA 21st Edition, 4500-CN C and E. |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                             |
| SEM-005   | Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.                                                                                                                                                                                                                       |
| Ext-002   | Analysis subcontracted to SGS Environmental Services Cairns, NATA Accreditation No. 2562, Site No. 3146.                                                                                                                                                                                                                                                        |
| AN150     | Sulphite - determined by iodometric titration, based on APHA 21st Edition, 4500-SO3 2-B.                                                                                                                                                                                                                                                                        |
| AN002     | Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 $\pm$ 5°C.                                                                                                                                 |



| QUALITY CONTROL  OC Pesticides in Soil   | UNITS | LOR | METHOD  | Blank   | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|------------------------------------------|-------|-----|---------|---------|------------------|-------------------------------------|-----------|------------------------------------------------|
| Date Extracted                           |       |     |         | 10/08/0 | SE71167-1        | 10/08/2009   <br>10/08/2009         | SE71167-4 | 10/08/09                                       |
| Date Analysed                            |       |     |         | 10/08/0 | SE71167-1        | 10/08/2009   <br>10/08/2009         | SE71167-4 | 10/08/09                                       |
| HCB                                      | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| alpha-BHC                                | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| gamma-BHC (Lindane)                      | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Heptachlor                               | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | SE71167-4 | 102%                                           |
| Aldrin                                   | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | SE71167-4 | 104%                                           |
| beta-BHC                                 | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| delta-BHC                                | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | SE71167-4 | 97%                                            |
| Heptachlor Epoxide                       | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| o,p-DDE                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| alpha-Endosulfan                         | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| trans-Chlordane                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| cis-Chlordane                            | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| trans-Nonachlor                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| p,p-DDE                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Dieldrin                                 | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | SE71167-4 | 97%                                            |
| Endrin                                   | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | SE71167-4 | 102%                                           |
| o,p-DDD                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| o,p-DDT                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| beta-Endosulfan                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| p,p-DDD                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| p,p-DDT                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | SE71167-4 | 108%                                           |
| Endosulfan Sulphate                      | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Endrin Aldehyde                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Methoxychlor                             | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Endrin Ketone                            | mg/kg | 0.1 | SEO-005 | <0.1    | SE71167-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| 2,4,5,6-Tetrachloro-m-xy lene (Surrogate | %     | 0   | SEO-005 | 103     | SE71167-1        | 107    104    RPD: 3                | SE71167-4 | 103%                                           |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| QUALITY CONTROL                  | UNITS | LOR | METHOD | Blank   | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|----------------------------------|-------|-----|--------|---------|------------------|-----------------------------|-----------|----------------------------|
| Cyanide                          |       |     |        |         |                  | Base + Duplicate +<br>%RPD  |           | Duplicate + %RPD           |
| Date Extracted (Total Cyanide)   |       |     |        | 11/8/09 | SE71167-1        | 11/08/2009   <br>11/08/2009 | SE71167-1 | 11/8/09                    |
| Date Analysed (Total<br>Cyanide) |       |     |        | 12/8/09 | SE71167-1        | 12/08/2009   <br>12/08/2009 | SE71167-1 | 12/8/09                    |
| Total Cyanide                    | mg/kg | 0.1 | AN287  | <0.1    | SE71167-1        | 0.2    0.1    RPD: 67       | SE71167-1 | 101%                       |

| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |                |                  | Base + Duplicate +<br>%RPD  |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 10/08/2<br>009 | SE71167-1        | 10/08/2009   <br>10/08/2009 | SE71167-2 | 10/08/2009                 |
| Date Analysed (Metals)    |       |     |         | 10/08/2<br>009 | SE71167-1        | 10/08/2009   <br>10/08/2009 | SE71167-2 | 10/08/2009                 |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3             | SE71167-1        | 12    11    RPD: 9          | SE71167-2 | 89%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3           | SE71167-1        | 0.5    0.5    RPD: 0        | SE71167-2 | 89%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3           | SE71167-1        | 26    28    RPD: 7          | SE71167-2 | 96%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE71167-1        | 14    14    RPD: 0          | SE71167-2 | 94%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1             | SE71167-1        | 120    110    RPD: 9        | SE71167-2 | 90%                        |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE71167-1        | 14    14    RPD: 0          | SE71167-2 | 89%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5           | SE71167-1        | 160    150    RPD: 6        | SE71167-2 | 120%                       |

| QUALITY CONTROL                   | UNITS | LOR  | METHOD  | Blank   | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|------|---------|---------|------------------|-----------------------------|-----------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |      |         |         |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       |      |         | 10/08/0 | SE71167-1        | 10/08/2009   <br>10/08/2009 | SE71167-2 | 10/08/09                   |
| Date Analysed<br>(Mercury)        |       |      |         | 10/08/0 | SE71167-1        | 10/08/2009   <br>10/08/2009 | SE71167-2 | 10/08/09                   |
| Mercury                           | mg/kg | 0.05 | SEM-005 | <0.05   | SE71167-1        | <0.05    <0.05              | SE71167-2 | 95%                        |

| QUALITY CONTROL  Subcontracted Analysis | UNITS | LOR   | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|-----------------------------------------|-------|-------|---------|----------------|------------------|-------------------------------------|-----------|------------------------------------------|
| Date Extracted                          |       |       |         | 10/08/2<br>009 | SE71167-1        | 10/08/2009   <br>10/08/2009         | LCS       | 10/08/2009                               |
| Date Analysed                           |       |       |         | 12/08/2<br>009 | SE71167-1        | 12/08/2009   <br>12/08/2009         | LCS       | 12/08/2009                               |
| Total Sulphur#                          | %w/w  | 0.005 | Ext-002 | <0.005<br>0    | SE71167-1        | 0.011    0.010   <br>RPD: 10        | LCS       | 106%                                     |

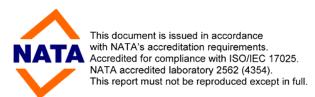


This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                 | UNITS      | LOR   | METHOD  | Blank  | Duplicate<br>Sm# | Duplicate                    | •   | Matrix Spike %<br>Recovery |
|---------------------------------|------------|-------|---------|--------|------------------|------------------------------|-----|----------------------------|
| Subcontracted Analysis          |            |       |         |        |                  | Base + Duplicate + %RPD      |     | Duplicate + %RPD           |
| SO <sup>4</sup> -S^             | %w/w<br>as | 0.005 | Ext-002 | <0.005 | SE71167-1        | 0.007    0.006   <br>RPD: 15 | LCS | 106%                       |
| Total Oxidisable Sulfur<br>TOS# | % w/w      | 0.005 | AN150   | -      | SE71167-1        | <0.005    <0.005             | LCS | -                          |

| QUALITY CONTROL              | UNITS | LOR  | METHOD | Blank |
|------------------------------|-------|------|--------|-------|
| Hold sample-NO test required |       |      |        |       |
| Sample on HOLD               |       | [NT] |        | [NT]  |


| QUALITY CONTROL          | UNITS | LOR | METHOD | Blank |
|--------------------------|-------|-----|--------|-------|
| Moisture                 |       |     |        |       |
| Date Analysed (moisture) |       |     |        | [NT]  |
| Moisture                 | %     | 1   | AN002  | <1    |

| QUALITY CONTROL OC Pesticides in Soil | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD |
|---------------------------------------|-------|----------------|-------------------------------------|
| Date Extracted                        |       | SE71167-4<br>1 | 10/08/2009   <br>10/08/2009         |
| Date Analysed                         |       | SE71167-4<br>1 | 10/08/2009   <br>10/08/2009         |
| НСВ                                   | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| alpha-BHC                             | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| gamma-BHC (Lindane)                   | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| Heptachlor                            | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| Aldrin                                | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| beta-BHC                              | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| delta-BHC                             | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| Heptachlor Epoxide                    | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| o,p-DDE                               | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |
| alpha-Endosulfan                      | mg/kg | SE71167-4<br>1 | <0.1    <0.1                        |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| PROJECT: E                                  | C00233AA |                |                            |
|---------------------------------------------|----------|----------------|----------------------------|
| QUALITY CONTROL                             | UNITS    | Dup. Sm#       | Duplicate                  |
| OC Pesticides in Soil                       |          |                | Base + Duplicate +<br>%RPD |
| trans-Chlordane                             | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| cis-Chlordane                               | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| trans-Nonachlor                             | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| p,p-DDE                                     | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| Dieldrin                                    | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| Endrin                                      | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| o,p-DDD                                     | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| o,p-DDT                                     | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| beta-Endosulfan                             | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| p,p-DDD                                     | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| p,p-DDT                                     | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| Endosulfan Sulphate                         | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| Endrin Aldehyde                             | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| Methoxychlor                                | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| Endrin Ketone                               | mg/kg    | SE71167-4<br>1 | <0.1    <0.1               |
| 2,4,5,6-Tetrachloro-m-xyler<br>e (Surrogate | n %      | SE71167-4<br>1 | 97    97    RPD: 0         |



WORLD RECOGNISED
ACCREDITATION

| QUALITY CONTROL           | UNITS | Dup. Sm#       | Duplicate                   | Spike Sm#      | Matrix Spike %<br>Recovery |
|---------------------------|-------|----------------|-----------------------------|----------------|----------------------------|
| Metals in Soil by ICP-OES |       |                | Base + Duplicate +<br>%RPD  |                | Duplicate + %RPD           |
| Date Extracted (Metals)   |       | SE71167-1<br>6 | 10/08/2009   <br>10/08/2009 | SE71167-3<br>0 | 10/08/2009                 |
| Date Analysed (Metals)    |       | SE71167-1<br>6 | 10/08/2009   <br>10/08/2009 | SE71167-3<br>0 | 10/08/2009                 |
| Arsenic                   | mg/kg | SE71167-1<br>6 | 22    23    RPD: 4          | SE71167-3<br>0 | 86%                        |
| Cadmium                   | mg/kg | SE71167-1<br>6 | 1.1    0.98    RPD: 12      | SE71167-3<br>0 | 86%                        |
| Chromium                  | mg/kg | SE71167-1<br>6 | 26    30    RPD: 14         | SE71167-3<br>0 | 87%                        |
| Copper                    | mg/kg | SE71167-1<br>6 | 17    17    RPD: 0          | SE71167-3<br>0 | 92%                        |
| Lead                      | mg/kg | SE71167-1<br>6 | 310    290    RPD: 7        | SE71167-3<br>0 | 92%                        |
| Nickel                    | mg/kg | SE71167-1<br>6 | 19    22    RPD: 15         | SE71167-3<br>0 | 84%                        |
| Zinc                      | mg/kg | SE71167-1<br>6 | 500    510    RPD: 2        | SE71167-3<br>0 | 115%                       |

| QUALITY CONTROL  Mercury Cold Vapor/Hg  Analyser | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|--------------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------------|
| Date Extracted (Mercury)                         |       | SE71167-1      | 10/08/2009   <br>10/08/2009         | SE71167-3<br>0 | 10/08/09                                       |
| Date Analysed (Mercury)                          |       | SE71167-1<br>6 | 10/08/2009   <br>10/08/2009         | SE71167-3<br>0 | 10/08/09                                       |
| Mercury                                          | mg/kg | SE71167-1<br>6 | <0.05    <0.05                      | SE71167-3<br>0 | 109%                                           |

| QUALITY CONTROL Subcontracted Analysis | UNITS      | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|----------------------------------------|------------|----------------|-----------------------------------|
| Date Extracted                         |            | SE71167-5<br>0 | 10/08/2009   <br>10/08/2009       |
| Date Analysed                          |            | SE71167-5<br>0 | 12/08/2009   <br>12/08/2009       |
| Total Sulphur#                         | %w/w       | SE71167-5<br>0 | 0.46    0.46    RPD: 0            |
| SO <sup>4</sup> -S^                    | %w/w<br>as | SE71167-5<br>0 | 0.090    0.090    RPD:<br>0       |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| QUALITY CONTROL                 | UNITS | Dup. Sm#       | Duplicate                  |
|---------------------------------|-------|----------------|----------------------------|
| Subcontracted Analysis          |       |                | Base + Duplicate +<br>%RPD |
| Total Oxidisable Sulfur<br>TOS# | % w/w | SE71167-5<br>0 | 0.4    0.4    RPD: 0       |

| QUALITY CONTROL           | UNITS | Dup. Sm#       | Duplicate                   |
|---------------------------|-------|----------------|-----------------------------|
| Metals in Soil by ICP-OES |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Metals)   |       | SE71167-2<br>9 | 10/08/2009   <br>10/08/2009 |
| Date Analysed (Metals)    |       | SE71167-2<br>9 | 10/08/2009   <br>10/08/2009 |
| Arsenic                   | mg/kg | SE71167-2<br>9 | 40    37    RPD: 8          |
| Cadmium                   | mg/kg | SE71167-2<br>9 | 0.7    0.7    RPD: 0        |
| Chromium                  | mg/kg | SE71167-2<br>9 | 30    30    RPD: 0          |
| Copper                    | mg/kg | SE71167-2<br>9 | 29    29    RPD: 0          |
| Lead                      | mg/kg | SE71167-2<br>9 | 190    150    RPD: 24       |
| Nickel                    | mg/kg | SE71167-2<br>9 | 23    23    RPD: 0          |
| Zinc                      | mg/kg | SE71167-2<br>9 | 330    290    RPD: 13       |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE71167-2<br>9 | 10/08/2009   <br>10/08/2009 |
| Date Analysed (Mercury)           |       | SE71167-2<br>9 | 10/08/2009   <br>10/08/2009 |
| Mercury                           | mg/kg | SE71167-2<br>9 | <0.05    <0.05              |

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|-------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Metals)                   |       | SE71167-4<br>5 | 10/08/2009   <br>10/08/2009       |
| Date Analysed (Metals)                    |       | SE71167-4<br>5 | 10/08/2009   <br>10/08/2009       |
| Arsenic                                   | mg/kg | SE71167-4<br>5 | 41    43    RPD: 5                |
| Cadmium                                   | mg/kg | SE71167-4<br>5 | 2.1    2.1    RPD: 0              |
| Chromium                                  | mg/kg | SE71167-4<br>5 | 25    25    RPD: 0                |
| Copper                                    | mg/kg | SE71167-4<br>5 | 23    22    RPD: 4                |
| Lead                                      | mg/kg | SE71167-4<br>5 | 360    390    RPD: 8              |
| Nickel                                    | mg/kg | SE71167-4<br>5 | 20    20    RPD: 0                |
| Zinc                                      | mg/kg | SE71167-4<br>5 | 660    670    RPD: 2              |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE71167-4<br>5 | 10/08/2009   <br>10/08/2009 |
| Date Analysed (Mercury)           |       | SE71167-4<br>5 | 10/08/2009   <br>10/08/2009 |
| Mercury                           | mg/kg | SE71167-4<br>5 | <0.05    <0.05              |

#### **Result Codes**

[INS] Insufficient Sample for this test [RPD]: Relative Percentage Difference [NR] Not Requested : Not part of NATA Accreditation

[NT] Not tested [N/A] : Not Applicable

### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced: 10/08/09 NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

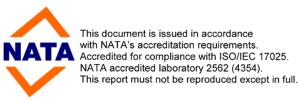
### **Quality Control Protocol**

Method Blank: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

Duplicate: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

Surrogate Spike: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

Internal Standard: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments


Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

Matrix Spike: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

## **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





# ANALYTICAL REPORT

7 August 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Chris Gunton

Your Reference: EC00233AA

Our Reference: SE71036 Samples: 37 Soils, 2 Waters

Received: 31/7/09

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

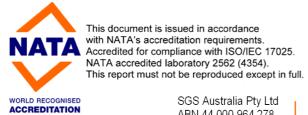
Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

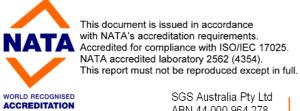
Nick Salarmis
Inorganics Signatory

/ Kn W


Organics Signatory

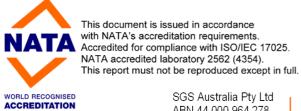
Huong Crawford Metals Signatory




| Inorganics                           |          |            |            |            |            |            |
|--------------------------------------|----------|------------|------------|------------|------------|------------|
| Our Reference:                       | UNITS    | SE71036-1  | SE71036-7  | SE71036-1  | SE71036-1  | SE71036-1  |
|                                      |          |            |            | 4          | 6          | 9          |
| Your Reference                       |          | MS1-1_0.0- | MS1-4_0.0- | MS1-7_0.5- | MS1-7_1.4- | MS1-9_0.0- |
|                                      |          | 0.2        | 0.2        | 0.6        | 1.5        | 0.2        |
| Sample Matrix                        |          | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                         |          | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted- (pH 1:5 soil: Water) |          | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (pH 1:5 Soil: Water)   |          | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 6.6        | 6.8        | 6.3        | 6.7        | 6.9        |

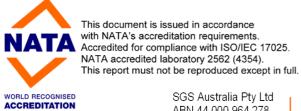
| Inorganics                           |          |            |            |            |            |            |
|--------------------------------------|----------|------------|------------|------------|------------|------------|
| Our Reference:                       | UNITS    | SE71036-2  | SE71036-3  | SE71036-3  | SE71036-3  | SE71036-3  |
|                                      |          | 4          | 0          | 4          | 6          | 7          |
| Your Reference                       |          | MS1-11_0.  | MS1-14_0.  | MS1-16_0.  | QC6        | QC7        |
|                                      |          | 5-0.6      | 0-0.2      | 0-0.2      |            |            |
| Sample Matrix                        |          | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                         |          | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted- (pH 1:5 soil: Water) |          | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (pH 1:5 Soil: Water)   |          | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 6.1        | 6.2        | 6.1        | 6.2        | 7.2        |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71036-1  | SE71036-2  | SE71036-3  | SE71036-4  | SE71036-5  |
| Your Reference            |       | MS1-1_0.0- | MS1-1_0.5- | MS1-2_0.0- | MS1-2_0.5- | MS1-3_0.0- |
|                           |       | 0.2        | 0.6        | 0.2        | 0.6        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Metals)   |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Metals)    |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Arsenic                   | mg/kg | 7          | 7          | 10         | 9          | 12         |
| Cadmium                   | mg/kg | 0.4        | 0.4        | 0.3        | 0.3        | 0.3        |
| Chromium                  | mg/kg | 21         | 20         | 22         | 21         | 24         |
| Copper                    | mg/kg | 12         | 23         | 19         | 27         | 9.1        |
| Lead                      | mg/kg | 6          | 7          | 4          | 4          | 7          |
| Nickel                    | mg/kg | 31         | 35         | 39         | 34         | 28         |
| Zinc                      | mg/kg | 40         | 41         | 40         | 30         | 37         |

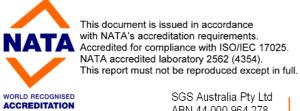
| Metals in Soil by ICP-OES |       |            |            |            |            |                |
|---------------------------|-------|------------|------------|------------|------------|----------------|
| Our Reference:            | UNITS | SE71036-6  | SE71036-7  | SE71036-8  | SE71036-9  | SE71036-1<br>0 |
| Your Reference            |       | MS1-3_0.5- | MS1-4_0.0- | MS1-4_0.5- | MS1-5_0.0- | MS1-5_0.5-     |
|                           |       | 0.6        | 0.2        | 0.6        | 0.2        | 0.6            |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled              |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009     |
| Date Extracted (Metals)   |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009      |
| Date Analysed (Metals)    |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009      |
| Arsenic                   | mg/kg | 12         | 4          | <3         | 4          | 5              |
| Cadmium                   | mg/kg | 0.3        | 0.4        | 0.3        | 0.3        | 0.3            |
| Chromium                  | mg/kg | 25         | 18         | 21         | 18         | 18             |
| Copper                    | mg/kg | 8.1        | 14         | 16         | 13         | 17             |
| Lead                      | mg/kg | 6          | 20         | 12         | 17         | 7              |
| Nickel                    | mg/kg | 38         | 25         | 23         | 26         | 24             |
| Zinc                      | mg/kg | 41         | 71         | 47         | 69         | 46             |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  |
|                           |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |       | MS1-6_0.0- | MS1-6_0.5- | MS1-7_0.0- | MS1-7_0.5- | MS1-7_0.9- |
|                           |       | 0.2        | 0.6        | 0.2        | 0.6        | 1.0        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Metals)   |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| , ,                       |       |            |            |            |            |            |
| Date Analysed (Metals)    |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Arsenic                   | mg/kg | 6          | 9          | 11         | 8          | 11         |
| Cadmium                   | mg/kg | 0.4        | 0.4        | 0.9        | 0.5        | 0.4        |
| Chromium                  | mg/kg | 17         | 19         | 20         | 18         | 25         |
| Copper                    | mg/kg | 11         | 23         | 14         | 14         | 16         |
| Lead                      | mg/kg | 42         | 27         | 28         | 19         | 12         |
| Nickel                    | mg/kg | 32         | 57         | 28         | 27         | 30         |
| Zinc                      | mg/kg | 120        | 84         | 220        | 210        | 80         |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-2  |
|                           |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference            |       | MS1-7_1.4- | MS1-8_0.0- | MS1-8_0.5- | MS1-9_0.0- | MS1-9_0.5- |
|                           |       | 1.5        | 0.2        | 0.6        | 0.2        | 0.6        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Metals)   |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Metals)    |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Arsenic                   | mg/kg | 8          | 9          | 7          | 9          | 7          |
| Cadmium                   | mg/kg | 0.3        | 0.5        | 0.4        | <0.3       | <0.3       |
| Chromium                  | mg/kg | 20         | 35         | 29         | 20         | 17         |
| Copper                    | mg/kg | 12         | 15         | 14         | 20         | 19         |
| Lead                      | mg/kg | 6          | 35         | 32         | 7          | 9          |
| Nickel                    | mg/kg | 33         | 34         | 34         | 34         | 31         |
| Zinc                      | mg/kg | 55         | 90         | 81         | 52         | 52         |




| UNITS | SE71036-2                           | SE71036-2                                                                                                   | SE71036-2                                                                                                                                            | SE71036-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SE71036-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 1                                   | 2                                                                                                           | 3                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | MS1-10_0.                           | MS1-10_0.                                                                                                   | MS1-11_0.                                                                                                                                            | MS1-11_0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MS1-11_0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 0-0.2                               | 5-0.6                                                                                                       | 0-0.2                                                                                                                                                | 5-0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | Soil                                | Soil                                                                                                        | Soil                                                                                                                                                 | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 30/07/2009                          | 30/07/2009                                                                                                  | 30/07/2009                                                                                                                                           | 30/07/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30/07/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 3/08/2009                           | 3/08/2009                                                                                                   | 3/08/2009                                                                                                                                            | 3/08/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/08/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 3/08/2009                           | 3/08/2009                                                                                                   | 3/08/2009                                                                                                                                            | 3/08/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/08/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| mg/kg | 9                                   | 11                                                                                                          | 10                                                                                                                                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/kg | 0.3                                 | 0.4                                                                                                         | 0.4                                                                                                                                                  | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mg/kg | 23                                  | 23                                                                                                          | 24                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/kg | 56                                  | 31                                                                                                          | 21                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/kg | 12                                  | 11                                                                                                          | 20                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/kg | 22                                  | 19                                                                                                          | 32                                                                                                                                                   | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mg/kg | 54                                  | 45                                                                                                          | 80                                                                                                                                                   | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 1 MS1-10_0. 0-0.2 Soil 30/07/2009 3/08/2009 3/08/2009 mg/kg 9 mg/kg 0.3 mg/kg 23 mg/kg 56 mg/kg 12 mg/kg 22 | 1 2 MS1-10_0. MS1-10_0. 5-0.6 Soil 30/07/2009 3/08/2009 3/08/2009 3/08/2009 mg/kg 9 11 mg/kg 0.3 0.4 mg/kg 23 23 mg/kg 56 31 mg/kg 12 11 mg/kg 22 19 | 1       2       3         MS1-10_0.       MS1-10_0.       MS1-11_0.         0-0.2       5-0.6       Soil         Soil       30/07/2009       30/07/2009         3/08/2009       3/08/2009       3/08/2009         3/08/2009       3/08/2009       3/08/2009         mg/kg       9       11       10         mg/kg       0.3       0.4       0.4         mg/kg       23       23       24         mg/kg       56       31       21         mg/kg       12       11       20         mg/kg       22       19       32 | 1       2       3       4         MS1-10_0.       MS1-10_0.       MS1-11_0.       MS1-11_0.         0-0.2       5-0.6       0-0.2       5-0.6         Soil       Soil       Soil       Soil         30/07/2009       30/07/2009       30/07/2009       30/07/2009         3/08/2009       3/08/2009       3/08/2009       3/08/2009         mg/kg       9       11       10       9         mg/kg       0.3       0.4       0.4       0.3         mg/kg       23       23       24       21         mg/kg       56       31       21       20         mg/kg       12       11       20       22         mg/kg       22       19       32       29 |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-3  |
|                           |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference            |       | MS1-12_0.  | MS1-12_0.  | MS1-13_0.  | MS1-13_0.  | MS1-14_0.  |
|                           |       | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Metals)   |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Metals)    |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Arsenic                   | mg/kg | 6          | 6          | 6          | 6          | 8          |
| Cadmium                   | mg/kg | 0.3        | 0.3        | 0.3        | <0.3       | 0.5        |
| Chromium                  | mg/kg | 22         | 21         | 20         | 20         | 20         |
| Copper                    | mg/kg | 14         | 15         | 32         | 50         | 15         |
| Lead                      | mg/kg | 9          | 6          | 13         | 13         | 21         |
| Nickel                    | mg/kg | 26         | 25         | 25         | 25         | 33         |
| Zinc                      | mg/kg | 55         | 51         | 62         | 51         | 150        |



| UNITS | SE71036-3                           | SE71036-3                                                                                                   | SE71036-3                                                                                                                                                           | SE71036-3                                                                                                                                                                                                                                                                                                                 | SE71036-3                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 1                                   | 2                                                                                                           | 3                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | MS1-14_0.                           | MS1-15_0.                                                                                                   | MS1-15_0.                                                                                                                                                           | MS1-16_0.                                                                                                                                                                                                                                                                                                                 | MS1-16_0.                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 5-0.6                               | 0-0.2                                                                                                       | 5-0.6                                                                                                                                                               | 0-0.2                                                                                                                                                                                                                                                                                                                     | 5-0.6                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Soil                                | Soil                                                                                                        | Soil                                                                                                                                                                | Soil                                                                                                                                                                                                                                                                                                                      | Soil                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 30/07/2009                          | 30/07/2009                                                                                                  | 30/07/2009                                                                                                                                                          | 30/07/2009                                                                                                                                                                                                                                                                                                                | 30/07/2009                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | 3/08/2009                           | 3/08/2009                                                                                                   | 3/08/2009                                                                                                                                                           | 3/08/2009                                                                                                                                                                                                                                                                                                                 | 3/08/2009                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | 3/08/2009                           | 3/08/2009                                                                                                   | 3/08/2009                                                                                                                                                           | 3/08/2009                                                                                                                                                                                                                                                                                                                 | 3/08/2009                                                                                                                                                                                                                                                                                                                                                                                                             |
| mg/kg | 7                                   | 6                                                                                                           | 10                                                                                                                                                                  | 8                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                     |
| mg/kg | 0.4                                 | <0.3                                                                                                        | <0.3                                                                                                                                                                | 0.4                                                                                                                                                                                                                                                                                                                       | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mg/kg | 28                                  | 17                                                                                                          | 22                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg | 27                                  | 21                                                                                                          | 26                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg | 15                                  | 13                                                                                                          | 10                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg | 19                                  | 16                                                                                                          | 21                                                                                                                                                                  | 27                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                    |
| mg/kg | 62                                  | 52                                                                                                          | 53                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                        | 62                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg | 1 MS1-14_0. 5-0.6 Soil 30/07/2009 3/08/2009 3/08/2009 mg/kg 7 mg/kg 0.4 mg/kg 28 mg/kg 27 mg/kg 15 mg/kg 19 | 1 2 MS1-14_0. MS1-15_0. 5-0.6 Soil Soil 30/07/2009 3/08/2009 3/08/2009 3/08/2009 3/08/2009 Mg/kg 7 6 mg/kg 0.4 <0.3 mg/kg 28 17 mg/kg 27 21 mg/kg 15 13 mg/kg 19 16 | 1     2     3       MS1-14_0.     MS1-15_0.     MS1-15_0.       5-0.6     0-0.2     5-0.6       Soil     Soil     Soil       30/07/2009     30/07/2009     30/07/2009       3/08/2009     3/08/2009     3/08/2009       3/08/2009     3/08/2009     3/08/2009       mg/kg     7     6     10       mg/kg     0.4     <0.3 | 1       2       3       4         MS1-14_0.       MS1-15_0.       MS1-15_0.       MS1-16_0.         5-0.6       0-0.2       5-0.6       0-0.2         Soil       Soil       Soil       Soil         30/07/2009       30/07/2009       30/07/2009       30/07/2009         3/08/2009       3/08/2009       3/08/2009       3/08/2009         mg/kg       7       6       10       8         mg/kg       0.4       <0.3 |

| Metals in Soil by ICP-OES |       |            |            |
|---------------------------|-------|------------|------------|
| Our Reference:            | UNITS | SE71036-3  | SE71036-3  |
| Your Reference            |       | QC6        | QC7        |
| Sample Matrix             |       | Soil       | Soil       |
| Date Sampled              |       | 30/07/2009 | 30/07/2009 |
| Date Extracted (Metals)   |       | 3/08/2009  | 3/08/2009  |
| Date Analysed (Metals)    |       | 3/08/2009  | 3/08/2009  |
| Arsenic                   | mg/kg | 8          | 6          |
| Cadmium                   | mg/kg | 0.3        | 0.4        |
| Chromium                  | mg/kg | 18         | 20         |
| Copper                    | mg/kg | 12         | 17         |
| Lead                      | mg/kg | 6          | 15         |
| Nickel                    | mg/kg | 29         | 25         |
| Zinc                      | mg/kg | 39         | 91         |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71036-1  | SE71036-2  | SE71036-3  | SE71036-4  | SE71036-5  |
| Your Reference                 |       | MS1-1_0.0- | MS1-1_0.5- | MS1-2_0.0- | MS1-2_0.5- | MS1-3_0.0- |
|                                |       | 0.2        | 0.6        | 0.2        | 0.6        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |                |
|--------------------------------|-------|------------|------------|------------|------------|----------------|
| Our Reference:                 | UNITS | SE71036-6  | SE71036-7  | SE71036-8  | SE71036-9  | SE71036-1<br>0 |
| Your Reference                 |       | MS1-3_0.5- | MS1-4_0.0- | MS1-4_0.5- | MS1-5_0.0- | MS1-5_0.5-     |
|                                |       | 0.6        | 0.2        | 0.6        | 0.2        | 0.6            |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009     |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009      |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009      |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05          |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | MS1-6_0.0- | MS1-6_0.5- | MS1-7_0.0- | MS1-7_0.5- | MS1-7_0.9- |
|                                |       | 0.2        | 0.6        | 0.2        | 0.6        | 1.0        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-2  |
|                                |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference                 |       | MS1-7_1.4- | MS1-8_0.0- | MS1-8_0.5- | MS1-9_0.0- | MS1-9_0.5- |
|                                |       | 1.5        | 0.2        | 0.6        | 0.2        | 0.6        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      | 0.05       | <0.05      | <0.05      |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

REPORT NO: SE71036 PROJECT: EC00233AA

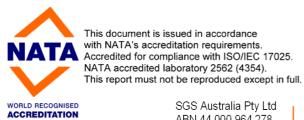
| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | MS1-10_0.  | MS1-10_0.  | MS1-11_0.  | MS1-11_0.  | MS1-11_0.  |
|                                |       | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 9-1.0      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-3  |
|                                |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference                 |       | MS1-12_0.  | MS1-12_0.  | MS1-13_0.  | MS1-13_0.  | MS1-14_0.  |
|                                |       | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE71036-3  | SE71036-3  | SE71036-3  | SE71036-3  | SE71036-3  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | MS1-14_0.  | MS1-15_0.  | MS1-15_0.  | MS1-16_0.  | MS1-16_0.  |
|                                |       | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference:                 | UNITS | SE71036-3  | SE71036-3  |
|                                |       | 6          | 7          |
| Your Reference                 |       | QC6        | QC7        |
| Sample Matrix                  |       | Soil       | Soil       |
| Date Sampled                   |       | 30/07/2009 | 30/07/2009 |
| Date Extracted (Mercury)       |       | 3/08/2009  | 3/08/2009  |
| Date Analysed (Mercury)        |       | 3/08/2009  | 3/08/2009  |
| Mercury                        | mg/kg | <0.05      | <0.05      |




| BTEX in Water (µg/L)  |       |            |            |
|-----------------------|-------|------------|------------|
| Our Reference:        | UNITS | SE71036-3  | SE71036-3  |
|                       |       | 8          | 9          |
| Your Reference        |       | TB5        | TS3        |
| Sample Matrix         |       | Water      | Water      |
| Date Sampled          |       | 30/07/2009 | 30/07/2009 |
| Date Extracted (BTEX) |       | 6/08/2009  | 6/08/2009  |
| Date Analysed (BTEX)  |       | 6/08/2009  | 6/08/2009  |
| Benzene               | μg/L  | <0.5       | 230        |
| Toluene               | μg/L  | <0.5       | 230        |
| Ethylbenzene          | μg/L  | <0.5       | 210        |
| Total Xylenes         | μg/L  | <1.5       | 240        |
| Surrogate             | %     | 100        | 105        |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71036-1  | SE71036-2  | SE71036-3  | SE71036-4  | SE71036-5  |
| Your Reference           |       | MS1-1_0.0- | MS1-1_0.5- | MS1-2_0.0- | MS1-2_0.5- | MS1-3_0.0- |
|                          |       | 0.2        | 0.6        | 0.2        | 0.6        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 6          | 5          | 9          | 7          | 11         |

| Moisture Our Reference:    | UNITS | SE71036-6         | SE71036-7         | SE71036-8         | SE71036-9       | SE71036-1<br>0     |
|----------------------------|-------|-------------------|-------------------|-------------------|-----------------|--------------------|
| Your Reference             |       | MS1-3_0.5-<br>0.6 | MS1-4_0.0-<br>0.2 | MS1-4_0.5-<br>0.6 | MS1-5_0.0-      | MS1-5_0.5-<br>0.6  |
| Sample Matrix Date Sampled |       | Soil 30/07/2009   | Soil 30/07/2009   | Soil 30/07/2009   | Soil 30/07/2009 | Soil<br>30/07/2009 |
| Date Analysed (moisture)   |       | 4/08/2009         | 4/08/2009         | 4/08/2009         | 4/08/2009       | 4/08/2009          |
| Moisture                   | %     | 11                | 8                 | 8                 | 10              | 6                  |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS1-6_0.0- | MS1-6_0.5- | MS1-7_0.0- | MS1-7_0.5- | MS1-7_0.9- |
|                          |       | 0.2        | 0.6        | 0.2        | 0.6        | 1.0        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 5          | 6          | 7          | 3          | 7          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-1  | SE71036-2  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | MS1-7_1.4- | MS1-8_0.0- | MS1-8_0.5- | MS1-9_0.0- | MS1-9_0.5- |
|                          |       | 1.5        | 0.2        | 0.6        | 0.2        | 0.6        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 6          | 17         | 15         | 6          | 5          |



REPORT NO: SE71036 PROJECT: EC00233AA

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS1-10_0.  | MS1-10_0.  | MS1-11_0.  | MS1-11_0.  | MS1-11_0.  |
|                          |       | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 9-1.0      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 10         | 8          | 6          | 5          | 12         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-2  | SE71036-3  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | MS1-12_0.  | MS1-12_0.  | MS1-13_0.  | MS1-13_0.  | MS1-14_0.  |
|                          |       | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 9          | 7          | 8          | 9          | 9          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE71036-3  | SE71036-3  | SE71036-3  | SE71036-3  | SE71036-3  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS1-14_0.  | MS1-15_0.  | MS1-15_0.  | MS1-16_0.  | MS1-16_0.  |
|                          |       | 5-0.6      | 0-0.2      | 5-0.6      | 0-0.2      | 5-0.6      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 12         | 5          | 10         | 12         | 9          |

| Moisture                 |       |            |            |
|--------------------------|-------|------------|------------|
| Our Reference:           | UNITS | SE71036-3  | SE71036-3  |
|                          |       | 6          | 7          |
| Your Reference           |       | QC6        | QC7        |
| Sample Matrix            |       | Soil       | Soil       |
| Date Sampled             |       | 30/07/2009 | 30/07/2009 |
| Date Analysed (moisture) |       | 4/08/2009  | 4/08/2009  |
| Moisture                 | %     | 14         | 9          |

| sed on APHA 21st Edition, 4500-H+. For water analyses the holding time requirement specified in APHA was not met be measured within 15 minutes after sampling).  appropriate sample preparation / digestion process. Based on |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| appropriate sample preparation / digestion process. Based on                                                                                                                                                                  |
|                                                                                                                                                                                                                               |
| ving appropriate sample preparation or digestion process.                                                                                                                                                                     |
| extracted with methanol, purged and concentrated by a purge MS technique. Water samples undergo the same analysis 30B and 8260B.                                                                                              |
| rgo analysis by either air drying, compositing, subsampling sture content is determined by drying the sample at 105 $\pm$                                                                                                     |
| /<br>3                                                                                                                                                                                                                        |

WORLD RECOGNISED
ACCREDITATION

REPORT NO: SE71036 PROJECT: EC00233AA

| QUALITY CONTROL                       | UNITS    | LOR | METHOD | Blank | Duplicate<br>Sm# | Duplicate                  |
|---------------------------------------|----------|-----|--------|-------|------------------|----------------------------|
| Inorganics                            |          |     |        |       |                  | Base + Duplicate +<br>%RPD |
| Date Extracted- (pH 1:5 soil: Water)  |          |     |        | [NT]  | SE71036-2<br>4   | 3/08/2009   <br>3/08/2009  |
| Date Analysed (pH 1:5<br>Soil: Water) |          |     |        | [NT]  | SE71036-2<br>4   | 3/08/2009   <br>3/08/2009  |
| pH 1:5 soil:water 1:5 soil:water      | pH Units | 0   | AN101  | [NT]  | SE71036-2<br>4   | 6.1    6.0    RPD: 2       |

| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank         | Duplicate<br>Sm# | Duplicate                 | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|---------------|------------------|---------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |               |                  | Base + Duplicate + %RPD   |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 3/08/20<br>09 | SE71036-1        | 3/08/2009   <br>3/08/2009 | SE71036-2 | 3/08/2009                  |
| Date Analysed (Metals)    |       |     |         | 3/08/20<br>09 | SE71036-1        | 3/08/2009   <br>3/08/2009 | SE71036-2 | 3/08/2009                  |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3            | SE71036-1        | 7    7    RPD: 0          | SE71036-2 | 85%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3          | SE71036-1        | 0.4    <0.3               | SE71036-2 | 82%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3          | SE71036-1        | 21    16    RPD: 27       | SE71036-2 | 85%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5          | SE71036-1        | 12    12    RPD: 0        | SE71036-2 | 94%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1            | SE71036-1        | 6    6    RPD: 0          | SE71036-2 | 75%                        |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5          | SE71036-1        | 31    28    RPD: 10       | SE71036-2 | 86%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5          | SE71036-1        | 40    34    RPD: 16       | SE71036-2 | 90%                        |

| QUALITY CONTROL  Mercury Cold Vapor/Hg Analyser | UNITS | LOR  | METHOD  | Blank         | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|-------------------------------------------------|-------|------|---------|---------------|------------------|-------------------------------------|-----------|------------------------------------------|
| Date Extracted (Mercury)                        |       |      |         | 3/08/20<br>09 | SE71036-1        | 3/08/2009   <br>3/08/2009           | SE71036-2 | 3/08/2009                                |
| Date Analysed<br>(Mercury)                      |       |      |         | 3/08/20<br>09 | SE71036-1        | 3/08/2009   <br>3/08/2009           | SE71036-2 | 3/08/2009                                |
| Mercury                                         | mg/kg | 0.05 | SEM-005 | <0.05         | SE71036-1        | <0.05    <0.05                      | SE71036-2 | 113%                                     |



| QUALITY CONTROL  BTEX in Water (µg/L) | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|---------------------------------------|-------|-----|---------|--------------|------------------|-------------------------------------|-----------|------------------------------------------|
| Date Extracted (BTEX)                 |       |     |         | 06/08/0      | [NT]             | [NT]                                | LCS       | 06/08/09                                 |
| Date Analysed (BTEX)                  |       |     |         | 06/08/0<br>9 | [NT]             | [NT]                                | LCS       | 06/08/09                                 |
| Benzene                               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 101%                                     |
| Toluene                               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 101%                                     |
| Ethylbenzene                          | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                                | LCS       | 101%                                     |
| Total Xylenes                         | μg/L  | 1.5 | SEO-018 | <1.5         | [NT]             | [NT]                                | LCS       | 101%                                     |
| Surrogate                             | %     | 0   | SEO-018 | 111          | [NT]             | [NT]                                | LCS       | 79%                                      |

| QUALITY CONTROL<br>Moisture | UNITS | LOR | METHOD | Blank |
|-----------------------------|-------|-----|--------|-------|
| Date Analysed (moisture)    |       |     |        | [NT]  |
| Moisture                    | %     | 1   | AN002  | <1    |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------|
| Date Extracted (Metals)                    |       | SE71036-1      | 3/08/2009   <br>3/08/2009           | SE71036-2<br>2 | 3/08/2009                                |
| Date Analysed (Metals)                     |       | SE71036-1      | 3/08/2009   <br>3/08/2009           | SE71036-2<br>2 | 3/08/2009                                |
| Arsenic                                    | mg/kg | SE71036-1      | 6    6    RPD: 0                    | SE71036-2<br>2 | 84%                                      |
| Cadmium                                    | mg/kg | SE71036-1<br>1 | 0.4    0.4    RPD: 0                | SE71036-2<br>2 | 83%                                      |
| Chromium                                   | mg/kg | SE71036-1<br>1 | 17    17    RPD: 0                  | SE71036-2<br>2 | 86%                                      |
| Copper                                     | mg/kg | SE71036-1<br>1 | 11    13    RPD: 17                 | SE71036-2<br>2 | 91%                                      |
| Lead                                       | mg/kg | SE71036-1<br>1 | 42    46    RPD: 9                  | SE71036-2<br>2 | 76%                                      |
| Nickel                                     | mg/kg | SE71036-1<br>1 | 32    30    RPD: 6                  | SE71036-2<br>2 | 84%                                      |
| Zinc                                       | mg/kg | SE71036-1<br>1 | 120    150    RPD: 22               | SE71036-2<br>2 | 92%                                      |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                  | Spike Sm#      | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|----------------|----------------------------|----------------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD |                | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       | SE71036-1<br>1 | 3/08/2009   <br>3/08/2009  | SE71036-2<br>2 | 3/08/2009                  |
| Date Analysed (Mercury)           |       | SE71036-1<br>1 | 3/08/2009   <br>3/08/2009  | SE71036-2<br>2 | 3/08/2009                  |
| Mercury                           | mg/kg | SE71036-1<br>1 | <0.05    <0.05             | SE71036-2<br>2 | 111%                       |

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|-------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Metals)                   |       | SE71036-2<br>1 | 3/08/2009   <br>3/08/2009         |
| Date Analysed (Metals)                    |       | SE71036-2<br>1 | 3/08/2009   <br>3/08/2009         |
| Arsenic                                   | mg/kg | SE71036-2<br>1 | 9    8    RPD: 12                 |
| Cadmium                                   | mg/kg | SE71036-2<br>1 | 0.3    0.3    RPD: 0              |
| Chromium                                  | mg/kg | SE71036-2<br>1 | 23    23    RPD: 0                |
| Copper                                    | mg/kg | SE71036-2<br>1 | 56    45    RPD: 22               |
| Lead                                      | mg/kg | SE71036-2<br>1 | 12    12    RPD: 0                |
| Nickel                                    | mg/kg | SE71036-2<br>1 | 22    24    RPD: 9                |
| Zinc                                      | mg/kg | SE71036-2<br>1 | 54    57    RPD: 5                |



REPORT NO: SE71036 PROJECT: EC00233AA

| QUALITY CONTROL Mercury Cold Vapor/Hg Analyser | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|------------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Mercury)                       |       | SE71036-2<br>1 | 3/08/2009   <br>3/08/2009         |
| Date Analysed (Mercury)                        |       | SE71036-2<br>1 | 3/08/2009   <br>3/08/2009         |
| Mercury                                        | mg/kg | SE71036-2<br>1 | <0.05    <0.05                    |

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|-------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Metals)                   |       | SE71036-3      | 3/08/2009   <br>3/08/2009         |
| Date Analysed (Metals)                    |       | SE71036-3<br>1 | 3/08/2009   <br>3/08/2009         |
| Arsenic                                   | mg/kg | SE71036-3<br>1 | 7    9    RPD: 25                 |
| Cadmium                                   | mg/kg | SE71036-3<br>1 | 0.4    0.4    RPD: 0              |
| Chromium                                  | mg/kg | SE71036-3<br>1 | 28    31    RPD: 10               |
| Copper                                    | mg/kg | SE71036-3<br>1 | 27    31    RPD: 14               |
| Lead                                      | mg/kg | SE71036-3<br>1 | 15    20    RPD: 29               |
| Nickel                                    | mg/kg | SE71036-3<br>1 | 19    21    RPD: 10               |
| Zinc                                      | mg/kg | SE71036-3<br>1 | 62    82    RPD: 28               |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                  |
|-----------------------------------|-------|----------------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD |
| Date Extracted (Mercury)          |       | SE71036-3<br>1 | 3/08/2009   <br>3/08/2009  |
| Date Analysed (Mercury)           |       | SE71036-3<br>1 | 3/08/2009   <br>3/08/2009  |
| Mercury                           | mg/kg | SE71036-3<br>1 | <0.05    <0.05             |

#### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced: 06/08/09 NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

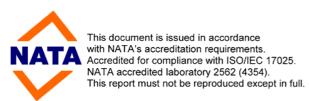
## **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

**Internal Standard**: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

## **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





# ANALYTICAL REPORT

5 August 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 CANBERRA ACT 2602

**Attention:** Chris Gunton

Your Reference: EC00233AA

Our Reference: SE70984 Samples: 94 Soils, 7 Waters

Received: 29/07/09

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

Client Services: Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

Nick Salarmis
Inorganics Signatory

1111

Organics Signatory Me


Huong **Erawford**Metals Signatory



| PAHs in Soil           |       |            |            |            |            |            |
|------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:         | UNITS | SE70984-7  | SE70984-7  | SE70984-7  | SE70984-7  | SE70984-7  |
|                        |       | 0          | 1          | 3          | 4          | 6          |
| Your Reference         |       | K3_0.0-0.2 | K3_0.5-0.6 | K2_0.0-0.2 | K2_0.5-0.6 | K1_0.0-0.2 |
| Sample Matrix          |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled           |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted         |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Date Analysed          |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Naphthalene            | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| 2-Methylnaphthalene    | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| 1-Methylnaphthalene    | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Acenaphthylene         | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Acenaphthene           | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Fluorene               | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Phenanthrene           | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Anthracene             | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Fluoranthene           | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Pyrene                 | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Benzo[a]anthracene     | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Chrysene               | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Benzo[b,k]fluoranthene | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Benzo[a]pyrene         | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Indeno[123-cd]pyrene   | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Dibenzo[ah]anthracene  | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Benzo[ghi]perylene     | mg/kg | <0.10      | <0.10      | <0.10      | <0.10      | <0.10      |
| Total PAHs (sum)       | mg/kg | <1.7       | <1.7       | <1.7       | <1.7       | <1.7       |
| Nitrobenzene-d5        | %     | 81         | 79         | 83         | 72         | 87         |
| 2-Fluorobiphenyl       | %     | 83         | 76         | 80         | 78         | 81         |
| p -Terphenyl-d14       | %     | 89         | 81         | 83         | 73         | 86         |
|                        |       |            |            |            |            |            |



| PAHs in Soil           |       |            |            |  |
|------------------------|-------|------------|------------|--|
| Our Reference:         | UNITS | SE70984-7  | SE70984-9  |  |
|                        |       | 7          | 7          |  |
| Your Reference         |       | K1_0.5-0.6 | QC4        |  |
| Sample Matrix          |       | Soil       | Soil       |  |
| Date Sampled           |       | 28/07/2009 | 28/07/2009 |  |
| Date Extracted         |       | 31/07/2009 | 31/07/2009 |  |
| Date Analysed          |       | 31/07/2009 | 31/07/2009 |  |
| Naphthalene            | mg/kg | <0.10      | <0.10      |  |
| 2-Methylnaphthalene    | mg/kg | <0.10      | <0.10      |  |
| 1-Methylnaphthalene    | mg/kg | <0.10      | <0.10      |  |
| Acenaphthylene         | mg/kg | <0.10      | <0.10      |  |
| Acenaphthene           | mg/kg | <0.10      | <0.10      |  |
| Fluorene               | mg/kg | <0.10      | <0.10      |  |
| Phenanthrene           | mg/kg | <0.10      | <0.10      |  |
| Anthracene             | mg/kg | <0.10      | <0.10      |  |
| Fluoranthene           | mg/kg | <0.10      | <0.10      |  |
| Pyrene                 | mg/kg | <0.10      | <0.10      |  |
| Benzo[a]anthracene     | mg/kg | <0.10      | <0.10      |  |
| Chrysene               | mg/kg | <0.10      | <0.10      |  |
| Benzo[b,k]fluoranthene | mg/kg | <0.20      | <0.20      |  |
| Benzo[a]pyrene         | mg/kg | <0.05      | <0.05      |  |
| Indeno[123-cd]pyrene   | mg/kg | <0.10      | <0.10      |  |
| Dibenzo[ah]anthracene  | mg/kg | <0.10      | <0.10      |  |
| Benzo[ghi]perylene     | mg/kg | <0.10      | <0.10      |  |
| Total PAHs (sum)       | mg/kg | <1.7       | <1.7       |  |
| Nitrobenzene-d5        | %     | 87         | 89         |  |
| 2-Fluorobiphenyl       | %     | 87         | 90         |  |
| p -Terphenyl-d14       | %     | 89         | 92         |  |
|                        |       |            |            |  |



| OC Pesticides in Soil                   |       |                  |                  |            |            |                  |
|-----------------------------------------|-------|------------------|------------------|------------|------------|------------------|
| Our Reference:                          | UNITS | SE70984-1        | SE70984-7        | SE70984-1  | SE70984-1  | SE70984-1        |
| Vaus Deference                          |       | 0040.00          | 0045.00          | 0          | 5          | 7                |
| Your Reference                          |       | OS19_0.0-<br>0.2 | OS15_0.0-<br>0.2 | RE35_0.0-0 | RE24_0.0-0 | RE30_0.0-0<br>.2 |
| Sample Matrix                           |       | Soil             | Soil             | Soil       | Soil       | Soil             |
| Date Sampled                            |       | 24/07/2009       | 24/07/2009       | 24/07/2009 | 24/07/2009 | 24/07/2009       |
| Date Extracted                          |       | 31/07/2009       | 31/07/2009       | 31/07/2009 | 31/07/2009 | 31/07/2009       |
| Date Analysed                           |       | 31/07/2009       | 31/07/2009       | 31/07/2009 | 31/07/2009 | 31/07/2009       |
| HCB                                     | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| alpha-BHC                               | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| gamma-BHC (Lindane)                     | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Heptachlor                              | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Aldrin                                  | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| beta-BHC                                | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| delta-BHC                               | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Heptachlor Epoxide                      | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| o,p-DDE                                 | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| alpha-Endosulfan                        | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| trans-Chlordane                         | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| cis-Chlordane                           | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| trans-Nonachlor                         | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| p,p-DDE                                 | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Dieldrin                                | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Endrin                                  | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| o,p-DDD                                 | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| o,p-DDT                                 | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| beta-Endosulfan                         | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| p,p-DDD                                 | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| p,p-DDT                                 | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Endosulfan Sulphate                     | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Endrin Aldehyde                         | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Methoxychlor                            | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| Endrin Ketone                           | mg/kg | <0.1             | <0.1             | <0.1       | <0.1       | <0.1             |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 103              | 107              | 93         | 101        | 101              |



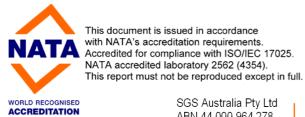
| OC Pesticides in Soil                   |       |                |                |                |                |            |
|-----------------------------------------|-------|----------------|----------------|----------------|----------------|------------|
| Our Reference:                          | UNITS | SE70984-1<br>9 | SE70984-2<br>3 | SE70984-2<br>4 | SE70984-2<br>8 | SE70984-2  |
| Your Reference                          |       | OS16_0.0-      | OS06_0.0-      | RE25_0.0-0     | RE41_0.0-0     | QC2        |
|                                         |       | 0.2            | 0.2            | .2             | .2             |            |
| Sample Matrix                           |       | Soil           | Soil           | Soil           | Soil           | Soil       |
| Date Sampled                            |       | 24/07/2009     | 24/07/2009     | 24/07/2009     | 24/07/2009     | 24/07/2009 |
| Date Extracted                          |       | 31/07/2009     | 31/07/2009     | 31/07/2009     | 31/07/2009     | 31/07/2009 |
| Date Analysed                           |       | 31/07/2009     | 31/07/2009     | 31/07/2009     | 31/07/2009     | 31/07/200  |
| HCB                                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| alpha-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Heptachlor                              | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Aldrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| beta-BHC                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| delta-BHC                               | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Heptachlor Epoxide                      | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| o,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| alpha-Endosulfan                        | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| trans-Chlordane                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| cis-Chlordane                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| trans-Nonachlor                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| p,p-DDE                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Dieldrin                                | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Endrin                                  | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| o,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| o,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| beta-Endosulfan                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| p,p-DDD                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| p,p-DDT                                 | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Endosulfan Sulphate                     | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Endrin Aldehyde                         | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Methoxychlor                            | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| Endrin Ketone                           | mg/kg | <0.1           | <0.1           | <0.1           | <0.1           | <0.1       |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 98             | 99             | 102            | 107            | 108        |



| OC Pesticides in Soil                   |       |                |                  |                |                |           |
|-----------------------------------------|-------|----------------|------------------|----------------|----------------|-----------|
| Our Reference:                          | UNITS | SE70984-3<br>2 | SE70984-3<br>4   | SE70984-4<br>0 | SE70984-4<br>2 | SE70984-4 |
| Your Reference                          |       | RE12_0.0-0     | OS01_0.0-<br>0.2 | RE16_0.0-0     | RE17_0.0-0     | RE27_0.0- |
| Sample Matrix                           |       | Soil           | Soil             | Soil           | Soil           | Soil      |
| Date Sampled                            |       | 27/07/2009     | 27/07/2009       | 27/07/2009     | 27/07/2009     | 27/07/200 |
| Date Extracted                          |       | 31/07/2009     | 31/07/2009       | 31/07/2009     | 31/07/2009     | 31/07/200 |
| Date Analysed                           |       | 31/07/2009     | 31/07/2009       | 31/07/2009     | 31/07/2009     | 31/07/200 |
| HCB                                     | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| alpha-BHC                               | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Heptachlor                              | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Aldrin                                  | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| beta-BHC                                | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| delta-BHC                               | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Heptachlor Epoxide                      | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| o,p-DDE                                 | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| alpha-Endosulfan                        | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| trans-Chlordane                         | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| cis-Chlordane                           | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| trans-Nonachlor                         | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| p,p-DDE                                 | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Dieldrin                                | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Endrin                                  | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| o,p-DDD                                 | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| o,p-DDT                                 | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| beta-Endosulfan                         | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| p,p-DDD                                 | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| p,p-DDT                                 | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Endosulfan Sulphate                     | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Endrin Aldehyde                         | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Methoxychlor                            | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| Endrin Ketone                           | mg/kg | <0.1           | <0.1             | <0.1           | <0.1           | <0.1      |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 105            | 103              | 105            | 104            | 107       |

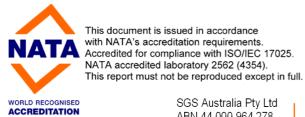


| OC Pesticides in Soil                   |       |                |
|-----------------------------------------|-------|----------------|
| Our Reference:                          | UNITS | SE70984-5<br>2 |
| Your Reference                          |       | RE39_0.0-0     |
| Sample Matrix                           |       | Soil           |
| Date Sampled                            |       | 27/07/2009     |
| Date Extracted                          |       | 31/07/2009     |
| Date Analysed                           |       | 31/07/2009     |
| HCB                                     | mg/kg | <0.1           |
| alpha-BHC                               | mg/kg | <0.1           |
| gamma-BHC (Lindane)                     | mg/kg | <0.1           |
| Heptachlor                              | mg/kg | <0.1           |
| Aldrin                                  | mg/kg | <0.1           |
| beta-BHC                                | mg/kg | <0.1           |
| delta-BHC                               | mg/kg | <0.1           |
| Heptachlor Epoxide                      | mg/kg | <0.1           |
| o,p-DDE                                 | mg/kg | <0.1           |
| alpha-Endosulfan                        | mg/kg | <0.1           |
| trans-Chlordane                         | mg/kg | <0.1           |
| cis-Chlordane                           | mg/kg | <0.1           |
| trans-Nonachlor                         | mg/kg | <0.1           |
| p,p-DDE                                 | mg/kg | <0.1           |
| Dieldrin                                | mg/kg | <0.1           |
| Endrin                                  | mg/kg | <0.1           |
| o,p-DDD                                 | mg/kg | <0.1           |
| o,p-DDT                                 | mg/kg | <0.1           |
| beta-Endosulfan                         | mg/kg | <0.1           |
| p,p-DDD                                 | mg/kg | <0.1           |
| p,p-DDT                                 | mg/kg | <0.1           |
| Endosulfan Sulphate                     | mg/kg | <0.1           |
| Endrin Aldehyde                         | mg/kg | <0.1           |
| Methoxychlor                            | mg/kg | <0.1           |
| Endrin Ketone                           | mg/kg | <0.1           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 101            |



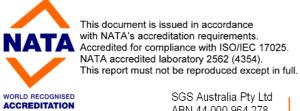

| OP Pesticides in Soil by GCMS |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                | UNITS | SE70984-1  | SE70984-7  | SE70984-1  | SE70984-1  | SE70984-1  |
|                               |       |            |            | 0          | 5          | 7          |
| Your Reference                |       | OS19_0.0-  | OS15_0.0-  | RE35_0.0-0 | RE24_0.0-0 | RE30_0.0-0 |
|                               |       | 0.2        | 0.2        | .2         | .2         | .2         |
| Sample Matrix                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                  |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted                |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Date Analysed                 |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 80         | 84         | 92         | 88         | 76         |
| d14-p-Terphenyl (Surr)        | %     | 92         | 92         | 80         | 92         | 84         |

| OP Pesticides in Soil by GCMS |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                | UNITS | SE70984-1  | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  |
|                               |       | 9          | 3          | 4          | 8          | 9          |
| Your Reference                |       | OS16_0.0-  | OS06_0.0-  | RE25_0.0-0 | RE41_0.0-0 | QC2        |
|                               |       | 0.2        | 0.2        | .2         | .2         |            |
| Sample Matrix                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                  |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted                |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Date Analysed                 |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 92         | 84         | 92         | 88         | 92         |
| d14-p-Terphenyl (Surr)        | %     | 104        | 92         | 96         | 96         | 96         |


| OP Pesticides in Soil by GCMS |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                | UNITS | SE70984-3  | SE70984-3  | SE70984-4  | SE70984-4  | SE70984-4  |
|                               |       | 2          | 4          | 0          | 2          | 6          |
| Your Reference                |       | RE12_0.0-0 | OS01_0.0-  | RE16_0.0-0 | RE17_0.0-0 | RE27_0.0-0 |
|                               |       | .2         | 0.2        | .2         | .2         | .2         |
| Sample Matrix                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                  |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted                |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Date Analysed                 |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 104        | 88         | 92         | 92         | 92         |
| d14-p-Terphenyl (Surr)        | %     | 108        | 92         | 92         | 92         | 96         |

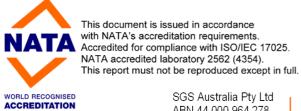
| OP Pesticides in Soil by GCMS |       |                |
|-------------------------------|-------|----------------|
| Our Reference:                | UNITS | SE70984-5<br>2 |
| Your Reference                |       | RE39_0.0-0     |
| Sample Matrix                 |       | Soil           |
| Date Sampled                  |       | 27/07/2009     |
| Date Extracted                |       | 31/07/2009     |
| Date Analysed                 |       | 31/07/2009     |
| Dichlorvos                    | mg/kg | <1             |
| Dimethoate                    | mg/kg | <1             |
| Diazinon                      | mg/kg | <0.5           |
| Fenitrothion                  | mg/kg | <0.2           |
| Malathion                     | mg/kg | <0.20          |
| Chlorpyrifos-ethyl            | mg/kg | <0.2           |
| Parathion-ethyl               | mg/kg | <0.2           |
| Bromofos-ethyl                | mg/kg | <0.2           |
| Methidathion                  | mg/kg | <0.5           |
| Ethion                        | mg/kg | <0.2           |
| Azinphos-methyl               | mg/kg | <0.20          |
| 2-fluorobiphenyl (Surr)       | %     | 80             |
| d14-p-Terphenyl (Surr)        | %     | 84             |
|                               |       |                |




| Inorganics                           |          |            |            |            |            |            |
|--------------------------------------|----------|------------|------------|------------|------------|------------|
| Our Reference:                       | UNITS    | SE70984-7  | SE70984-7  | SE70984-7  | SE70984-7  | SE70984-7  |
|                                      |          | 0          | 1          | 3          | 4          | 6          |
| Your Reference                       |          | K3_0.0-0.2 | K3_0.5-0.6 | K2_0.0-0.2 | K2_0.5-0.6 | K1_0.0-0.2 |
| Sample Matrix                        |          | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                         |          | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted- (pH 1:5 soil: Water) |          | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| Date Analysed (pH 1:5 Soil: Water)   |          | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  | 3/08/2009  |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 7.9        | 8.0        | 8.4        | 8.7        | 8.2        |

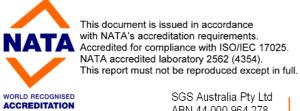
| Inorganics                           |          |            |            |
|--------------------------------------|----------|------------|------------|
| Our Reference:                       | UNITS    | SE70984-7  | SE70984-9  |
|                                      |          | 7          | 7          |
| Your Reference                       |          | K1_0.5-0.6 | QC4        |
| Sample Matrix                        |          | Soil       | Soil       |
| Date Sampled                         |          | 28/07/2009 | 28/07/2009 |
| Date Extracted- (pH 1:5 soil: Water) |          | 3/08/2009  | 3/08/2009  |
| Date Analysed (pH 1:5 Soil: Water)   |          | 3/08/2009  | 3/08/2009  |
| pH 1:5 soil:water 1:5 soil:water     | pH Units | 8.6        | 7.9        |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-1  | SE70984-2  | SE70984-4  | SE70984-5  | SE70984-7  |
| Your Reference            |       | OS19_0.0-  | OS20_0.0-  | OS18_0.0-  | OS17_0.0-  | OS15_0.0-  |
|                           |       | 0.2        | 0.2        | 0.2        | 0.2        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | <3         | 23         | 4          | 3          | 3          |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | <0.3       | <0.3       |
| Chromium                  | mg/kg | 13         | 15         | 12         | 14         | 14         |
| Copper                    | mg/kg | 12         | 12         | 9.4        | 9.3        | 7.5        |
| Lead                      | mg/kg | 9.5        | 15         | 8          | 13         | 9          |
| Nickel                    | mg/kg | 13         | 19         | 17         | 12         | 10         |
| Zinc                      | mg/kg | 22         | 48         | 20         | 21         | 19         |

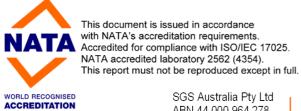
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-9  | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-1  |
|                           |       |            | 0          | 2          | 3          | 4          |
| Your Reference            |       | OS14_0.0-  | RE35_0.0-0 | OS13_0.0-  | RE31_0.0-0 | RE32_0.0-0 |
|                           |       | 0.2        | .2         | 0.2        | .2         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | <3         | <3         | 11         | 5          | 7          |
| Cadmium                   | mg/kg | <0.3       | <0.3       | 0.3        | 0.4        | <0.3       |
| Chromium                  | mg/kg | 15         | 16         | 20         | 18         | 14         |
| Copper                    | mg/kg | 8.6        | 11         | 8.2        | 10         | 11         |
| Lead                      | mg/kg | 10         | 12         | 16         | 36         | 24         |
| Nickel                    | mg/kg | 11         | 11         | 23         | 14         | 15         |
| Zinc                      | mg/kg | 24         | 38         | 64         | 70         | 60         |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-2  |
|                           |       | 5          | 7          | 8          | 9          | 1          |
| Your Reference            |       | RE24_0.0-0 | RE30_0.0-0 | RE33_0.0-0 | OS16_0.0-  | OS03_0.0-  |
|                           |       | .2         | .2         | .2         | 0.2        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 3          | 11         | 5          | 6          | 6          |
| Cadmium                   | mg/kg | <0.3       | 0.5        | <0.3       | <0.3       | 0.4        |
| Chromium                  | mg/kg | 17         | 16         | 16         | 17         | 25         |
| Copper                    | mg/kg | 3.6        | 12         | 11         | 14         | 20         |
| Lead                      | mg/kg | 25         | 99         | 21         | 20         | 7          |
| Nickel                    | mg/kg | 4.3        | 11         | 12         | 14         | 23         |
| Zinc                      | mg/kg | 31         | 160        | 61         | 65         | 34         |

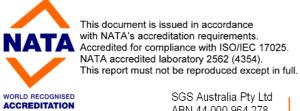
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  |
|                           |       | 2          | 3          | 4          | 6          | 8          |
| Your Reference            |       | OS04_0.0-  | OS06_0.0-  | RE25_0.0-0 | RE29_0.0-0 | RE41_0.0-0 |
|                           |       | 0.2        | 0.2        | .2         | .2         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 3          | 9          | 3          | 5          | 6          |
| Cadmium                   | mg/kg | 0.91       | <0.3       | <0.3       | <0.3       | 0.3        |
| Chromium                  | mg/kg | 37         | 21         | 13         | 21         | 18         |
| Copper                    | mg/kg | 8.6        | 30         | 12         | 9.9        | 15         |
| Lead                      | mg/kg | 11         | 130        | 13         | 14         | 16         |
| Nickel                    | mg/kg | 15         | 24         | 14         | 19         | 23         |
| Zinc                      | mg/kg | 36         | 56         | 58         | 56         | 63         |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-2  | SE70984-3  | SE70984-3  | SE70984-3  | SE70984-3  |
|                           |       | 9          | 2          | 4          | 5          | 7          |
| Your Reference            |       | QC2        | RE12_0.0-0 | OS01_0.0-  | RE07_0.0-0 | RE08_0.0-0 |
|                           |       |            | .2         | 0.2        | .2         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 24/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 6          | 4          | 12         | 7          | 7          |
| Cadmium                   | mg/kg | 0.3        | 0.3        | 0.3        | <0.3       | <0.3       |
| Chromium                  | mg/kg | 19         | 17         | 18         | 17         | 20         |
| Copper                    | mg/kg | 16         | 16         | 12         | 6.3        | 11         |
| Lead                      | mg/kg | 16         | 13         | 26         | 14         | 34         |
| Nickel                    | mg/kg | 22         | 28         | 21         | 12         | 17         |
| Zinc                      | mg/kg | 66         | 78         | 84         | 26         | 52         |

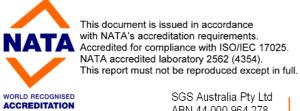
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-3  | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-4  |
|                           |       | 9          | 0          | 2          | 3          | 4          |
| Your Reference            |       | RE11_0.0-0 | RE16_0.0-0 | RE17_0.0-0 | RE23_0.0-0 | OS12_0.0-  |
|                           |       | .2         | .2         | .2         | .2         | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | <3         | 3          | <3         | <3         | <3         |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | <0.3       | <0.3       |
| Chromium                  | mg/kg | 18         | 17         | 17         | 23         | 14         |
| Copper                    | mg/kg | 7.3        | 14         | 15         | 15         | 9.8        |
| Lead                      | mg/kg | 6          | 20         | 24         | 54         | 11         |
| Nickel                    | mg/kg | 9.7        | 18         | 16         | 16         | 13         |
| Zinc                      | mg/kg | 36         | 62         | 52         | 69         | 20         |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-5  |
|                           |       | 5          | 6          | 7          | 8          | 0          |
| Your Reference            |       | OS11_0.0-  | RE27_0.0-0 | RE21_0.0-0 | RE18_0.0-0 | OS09_0.0-  |
|                           |       | 0.2        | .2         | .2         | .2         | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | <3         | <3         | <3         | 10         | 5          |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | 2.1        | 0.5        |
| Chromium                  | mg/kg | 20         | 21         | 14         | 19         | 21         |
| Copper                    | mg/kg | 6.4        | 7.5        | 8.1        | 16         | 14         |
| Lead                      | mg/kg | 13         | 9.6        | 12         | 280        | 24         |
| Nickel                    | mg/kg | 12         | 14         | 8.7        | 18         | 23         |
| Zinc                      | mg/kg | 43         | 48         | 40         | 1,100      | 120        |

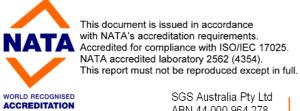
| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-5  | SE70984-5  | SE70984-5  | SE70984-5  | SE70984-5  |
|                           |       | 2          | 3          | 4          | 5          | 7          |
| Your Reference            |       | RE39_0.0-0 | RE40_0.0-0 | RE38_0.0-0 | RE37_0.0-0 | RE36_0.0-0 |
|                           |       | .2         | .2         | .2         | .2         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | <3         | 10         | <3         | 8          | 5          |
| Cadmium                   | mg/kg | <0.3       | 0.6        | <0.3       | <0.3       | 0.4        |
| Chromium                  | mg/kg | 26         | 23         | 19         | 28         | 27         |
| Copper                    | mg/kg | 5.7        | 6.4        | 1.0        | 4.4        | 7.6        |
| Lead                      | mg/kg | 4          | 11         | 3          | 7          | 10         |
| Nickel                    | mg/kg | 21         | 12         | 10         | 13         | 13         |
| Zinc                      | mg/kg | 28         | 69         | 22         | 34         | 43         |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-5  | SE70984-6  | SE70984-6  | SE70984-6  | SE70984-6  |
|                           |       | 8          | 0          | 3          | 4          | 6          |
| Your Reference            |       | RE34_0.0-0 | QC3        | OS02_0.0-  | RE01_0.0-0 | RE03_0.0-0 |
|                           |       | .2         |            | 0.2        | .2         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 27/07/2009 | 27/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 130        | 110        | 3          | 8          | 5          |
| Cadmium                   | mg/kg | 0.5        | 0.4        | <0.3       | 0.4        | <0.3       |
| Chromium                  | mg/kg | 20         | 20         | 14         | 28         | 18         |
| Copper                    | mg/kg | 40         | 34         | 5.5        | 13         | 10         |
| Lead                      | mg/kg | 85         | 76         | 18         | 68         | 30         |
| Nickel                    | mg/kg | 32         | 28         | 14         | 20         | 17         |
| Zinc                      | mg/kg | 140        | 130        | 51         | 170        | 65         |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-6  | SE70984-6  | SE70984-7  | SE70984-8  | SE70984-8  |
|                           |       | 8          | 9          | 9          | 0          | 1          |
| Your Reference            |       | RE04_0.0-0 | RE09_0.0-0 | MS3-1_0.0- | MS3-2_0.0- | MS3-3_0.0- |
|                           |       | .2         | .2         | 0.2        | 0.2        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 4          | 4          | 1,700      | 1,600      | 50         |
| Cadmium                   | mg/kg | 0.4        | <0.3       | 12         | 11         | 1.6        |
| Chromium                  | mg/kg | 16         | 17         | 21         | 21         | 22         |
| Copper                    | mg/kg | 15         | 11         | 110        | 92         | 34         |
| Lead                      | mg/kg | 20         | 25         | 1,600      | 1,300      | 230        |
| Nickel                    | mg/kg | 26         | 11         | 18         | 18         | 20         |
| Zinc                      | mg/kg | 66         | 60         | 2,200      | 2,100      | 420        |




| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  |
|                           |       | 2          | 3          | 4          | 5          | 6          |
| Your Reference            |       | MS3-3_0.5- | MS3-4_0.0- | MS3-5_0.0- | MS3-6_0.0- | MS3-7_0.0- |
|                           |       | 0.6        | 0.2        | 0.2        | 0.2        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 47         | 120        | 1,800      | 1,900      | 1,500      |
| Cadmium                   | mg/kg | 1.4        | 2.1        | 13         | 13         | 23         |
| Chromium                  | mg/kg | 21         | 25         | 22         | 23         | 6.7        |
| Copper                    | mg/kg | 38         | 42         | 92         | 100        | 100        |
| Lead                      | mg/kg | 220        | 330        | 1,700      | 1,700      | 1,200      |
| Nickel                    | mg/kg | 19         | 21         | 19         | 20         | 6.1        |
| Zinc                      | mg/kg | 370        | 470        | 2,300      | 2,300      | 3,500      |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-9  | SE70984-9  |
|                           |       | 7          | 8          | 9          | 0          | 1          |
| Your Reference            |       | MS3-8_0.0- | MS3-9_0.0- | MS3-10_0.  | MS3-11_0.  | MS3-12_0.  |
|                           |       | 0.2        | 0.2        | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 2,900      | 110        | 100        | 100        | 140        |
| Cadmium                   | mg/kg | 47         | 2.1        | 2.0        | 0.7        | 1.1        |
| Chromium                  | mg/kg | 8.1        | 24         | 24         | 13         | 20         |
| Copper                    | mg/kg | 260        | 40         | 41         | 33         | 42         |
| Lead                      | mg/kg | 5,200      | 280        | 290        | 280        | 350        |
| Nickel                    | mg/kg | 7.4        | 21         | 21         | 14         | 19         |
| Zinc                      | mg/kg | 4,500      | 450        | 450        | 330        | 450        |



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70984-9  | SE70984-9  | SE70984-9  | SE70984-9  | SE70984-9  |
|                           |       | 2          | 3          | 4          | 5          | 6          |
| Your Reference            |       | MS3-13_0.  | MS3-13_0.  | MS3-14_0.  | MS3-15_0.  | MS3-15_0.  |
|                           |       | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      | 5-0.6      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                   | mg/kg | 130        | 110        | 130        | 110        | 82         |
| Cadmium                   | mg/kg | 0.9        | 0.9        | 0.95       | 1.9        | 1.6        |
| Chromium                  | mg/kg | 18         | 13         | 17         | 24         | 24         |
| Copper                    | mg/kg | 42         | 38         | 42         | 39         | 36         |
| Lead                      | mg/kg | 340        | 340        | 380        | 290        | 220        |
| Nickel                    | mg/kg | 17         | 17         | 18         | 21         | 20         |
| Zinc                      | mg/kg | 410        | 390        | 410        | 450        | 370        |

| Metals in Soil by ICP-OES |       |            |
|---------------------------|-------|------------|
| Our Reference:            | UNITS | SE70984-9  |
|                           |       | 8          |
| Your Reference            |       | QC5        |
| Sample Matrix             |       | Soil       |
| Date Sampled              |       | 28/07/2009 |
| Date Extracted (Metals)   |       | 30/07/2009 |
| Date Analysed (Metals)    |       | 30/07/2009 |
| Arsenic                   | mg/kg | 1,700      |
| Cadmium                   | mg/kg | 10         |
| Chromium                  | mg/kg | 20         |
| Copper                    | mg/kg | 110        |
| Lead                      | mg/kg | 1,300      |
| Nickel                    | mg/kg | 17         |
| Zinc                      | mg/kg | 2,000      |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-1  | SE70984-2  | SE70984-4  | SE70984-5  | SE70984-7  |
| Your Reference                 |       | OS19_0.0-  | OS20_0.0-  | OS18_0.0-  | OS17_0.0-  | OS15_0.0-  |
|                                |       | 0.2        | 0.2        | 0.2        | 0.2        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-9  | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-1  |
|                                |       |            | 0          | 2          | 3          | 4          |
| Your Reference                 |       | OS14_0.0-  | RE35_0.0-0 | OS13_0.0-  | RE31_0.0-0 | RE32_0.0-0 |
|                                |       | 0.2        | .2         | 0.2        | .2         | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-2  |
|                                |       | 5          | 7          | 8          | 9          | 1          |
| Your Reference                 |       | RE24_0.0-0 | RE30_0.0-0 | RE33_0.0-0 | OS16_0.0-  | OS03_0.0-  |
|                                |       | .2         | .2         | .2         | 0.2        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  |
|                                |       | 2          | 3          | 4          | 6          | 8          |
| Your Reference                 |       | OS04_0.0-  | OS06_0.0-  | RE25_0.0-0 | RE29_0.0-0 | RE41_0.0-0 |
|                                |       | 0.2        | 0.2        | .2         | .2         | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |



This document is issued in accordance with NATA's accreditation requirements. NATA with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-2  | SE70984-3  | SE70984-3  | SE70984-3  | SE70984-3  |
|                                |       | 9          | 2          | 4          | 5          | 7          |
| Your Reference                 |       | QC2        | RE12_0.0-0 | OS01_0.0-  | RE07_0.0-0 | RE08_0.0-0 |
|                                |       |            | .2         | 0.2        | .2         | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 24/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-3  | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-4  |
|                                |       | 9          | 0          | 2          | 3          | 4          |
| Your Reference                 |       | RE11_0.0-0 | RE16_0.0-0 | RE17_0.0-0 | RE23_0.0-0 | OS12_0.0-  |
|                                |       | .2         | .2         | .2         | .2         | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-5  |
|                                |       | 5          | 6          | 7          | 8          | 0          |
| Your Reference                 |       | OS11_0.0-  | RE27_0.0-0 | RE21_0.0-0 | RE18_0.0-0 | OS09_0.0-  |
|                                |       | 0.2        | .2         | .2         | .2         | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-5  | SE70984-5  | SE70984-5  | SE70984-5  | SE70984-5  |
|                                |       | 2          | 3          | 4          | 5          | 7          |
| Your Reference                 |       | RE39_0.0-0 | RE40_0.0-0 | RE38_0.0-0 | RE37_0.0-0 | RE36_0.0-0 |
|                                |       | .2         | .2         | .2         | .2         | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

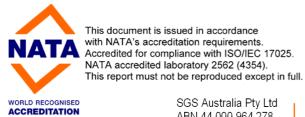
Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-5  | SE70984-6  | SE70984-6  | SE70984-6  | SE70984-6  |
|                                |       | 8          | 0          | 3          | 4          | 6          |
| Your Reference                 |       | RE34_0.0-0 | QC3        | OS02_0.0-  | RE01_0.0-0 | RE03_0.0-0 |
|                                |       | .2         |            | 0.2        | .2         | .2         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 27/07/2009 | 27/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

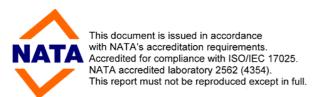
| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-6  | SE70984-6  | SE70984-7  | SE70984-8  | SE70984-8  |
|                                |       | 8          | 9          | 9          | 0          | 1 1        |
| Your Reference                 |       | RE04_0.0-0 | RE09_0.0-0 | MS3-1_0.0- | MS3-2_0.0- | MS3-3_0.0- |
|                                |       | .2         | .2         | 0.2        | 0.2        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | 0.13       | 0.09       | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  |
|                                |       | 2          | 3          | 4          | 5          | 6          |
| Your Reference                 |       | MS3-3_0.5- | MS3-4_0.0- | MS3-5_0.0- | MS3-6_0.0- | MS3-7_0.0- |
|                                |       | 0.6        | 0.2        | 0.2        | 0.2        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | 0.09       | 0.11       | 0.12       |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-9  | SE70984-9  |
|                                |       | 7          | 8          | 9          | 0          | 1          |
| Your Reference                 |       | MS3-8_0.0- | MS3-9_0.0- | MS3-10_0.  | MS3-11_0.  | MS3-12_0.  |
|                                |       | 0.2        | 0.2        | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury                        | mg/kg | 0.11       | <0.05      | <0.05      | <0.05      | 0.05       |



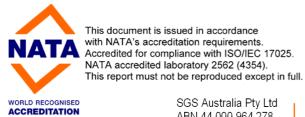

This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.


Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Mercury Cold Vapor/Hg Analyser |       |                    |                    |                    |                    |                    |
|--------------------------------|-------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Our Reference:                 | UNITS | SE70984-9<br>2     | SE70984-9<br>3     | SE70984-9<br>4     | SE70984-9<br>5     | SE70984-9<br>6     |
| Your Reference                 |       | MS3-13_0.<br>0-0.2 | MS3-13_0.<br>5-0.6 | MS3-14_0.<br>0-0.2 | MS3-15_0.<br>0-0.2 | MS3-15_0.<br>5-0.6 |
| Sample Matrix                  |       | Soil               | Soil               | Soil               | Soil               | Soil               |
| Date Sampled                   |       | 28/07/2009         | 28/07/2009         | 28/07/2009         | 28/07/2009         | 28/07/2009         |
| Date Extracted (Mercury)       |       | 30/07/2009         | 30/07/2009         | 30/07/2009         | 30/07/2009         | 30/07/2009         |
| Date Analysed (Mercury)        |       | 30/07/2009         | 30/07/2009         | 30/07/2009         | 30/07/2009         | 30/07/2009         |
| Mercury                        | mg/kg | 0.06               | 0.07               | 0.06               | <0.05              | <0.05              |

| Mercury Cold Vapor/Hg Analyser |       |            |
|--------------------------------|-------|------------|
| Our Reference:                 | UNITS | SE70984-9  |
|                                |       | 8          |
| Your Reference                 |       | QC5        |
| Sample Matrix                  |       | Soil       |
| Date Sampled                   |       | 28/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 |
| Mercury                        | mg/kg | 0.10       |




| PAHs in Water          |       |            |
|------------------------|-------|------------|
| Our Reference:         | UNITS | SE70984-9  |
|                        |       | 9          |
| Your Reference         |       | WB4        |
| Sample Matrix          |       | Water      |
| Date Sampled           |       | 28/07/2009 |
| Date Extracted         |       | 30/07/2009 |
| Date Analysed          |       | 30/07/2009 |
| Naphthalene            | μg/L  | <0.50      |
| 2-Methylnaphthalene    | μg/L  | <0.5       |
| 1-Methylnaphthalene    | μg/L  | <0.5       |
| Acenaphthylene         | μg/L  | <0.50      |
| Acenaphthene           | μg/L  | <0.50      |
| Fluorene               | μg/L  | <0.50      |
| Phenanthrene           | μg/L  | <0.50      |
| Anthracene             | μg/L  | <0.50      |
| Fluoranthene           | μg/L  | <0.50      |
| Pyrene                 | μg/L  | <0.50      |
| Benzo[a]anthracene     | μg/L  | <0.50      |
| Chrysene               | μg/L  | <0.50      |
| Benzo[b,k]fluoranthene | μg/L  | <1.0       |
| Benzo[a]pyrene         | μg/L  | <0.50      |
| Indeno[123-cd]pyrene   | μg/L  | <0.50      |
| Dibenzo[ah]anthracene  | μg/L  | <0.50      |
| Benzo[ghi]perylene     | μg/L  | <0.50      |
| Total PAHs             | μg/L  | <9         |
| Nitrobenzene-d5        | %     | 72         |
| 2-Fluorobiphenyl       | %     | 79         |
| p -Terphenyl-d14       | %     | 82         |



| OC Pesticides in Water                  |       |                |
|-----------------------------------------|-------|----------------|
| Our Reference:                          | UNITS | SE70984-3<br>0 |
| Your Reference                          |       | WB2            |
| Sample Matrix                           |       | Water          |
| Date Sampled                            |       | 24/07/2009     |
| Date Extracted                          |       | 30/07/2009     |
| Date Analysed                           |       | 30/07/2009     |
| HCB                                     | μg/L  | <0.2           |
| alpha-BHC                               | μg/L  | <0.2           |
| gamma-BHC(lindane)                      | μg/L  | <0.2           |
| Heptachlor                              | μg/L  | <0.2           |
| Aldrin                                  | μg/L  | <0.2           |
| beta-BHC                                | μg/L  | <0.2           |
| delta-BHC                               | μg/L  | <0.2           |
| Heptachlor Epoxide                      | μg/L  | <0.2           |
| o,p-DDE                                 | μg/L  | <0.2           |
| <i>alpha-</i> Endosulfan                | μg/L  | <0.2           |
| trans-Chlordane                         | μg/L  | <0.2           |
| cis-Chlordane                           | μg/L  | <0.2           |
| trans-Nonachlor                         | μg/L  | <0.2           |
| p,p-DDE                                 | μg/L  | <0.2           |
| Dieldrin                                | μg/L  | <0.2           |
| Endrin                                  | μg/L  | <0.2           |
| o,p-DDD                                 | μg/L  | <0.2           |
| o,p-DDT                                 | μg/L  | <0.2           |
| beta-Endosulfan                         | μg/L  | <0.2           |
| p,p-DDD                                 | μg/L  | <0.2           |
| p,p-DDT                                 | μg/L  | <0.2           |
| Endosulfan Sulphate                     | μg/L  | <0.2           |
| Endrin Aldehyde                         | μg/L  | <0.2           |
| Methoxychlor                            | μg/L  | <0.2           |
| Endrin Ketone                           | μg/L  | <0.2           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 75             |

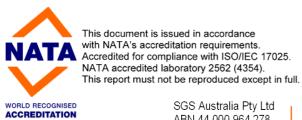


| OP Pesticides in Water by GCMS |       |            |
|--------------------------------|-------|------------|
| Our Reference:                 | UNITS | SE70984-3  |
|                                |       | 0          |
| Your Reference                 |       | WB2        |
| Sample Matrix                  |       | Water      |
| Date Sampled                   |       | 24/07/2009 |
| Date Extracted                 |       | 30/07/2009 |
| Date Analysed                  |       | 30/07/2009 |
| Dichlorvos                     | μg/L  | <1         |
| Dimethoate                     | μg/L  | <1         |
| Diazinon                       | μg/L  | <0.5       |
| Fenitrothion                   | μg/L  | <0.2       |
| Malathion                      | μg/L  | <0.20      |
| Chlorpyrifos-ethyl             | μg/L  | <0.2       |
| Parathion-ethyl                | μg/L  | <0.2       |
| Bromofos-ethyl                 | μg/L  | <0.2       |
| Methidathion                   | μg/L  | <0.5       |
| Ethion                         | μg/L  | <0.2       |
| Azinphos-methyl                | μg/L  | <0.20      |
| 2-fluorobiphenyl (Surr)        | %     | 77         |
| d14-p-Terphenyl (Surr)         | %     | 83         |



| Trace HM (ICP-MS)-Dissolved   |       |            |            |            |
|-------------------------------|-------|------------|------------|------------|
| Our Reference:                | UNITS | SE70984-3  | SE70984-6  | SE70984-9  |
|                               |       | 0          | 1          | 9          |
| Your Reference                |       | WB2        | WB3        | WB4        |
| Sample Matrix                 |       | Water      | Water      | Water      |
| Date Sampled                  |       | 24/07/2009 | 27/07/2009 | 28/07/2009 |
| Date Extracted (Metals-ICPMS) |       | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Metals-ICPMS)  |       | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Arsenic                       | μg/L  | <1         | <1         | <1         |
| Cadmium                       | μg/L  | <0.1       | <0.1       | <0.1       |
| Chromium                      | μg/L  | <1         | <1         | <1         |
| Copper                        | μg/L  | <1         | <1         | <1         |
| Lead                          | μg/L  | <1         | <1         | <1         |
| Nickel                        | μg/L  | <1         | <1         | <1         |
| Zinc                          | μg/L  | 2          | <1         | <1         |



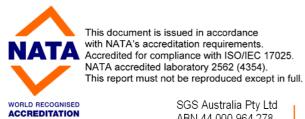

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70984-3  | SE70984-6  | SE70984-9  |
|                                |       | 0          | 1          | 9          |
| Your Reference                 |       | WB2        | WB3        | WB4        |
| Sample Matrix                  |       | Water      | Water      | Water      |
| Date Sampled                   |       | 24/07/2009 | 27/07/2009 | 28/07/2009 |
| Date Extracted (Mercury)       |       | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Date Analysed (Mercury)        |       | 30/07/2009 | 30/07/2009 | 30/07/2009 |
| Mercury (Dissolved)            | mg/L  | <0.0005    | <0.0005    | <0.0005    |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-1  | SE70984-2  | SE70984-4  | SE70984-5  | SE70984-7  |
| Your Reference           |       | OS19_0.0-  | OS20_0.0-  | OS18_0.0-  | OS17_0.0-  | OS15_0.0-  |
|                          |       | 0.2        | 0.2        | 0.2        | 0.2        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 7          | 13         | 10         | 15         | 19         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-9  | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-1  |
|                          |       |            | 0          | 2          | 3          | 4          |
| Your Reference           |       | OS14_0.0-  | RE35_0.0-0 | OS13_0.0-  | RE31_0.0-0 | RE32_0.0-0 |
|                          |       | 0.2        | .2         | 0.2        | .2         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 13         | 7          | 8          | 14         | 9          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-1  | SE70984-2  |
|                          |       | 5          | 7          | 8          | 9          | 1 1        |
| Your Reference           |       | RE24_0.0-0 | RE30_0.0-0 | RE33_0.0-0 | OS16_0.0-  | OS03_0.0-  |
|                          |       | .2         | .2         | .2         | 0.2        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 7          | 10         | 12         | 13         | 14         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  | SE70984-2  |
|                          |       | 2          | 3          | 4          | 6          | 8          |
| Your Reference           |       | OS04_0.0-  | OS06_0.0-  | RE25_0.0-0 | RE29_0.0-0 | RE41_0.0-0 |
|                          |       | 0.2        | 0.2        | .2         | .2         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 | 24/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 16         | 12         | 20         | 10         | 16         |

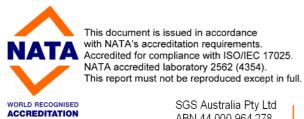



| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-2  | SE70984-3  | SE70984-3  | SE70984-3  | SE70984-3  |
|                          |       | 9          | 2          | 4          | 5          | 7          |
| Your Reference           |       | QC2        | RE12_0.0-0 | OS01_0.0-  | RE07_0.0-0 | RE08_0.0-0 |
|                          |       |            | .2         | 0.2        | .2         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 24/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 17         | 14         | 13         | 12         | 7          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-3  | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-4  |
|                          |       | 9          | 0          | 2          | 3          | 4          |
| Your Reference           |       | RE11_0.0-0 | RE16_0.0-0 | RE17_0.0-0 | RE23_0.0-0 | OS12_0.0-  |
|                          |       | .2         | .2         | .2         | .2         | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 9          | 10         | 8          | 10         | 9          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-4  | SE70984-5  |
|                          |       | 5          | 6          | 7          | 8          | 0          |
| Your Reference           |       | OS11_0.0-  | RE27_0.0-0 | RE21_0.0-0 | RE18_0.0-0 | OS09_0.0-  |
|                          |       | 0.2        | .2         | .2         | .2         | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 14         | 14         | 14         | 14         | 15         |

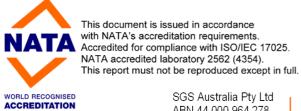
| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-5  | SE70984-5  | SE70984-5  | SE70984-5  | SE70984-5  |
|                          |       | 2          | 3          | 4          | 5          | 7          |
| Your Reference           |       | RE39_0.0-0 | RE40_0.0-0 | RE38_0.0-0 | RE37_0.0-0 | RE36_0.0-0 |
|                          |       | .2         | .2         | .2         | .2         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 13         | 17         | 7          | 16         | 20         |




| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-5  | SE70984-6  | SE70984-6  | SE70984-6  | SE70984-6  |
|                          |       | 8          | 0          | 3          | 4          | 6          |
| Your Reference           |       | RE34_0.0-0 | QC3        | OS02_0.0-  | RE01_0.0-0 | RE03_0.0-0 |
|                          |       | .2         |            | 0.2        | .2         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 27/07/2009 | 27/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 8          | 8          | 9          | 14         | 15         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-6  | SE70984-6  | SE70984-7  | SE70984-7  | SE70984-7  |
|                          |       | 8          | 9          | 0          | 1          | 3          |
| Your Reference           |       | RE04_0.0-0 | RE09_0.0-0 | K3_0.0-0.2 | K3_0.5-0.6 | K2_0.0-0.2 |
|                          |       | .2         | .2         |            |            |            |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 11         | 10         | 19         | 19         | 25         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-7  | SE70984-7  | SE70984-7  | SE70984-7  | SE70984-8  |
|                          |       | 4          | 6          | 7          | 9          | 0          |
| Your Reference           |       | K2_0.5-0.6 | K1_0.0-0.2 | K1_0.5-0.6 | MS3-1_0.0- | MS3-2_0.0- |
|                          |       |            |            |            | 0.2        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 12         | 26         | 14         | 17         | 13         |


| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS3-3_0.0- | MS3-3_0.5- | MS3-4_0.0- | MS3-5_0.0- | MS3-6_0.0- |
|                          |       | 0.2        | 0.6        | 0.2        | 0.2        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 11         | 9          | 17         | 14         | 15         |



| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-8  | SE70984-9  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | MS3-7_0.0- | MS3-8_0.0- | MS3-9_0.0- | MS3-10_0.  | MS3-11_0.  |
|                          |       | 0.2        | 0.2        | 0.2        | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 6          | 8          | 15         | 17         | 13         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-9  | SE70984-9  | SE70984-9  | SE70984-9  | SE70984-9  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | MS3-12_0.  | MS3-13_0.  | MS3-13_0.  | MS3-14_0.  | MS3-15_0.  |
|                          |       | 0-0.2      | 0-0.2      | 5-0.6      | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 16         | 12         | 14         | 16         | 16         |

| Moisture                 |       |            |            |            |
|--------------------------|-------|------------|------------|------------|
| Our Reference:           | UNITS | SE70984-9  | SE70984-9  | SE70984-9  |
|                          |       | 6          | 7          | 8          |
| Your Reference           |       | MS3-15_0.  | QC4        | QC5        |
|                          |       | 5-0.6      |            |            |
| Sample Matrix            |       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed (moisture) |       | 31/07/2009 | 31/07/2009 | 31/07/2009 |
| Moisture                 | %     | 13         | 26         | 16         |

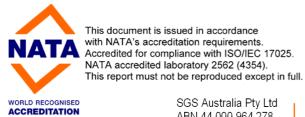


| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEO-030   | Polynuclear Aromatic Hydrocarbons - determined by solvent extraction with dichloromethane / acetone for soils and dichloromethane for waters, followed by instrumentation analysis using GC/MS SIM mode.                                                                                                                                               |
| SEO-005   | OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082. |
| AN420     | Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates, and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD/FID technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                           |
| AN101     | pH - Measured using pH meter and electrode based on APHA 21st Edition, 4500-H+. For water analyses the results reported are indicative only as the sample holding time requirement specified in APHA was not met (APHA requires that the pH of the samples are to be measured within 15 minutes after sampling).                                       |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                    |
| SEM-005   | Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.                                                                                                                                                                                                              |
| AN318     | Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.                                                                                                                                                                                                                                                |
| AN002     | Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 $\pm$ 5°C.                                                                                                                        |



| QUALITY CONTROL                  | UNITS | LOR  | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|----------------------------------|-------|------|---------|--------------|------------------|-----------------------------|-----------|----------------------------|
| PAHs in Soil                     |       |      |         |              |                  | Base + Duplicate +<br>%RPD  |           | Duplicate + %RPD           |
| Date Extracted                   |       |      |         | 31/07/0<br>9 | SE70984-7<br>0   | 31/07/2009   <br>31/07/2009 | LCS       | 31/07/09                   |
| Date Analysed                    |       |      |         | 31/07/0<br>9 | SE70984-7<br>0   | 31/07/2009   <br>31/07/2009 | LCS       | 31/07/09                   |
| Naphthalene                      | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 86%                        |
| 2-Methylnaphthalene              | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| 1-Methylnaphthalene              | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Acenaphthylene                   | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 83%                        |
| Acenaphthene                     | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 102%                       |
| Fluorene                         | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Phenanthrene                     | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 91%                        |
| Anthracene                       | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 97%                        |
| Fluoranthene                     | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 97%                        |
| Pyrene                           | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | LCS       | 101%                       |
| Benzo[a]anthracene               | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Chrysene                         | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Benzo[ <i>b,k</i> ]fluoranthe ne | mg/kg | 0.2  | SEO-030 | <0.20        | SE70984-7<br>0   | <0.20    <0.20              | [NR]      | [NR]                       |
| Benzo[a]pyrene                   | mg/kg | 0.05 | SEO-030 | <0.05        | SE70984-7<br>0   | <0.05    <0.05              | LCS       | 89%                        |
| Indeno[123-cd]pyren<br>e         | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Dibenzo[ah]anthrace ne           | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Benzo[ghi]perylene               | mg/kg | 0.1  | SEO-030 | <0.10        | SE70984-7<br>0   | <0.10    <0.10              | [NR]      | [NR]                       |
| Total PAHs (sum)                 | mg/kg | 1.75 | SEO-030 | <1.7         | SE70984-7<br>0   | <1.7    <1.7                | [NR]      | [NR]                       |
| Nitrobenzene-d5                  | %     | 0    | SEO-030 | 73           | SE70984-7<br>0   | 81    79    RPD: 2          | LCS       | 71%                        |
| 2-Fluorobiphenyl                 | %     | 0    | SEO-030 | 78           | SE70984-7<br>0   | 83    77    RPD: 8          | LCS       | 79%                        |
| p -Terphenyl-d<br>14             | %     | 0    | SEO-030 | 82           | SE70984-7<br>0   | 89    82    RPD: 8          | LCS       | 77%                        |




This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                          | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------------------------|-------|-----|---------|--------------|------------------|-----------------------------|-----------|----------------------------|
| OC Pesticides in Soil                    |       |     |         |              |                  | Base + Duplicate +<br>%RPD  |           | Duplicate + %RPD           |
| Date Extracted                           |       |     |         | 31/07/0<br>9 | SE70984-1        | 31/07/2009   <br>31/07/2009 | SE70984-7 | 31/07/09                   |
| Date Analysed                            |       |     |         | 31/07/0<br>9 | SE70984-1        | 31/07/2009   <br>31/07/2009 | SE70984-7 | 31/07/09                   |
| HCB                                      | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| alpha-BHC                                | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| gamma-BHC (Lindane)                      | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| Heptachlor                               | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | SE70984-7 | 99%                        |
| Aldrin                                   | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | SE70984-7 | 93%                        |
| beta-BHC                                 | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| delta-BHC                                | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | SE70984-7 | 108%                       |
| Heptachlor Epoxide                       | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| o,p-DDE                                  | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| alpha-Endosulfan                         | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| trans-Chlordane                          | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| cis-Chlordane                            | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| trans-Nonachlor                          | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| p,p-DDE                                  | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| Dieldrin                                 | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | SE70984-7 | 82%                        |
| Endrin                                   | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | SE70984-7 | 101%                       |
| o,p-DDD                                  | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| o,p-DDT                                  | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| beta-Endosulfan                          | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| p,p-DDD                                  | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| p,p-DDT                                  | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | SE70984-7 | 110%                       |
| Endosulfan Sulphate                      | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| Endrin Aldehyde                          | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| Methoxychlor                             | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| Endrin Ketone                            | mg/kg | 0.1 | SEO-005 | <0.1         | SE70984-1        | <0.1    <0.1                | [NR]      | [NR]                       |
| 2,4,5,6-Tetrachloro-m-xy lene (Surrogate | %     | 0   | SEO-005 | 92           | SE70984-1        | 103    102    RPD: 1        | SE70984-7 | 108%                       |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL  OP Pesticides in Soil by  GCMS | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|-------------------------------------------------|-------|-----|--------|--------------|------------------|-------------------------------------|----------------|------------------------------------------|
| Date Extracted                                  |       |     |        | 31/07/0<br>9 | SE70984-3<br>2   | 31/07/2009   <br>31/07/2009         | SE70984-1<br>0 | 31/07/09                                 |
| Date Analysed                                   |       |     |        | 31/07/0<br>9 | SE70984-3<br>2   | 31/07/2009   <br>31/07/2009         | SE70984-1<br>0 | 31/07/09                                 |
| Dichlorvos                                      | mg/kg | 1   | AN420  | <1           | SE70984-3<br>2   | <1    <1                            | SE70984-1<br>0 | 99%                                      |
| Dimethoate                                      | mg/kg | 1   | AN420  | <1           | SE70984-3<br>2   | <1    <1                            | [NR]           | [NR]                                     |
| Diazinon                                        | mg/kg | 0.5 | AN420  | <0.5         | SE70984-3<br>2   | <0.5    <0.5                        | SE70984-1<br>0 | 119%                                     |
| Fenitrothion                                    | mg/kg | 0.2 | AN420  | <0.2         | SE70984-3<br>2   | <0.2    <0.2                        | [NR]           | [NR]                                     |
| Malathion                                       | mg/kg | 0.2 | AN420  | <0.20        | SE70984-3<br>2   | <0.20    <0.20                      | [NR]           | [NR]                                     |
| Chlorpyrifos-ethyl                              | mg/kg | 0.2 | AN420  | <0.2         | SE70984-3<br>2   | <0.2    <0.2                        | SE70984-1<br>0 | 98%                                      |
| Parathion-ethyl                                 | mg/kg | 0.2 | AN420  | <0.2         | SE70984-3<br>2   | <0.2    <0.2                        | [NR]           | [NR]                                     |
| Bromofos-ethyl                                  | mg/kg | 0.2 | AN420  | <0.2         | SE70984-3<br>2   | <0.2    <0.2                        | [NR]           | [NR]                                     |
| Methidathion                                    | mg/kg | 0.5 | AN420  | <0.5         | SE70984-3<br>2   | <0.5    <0.5                        | [NR]           | [NR]                                     |
| Ethion                                          | mg/kg | 0.2 | AN420  | <0.2         | SE70984-3<br>2   | <0.2    <0.2                        | SE70984-1<br>0 | 109%                                     |
| Azinphos-methyl                                 | mg/kg | 0.2 | AN420  | <0.20        | SE70984-3<br>2   | <0.20    <0.20                      | SE70984-1<br>0 | 104%                                     |
| 2-fluorobiphenyl (Surr)                         | %     | 0   | AN420  | 84           | SE70984-3<br>2   | 104    96    RPD: 8                 | SE70984-1<br>0 | 80%                                      |
| d14-p-Terphenyl (Surr)                          | %     | 0   | AN420  | 84           | SE70984-3<br>2   | 108    100    RPD: 8                | SE70984-1<br>0 | 84%                                      |



| QUALITY CONTROL                       | UNITS    | LOR | METHOD | Blank |
|---------------------------------------|----------|-----|--------|-------|
| Inorganics                            |          |     |        |       |
| Date Extracted- (pH 1:5 soil: Water)  |          |     |        | [NT]  |
| Date Analysed (pH 1:5<br>Soil: Water) |          |     |        | [NT]  |
| pH 1:5 soil:water 1:5<br>soil:water   | pH Units | 0   | AN101  | [NT]  |

| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |                |                  | Base + Duplicate +<br>%RPD  |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 30/07/2<br>009 | SE70984-1        | 30/07/2009   <br>30/07/2009 | SE70984-2 | 30/07/2009                 |
| Date Analysed (Metals)    |       |     |         | 30/07/2<br>009 | SE70984-1        | 30/07/2009   <br>30/07/2009 | SE70984-2 | 30/07/2009                 |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3             | SE70984-1        | <3    <3                    | SE70984-2 | 77%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3           | SE70984-1        | <0.3    <0.3                | SE70984-2 | 75%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3           | SE70984-1        | 13    12    RPD: 8          | SE70984-2 | 77%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE70984-1        | 12    13    RPD: 8          | SE70984-2 | 75%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1             | SE70984-1        | 9.5    9.1    RPD: 4        | SE70984-2 | 76%                        |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE70984-1        | 13    12    RPD: 8          | SE70984-2 | 78%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5           | SE70984-1        | 22    22    RPD: 0          | SE70984-2 | 78%                        |

| QUALITY CONTROL  Mercury Cold Vapor/Hg  Analyser | UNITS | LOR  | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------------|-------|------|---------|--------------|------------------|-------------------------------------|-----------|------------------------------------------|
| Date Extracted<br>(Mercury)                      |       |      |         | 30/07/0<br>9 | SE70984-1        | 30/07/2009   <br>30/07/2009         | SE70984-2 | 30/07/09                                 |
| Date Analysed<br>(Mercury)                       |       |      |         | 30/07/0<br>9 | SE70984-1        | 30/07/2009   <br>30/07/2009         | SE70984-2 | 30/07/09                                 |
| Mercury                                          | mg/kg | 0.05 | SEM-005 | <0.05        | SE70984-1        | <0.05    <0.05                      | SE70984-2 | 100%                                     |

| QUALITY CONTROL     | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------|-------|-----|---------|--------------|------------------|-------------------------|-----------|----------------------------|
| PAHs in Water       |       |     |         |              |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted      |       |     |         | 30/07/0      | [NT]             | [NT]                    | LCS       | 30/07/09                   |
| Date Analysed       |       |     |         | 30/07/0<br>9 | [NT]             | [NT]                    | LCS       | 30/07/09                   |
| Naphthalene         | μg/L  | 0.5 | SEO-030 | <0.50        | [NT]             | [NT]                    | LCS       | 88%                        |
| 2-Methylnaphthalene | μg/L  | 0.5 | SEO-030 | <0.5         | [NT]             | [NT]                    | [NR]      | [NR]                       |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| PROJECT: ECUUZOSAA REFORT NO. SE70904       |       |     |         |       |                  |                                     |           |                                          |  |  |
|---------------------------------------------|-------|-----|---------|-------|------------------|-------------------------------------|-----------|------------------------------------------|--|--|
| QUALITY CONTROL PAHs in Water               | UNITS | LOR | METHOD  | Blank | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |  |  |
| 1-Methylnaphthalene                         | μg/L  | 0.5 | SEO-030 | <0.5  | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Acenaphthylene                              | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 82%                                      |  |  |
| Acenaphthene                                | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 105%                                     |  |  |
| Fluorene                                    | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Phenanthrene                                | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 106%                                     |  |  |
| Anthracene                                  | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 103%                                     |  |  |
| Fluoranthene                                | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 106%                                     |  |  |
| Pyrene                                      | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 110%                                     |  |  |
| Benzo[a]anthracene                          | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Chrysene                                    | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Benzo[b,k]fluoranthe ne                     | μg/L  | 1   | SEO-030 | <1.0  | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Benzo[a]pyrene                              | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | LCS       | 97%                                      |  |  |
| Indeno[123-cd]pyren<br>e                    | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Dibenzo[ <i>ah</i> ]anthrace<br>ne          | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Benzo[ghi]perylene                          | μg/L  | 0.5 | SEO-030 | <0.50 | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Total PAHs                                  | μg/L  | 9   | SEO-030 | <9    | [NT]             | [NT]                                | [NR]      | [NR]                                     |  |  |
| Nitrobenzene-d5                             | %     | 0   | SEO-030 | 88    | [NT]             | [NT]                                | LCS       | 86%                                      |  |  |
| 2-Fluorobiphenyl                            | %     | 0   | SEO-030 | 97    | [NT]             | [NT]                                | LCS       | 97%                                      |  |  |
| <ul><li>p -Terphenyl-d</li><li>14</li></ul> | %     | 0   | SEO-030 | 103   | [NT]             | [NT]                                | LCS       | 96%                                      |  |  |

| QUALITY CONTROL        | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------|-------|-----|---------|--------------|------------------|----------------------------|-----------|----------------------------|
| OC Pesticides in Water |       |     |         |              |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| Date Extracted         |       |     |         | 30/07/0      | [NT]             | [NT]                       | SE70984-1 | 30/07/09                   |
| Date Analysed          |       |     |         | 30/07/0<br>9 | [NT]             | [NT]                       | SE70984-1 | 30/07/09                   |
| HCB                    | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| alpha-BHC              | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| gamma-BHC(lindane)     | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Heptachlor             | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | SE70984-1 | 94%                        |
| Aldrin                 | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | SE70984-1 | 99%                        |
| beta-BHC               | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| delta-BHC              | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | SE70984-1 | 91%                        |
| Heptachlor Epoxide     | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| o,p-DDE                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| alpha-Endosulfan       | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |



This document is issued in accordance with NATA's accreditation requirements. NATA with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                          | UNITS | LOR | METHOD  | Blank | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------------------------|-------|-----|---------|-------|------------------|----------------------------|-----------|----------------------------|
| OC Pesticides in Water                   |       |     |         |       |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| trans-Chlordane                          | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| cis-Chlordane                            | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| trans-Nonachlor                          | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| p,p-DDE                                  | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Dieldrin                                 | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | SE70984-1 | 93%                        |
| Endrin                                   | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | SE70984-1 | 98%                        |
| o,p-DDD                                  | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| o,p-DDT                                  | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| beta-Endosulfan                          | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| p,p-DDD                                  | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| p,p-DDT                                  | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | SE70984-1 | 90%                        |
| Endosulfan Sulphate                      | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Endrin Aldehyde                          | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Methoxychlor                             | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Endrin Ketone                            | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                       | [NR]      | [NR]                       |
| 2,4,5,6-Tetrachloro-m-xy lene (Surrogate | %     | 0   | SEO-005 | 89    | [NT]             | [NT]                       | SE70984-1 | 91%                        |

| QUALITY CONTROL                | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|--------------------------------|-------|-----|--------|--------------|------------------|----------------------------|-----------|----------------------------|
| OP Pesticides in Water by GCMS |       |     |        |              |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| Date Extracted                 |       |     |        | 30/07/0      | [NT]             | [NT]                       | LCS       | 30/07/09                   |
| Date Analysed                  |       |     |        | 30/07/0<br>9 | [NT]             | [NT]                       | LCS       | 30/07/09                   |
| Dichlorvos                     | μg/L  | 1   | AN420  | <1           | [NT]             | [NT]                       | LCS       | 113%                       |
| Dimethoate                     | μg/L  | 1   | AN420  | <1           | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Diazinon                       | μg/L  | 0.5 | AN420  | <0.5         | [NT]             | [NT]                       | LCS       | 111%                       |
| Fenitrothion                   | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Malathion                      | μg/L  | 0.2 | AN420  | <0.20        | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Chlorpyrifos-ethyl             | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | LCS       | 129%                       |
| Parathion-ethyl                | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Bromofos-ethyl                 | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Methidathion                   | μg/L  | 0.5 | AN420  | <0.5         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Ethion                         | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | LCS       | 111%                       |
| Azinphos-methyl                | μg/L  | 0.2 | AN420  | <0.20        | [NT]             | [NT]                       | LCS       | 87%                        |
| 2-fluorobiphenyl (Surr)        | %     | 0   | AN420  | 77           | [NT]             | [NT]                       | LCS       | 83%                        |
| d14-p-Terphenyl (Surr)         | %     | 0   | AN420  | 100          | [NT]             | [NT]                       | LCS       | 90%                        |



This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025.

NATA accredited laboratory 2562 (4354).

This report must not be reproduced except in full.

| QUALITY CONTROL                 | UNITS | LOR | METHOD | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm#      | Matrix Spike %<br>Recovery |
|---------------------------------|-------|-----|--------|----------------|------------------|-----------------------------|----------------|----------------------------|
| Trace HM<br>(ICP-MS)-Dissolved  |       |     |        |                |                  | Base + Duplicate + %RPD     |                | Duplicate + %RPD           |
| Date Extracted (Metals-ICPMS)   |       |     |        | 30/07/2<br>009 | SE70984-3<br>0   | 30/07/2009   <br>30/07/2009 | SE70984-6<br>1 | 30/07/2009                 |
| Date Analysed<br>(Metals-ICPMS) |       |     |        | 30/07/2<br>009 | SE70984-3<br>0   | 30/07/2009   <br>30/07/2009 | SE70984-6<br>1 | 30/07/2009                 |
| Arsenic                         | μg/L  | 1   | AN318  | <1             | SE70984-3<br>0   | <1    <1                    | SE70984-6<br>1 | 98%                        |
| Cadmium                         | μg/L  | 0.1 | AN318  | <0.1           | SE70984-3<br>0   | <0.1    <0.1                | SE70984-6<br>1 | 107%                       |
| Chromium                        | μg/L  | 1   | AN318  | <1             | SE70984-3<br>0   | <1    <1                    | SE70984-6<br>1 | 97%                        |
| Copper                          | μg/L  | 1   | AN318  | <1             | SE70984-3<br>0   | <1    <1                    | SE70984-6<br>1 | 98%                        |
| Lead                            | μg/L  | 1   | AN318  | <1             | SE70984-3<br>0   | <1    <1                    | SE70984-6<br>1 | 96%                        |
| Nickel                          | μg/L  | 1   | AN318  | <1             | SE70984-3<br>0   | <1    <1                    | SE70984-6<br>1 | 97%                        |
| Zinc                            | μg/L  | 1   | AN318  | <1             | SE70984-3<br>0   | 2    <1                     | SE70984-6<br>1 | 101%                       |

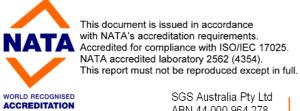
| QUALITY CONTROL                   | UNITS | LOR    | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|--------|---------|--------------|------------------|-------------------------|-----------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |        |         |              |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       |        |         | 30/07/0<br>9 | [NT]             | [NT]                    | SE70984-1 | 30/07/09                   |
| Date Analysed<br>(Mercury)        |       |        |         | 30/07/0<br>9 | [NT]             | [NT]                    | SE70984-1 | 30/07/09                   |
| Mercury (Dissolved)               | mg/L  | 0.0005 | SEM-005 | <0.000<br>5  | [NT]             | [NT]                    | SE70984-1 | 101%                       |

| QUALITY CONTROL                      | UNITS | LOR  | METHOD | Blank |
|--------------------------------------|-------|------|--------|-------|
| Hold sample- <b>NO test</b> required |       |      |        |       |
| Sample on HOLD                       |       | [NT] |        | [NT]  |

| QUALITY CONTROL<br>Moisture | UNITS | LOR | METHOD | Blank |
|-----------------------------|-------|-----|--------|-------|
| Date Analysed (moisture)    |       |     |        | [NT]  |
| Moisture                    | %     | 1   | AN002  | <1    |

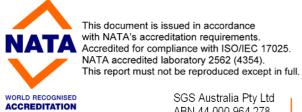


This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.


| QUALITY CONTROL          | UNITS | Dup. Sm#       | Duplicate                   |
|--------------------------|-------|----------------|-----------------------------|
| OC Pesticides in Soil    |       |                | Base + Duplicate + %RPD     |
| Date Extracted           |       | SE70984-3<br>2 | 31/07/2009   <br>31/07/2009 |
| Date Analysed            |       | SE70984-3<br>2 | 31/07/2009   <br>31/07/2009 |
| НСВ                      | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| alpha-BHC                | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| gamma-BHC (Lindane)      | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| Heptachlor               | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| Aldrin                   | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| beta-BHC                 | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| delta-BHC                | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| Heptachlor Epoxide       | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| o,p-DDE                  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| <i>alpha-</i> Endosulfan | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| <i>trans-</i> Chlordane  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| <i>cis-</i> Chlordane    | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| <i>trans</i> -Nonachlor  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| ρ,ρ-DDE                  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| Dieldrin                 | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| Endrin                   | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| o,p-DDD                  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| o,p-DDT                  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| <i>beta-</i> Endosulfan  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |
| p,p-DDD                  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                |

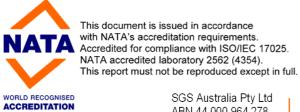


This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.


| QUALITY CONTROL<br>OC Pesticides in Soil | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD |
|------------------------------------------|-------|----------------|-------------------------------------|
| p,p-DDT                                  | mg/kg | SE70984-3<br>2 | <0.1    <0.1                        |
| Endosulfan Sulphate                      | mg/kg | SE70984-3<br>2 | <0.1    <0.1                        |
| Endrin Aldehyde                          | mg/kg | SE70984-3<br>2 | <0.1    <0.1                        |
| Methoxychlor                             | mg/kg | SE70984-3<br>2 | <0.1    <0.1                        |
| Endrin Ketone                            | mg/kg | SE70984-3<br>2 | <0.1    <0.1                        |
| 2,4,5,6-Tetrachloro-m-xylen e (Surrogate | %     | SE70984-3<br>2 | 105    104    RPD: 1                |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------|
| Date Extracted (Metals)                    |       | SE70984-1<br>5 | 30/07/2009   <br>30/07/2009         | SE70984-3<br>2 | 30/07/2009                               |
| Date Analysed (Metals)                     |       | SE70984-1<br>5 | 30/07/2009   <br>30/07/2009         | SE70984-3<br>2 | 30/07/2009                               |
| Arsenic                                    | mg/kg | SE70984-1<br>5 | 3    4    RPD: 29                   | SE70984-3<br>2 | 88%                                      |
| Cadmium                                    | mg/kg | SE70984-1<br>5 | <0.3    <0.3                        | SE70984-3<br>2 | 85%                                      |
| Chromium                                   | mg/kg | SE70984-1<br>5 | 17    18    RPD: 6                  | SE70984-3<br>2 | 90%                                      |
| Copper                                     | mg/kg | SE70984-1<br>5 | 3.6    3.9    RPD: 8                | SE70984-3<br>2 | 88%                                      |
| Lead                                       | mg/kg | SE70984-1<br>5 | 25    28    RPD: 11                 | SE70984-3<br>2 | 81%                                      |
| Nickel                                     | mg/kg | SE70984-1<br>5 | 4.3    4.8    RPD: 11               | SE70984-3<br>2 | 91%                                      |
| Zinc                                       | mg/kg | SE70984-1<br>5 | 31    38    RPD: 20                 | SE70984-3<br>2 | 99%                                      |




| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   | Spike Sm#      | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|----------------|-----------------------------|----------------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |                | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       | SE70984-1<br>5 | 30/07/2009   <br>30/07/2009 | SE70984-3<br>2 | 30/07/09                   |
| Date Analysed (Mercury)           |       | SE70984-1<br>5 | 30/07/2009   <br>30/07/2009 | SE70984-3<br>2 | 30/07/09                   |
| Mercury                           | mg/kg | SE70984-1<br>5 | <0.05    <0.05              | SE70984-3<br>2 | 105%                       |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|--------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------|
| Date Extracted (Metals)                    |       | SE70984-2<br>9 | 30/07/2009   <br>30/07/2009         | SE70984-6<br>0 | 30/07/2009                               |
| Date Analysed (Metals)                     |       | SE70984-2<br>9 | 30/07/2009   <br>30/07/2009         | SE70984-6<br>0 | 30/07/2009                               |
| Arsenic                                    | mg/kg | SE70984-2<br>9 | 6    6    RPD: 0                    | SE70984-6<br>0 | 102%                                     |
| Cadmium                                    | mg/kg | SE70984-2<br>9 | 0.3    0.3    RPD: 0                | SE70984-6<br>0 | 80%                                      |
| Chromium                                   | mg/kg | SE70984-2<br>9 | 19    19    RPD: 0                  | SE70984-6<br>0 | 83%                                      |
| Copper                                     | mg/kg | SE70984-2<br>9 | 16    16    RPD: 0                  | SE70984-6<br>0 | 88%                                      |
| Lead                                       | mg/kg | SE70984-2<br>9 | 16    18    RPD: 12                 | SE70984-6<br>0 | 85%                                      |
| Nickel                                     | mg/kg | SE70984-2<br>9 | 22    23    RPD: 4                  | SE70984-6<br>0 | 88%                                      |
| Zinc                                       | mg/kg | SE70984-2<br>9 | 66    66    RPD: 0                  | SE70984-6<br>0 | 102%                                     |



| QUALITY CONTROL  Mercury Cold Vapor/Hg Analyser | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD | Spike Sm#      | Matrix Spike % Recovery Duplicate + %RPD |
|-------------------------------------------------|-------|----------------|-------------------------------------|----------------|------------------------------------------|
| Date Extracted (Mercury)                        |       | SE70984-2<br>9 | 30/07/2009   <br>30/07/2009         | SE70984-6<br>0 | 30/07/09                                 |
| Date Analysed (Mercury)                         |       | SE70984-2<br>9 | 30/07/2009   <br>30/07/2009         | SE70984-6<br>0 | 30/07/09                                 |
| Mercury                                         | mg/kg | SE70984-2<br>9 | <0.05    <0.05                      | SE70984-6<br>0 | 110%                                     |

| QUALITY CONTROL  Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate + | Spike Sm#      | Matrix Spike % Recovery |
|--------------------------------------------|-------|----------------|-------------------------------|----------------|-------------------------|
| ivietals III 30II by ICF-0E3               |       |                | %RPD                          |                | Duplicate + %RPD        |
| Date Extracted (Metals)                    |       | SE70984-4<br>5 | 30/07/2009   <br>30/07/2009   | SE70984-9<br>3 | 30/07/2009              |
| Date Analysed (Metals)                     |       | SE70984-4<br>5 | 30/07/2009   <br>30/07/2009   | SE70984-9<br>3 | 30/07/2009              |
| Arsenic                                    | mg/kg | SE70984-4<br>5 | <3    <3                      | [NR]           | [NR]                    |
| Cadmium                                    | mg/kg | SE70984-4<br>5 | <0.3    <0.3                  | SE70984-9<br>3 | 83%                     |
| Chromium                                   | mg/kg | SE70984-4<br>5 | 20    18    RPD: 11           | SE70984-9<br>3 | 79%                     |
| Copper                                     | mg/kg | SE70984-4<br>5 | 6.4    7.8    RPD: 20         | [NR]           | [NR]                    |
| Lead                                       | mg/kg | SE70984-4<br>5 | 13    12    RPD: 8            | [NR]           | [NR]                    |
| Nickel                                     | mg/kg | SE70984-4<br>5 | 12    12    RPD: 0            | SE70984-9<br>3 | 76%                     |
| Zinc                                       | mg/kg | SE70984-4<br>5 | 43    43    RPD: 0            | [NR]           | [NR]                    |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE70984-4<br>5 | 30/07/2009   <br>30/07/2009 |
| Date Analysed (Mercury)           |       | SE70984-4<br>5 | 30/07/2009   <br>30/07/2009 |
| Mercury                           | mg/kg | SE70984-4<br>5 | <0.05    <0.05              |

| QUALITY CONTROL           | UNITS | Dup. Sm#       | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|----------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |                | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       | SE70984-5      | 30/07/2009   <br>30/07/2009 | SE70984-1 | 30/07/2009                 |
| Date Analysed (Metals)    |       | SE70984-5<br>8 | 30/07/2009   <br>30/07/2009 | SE70984-1 | 30/07/2009                 |
| Arsenic                   | mg/kg | SE70984-5<br>8 | 130    120    RPD: 8        | SE70984-1 | 97%                        |
| Cadmium                   | mg/kg | SE70984-5<br>8 | 0.5    0.5    RPD: 0        | [NR]      | [NR]                       |
| Chromium                  | mg/kg | SE70984-5<br>8 | 20    20    RPD: 0          | [NR]      | [NR]                       |
| Copper                    | mg/kg | SE70984-5<br>8 | 40    36    RPD: 11         | SE70984-1 | 96%                        |
| Lead                      | mg/kg | SE70984-5<br>8 | 85    90    RPD: 6          | SE70984-1 | 99%                        |
| Nickel                    | mg/kg | SE70984-5<br>8 | 32    32    RPD: 0          | [NR]      | [NR]                       |
| Zinc                      | mg/kg | SE70984-5<br>8 | 140    150    RPD: 7        | SE70984-1 | 94%                        |



| QUALITY CONTROL Mercury Cold Vapor/Hg Analyser | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|------------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Mercury)                       |       | SE70984-5<br>8 | 30/07/2009   <br>30/07/2009       |
| Date Analysed (Mercury)                        |       | SE70984-5<br>8 | 30/07/2009   <br>30/07/2009       |
| Mercury                                        | mg/kg | SE70984-5<br>8 | <0.05    <0.05                    |

| QUALITY CONTROL           | UNITS | Dup. Sm#       | Duplicate                   |
|---------------------------|-------|----------------|-----------------------------|
| Metals in Soil by ICP-OES |       |                | Base + Duplicate + %RPD     |
| Date Extracted (Metals)   |       | SE70984-8<br>2 | 30/07/2009   <br>30/07/2009 |
| Date Analysed (Metals)    |       | SE70984-8<br>2 | 30/07/2009   <br>30/07/2009 |
| Arsenic                   | mg/kg | SE70984-8<br>2 | 47    45    RPD: 4          |
| Cadmium                   | mg/kg | SE70984-8<br>2 | 1.4    1.4    RPD: 0        |
| Chromium                  | mg/kg | SE70984-8<br>2 | 21    22    RPD: 5          |
| Copper                    | mg/kg | SE70984-8<br>2 | 38    35    RPD: 8          |
| Lead                      | mg/kg | SE70984-8<br>2 | 220    230    RPD: 4        |
| Nickel                    | mg/kg | SE70984-8<br>2 | 19    19    RPD: 0          |
| Zinc                      | mg/kg | SE70984-8<br>2 | 370    380    RPD: 3        |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE70984-8<br>2 | 30/07/2009   <br>30/07/2009 |
| Date Analysed (Mercury)           |       | SE70984-8<br>2 | 30/07/2009   <br>30/07/2009 |
| Mercury                           | mg/kg | SE70984-8<br>2 | <0.05    <0.05              |

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|-------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Metals)                   |       | SE70984-9<br>2 | 30/07/2009   <br>30/07/2009       |
| Date Analysed (Metals)                    |       | SE70984-9<br>2 | 30/07/2009   <br>30/07/2009       |
| Arsenic                                   | mg/kg | SE70984-9<br>2 | 130    120    RPD: 8              |
| Cadmium                                   | mg/kg | SE70984-9<br>2 | 0.9    0.8    RPD: 12             |
| Chromium                                  | mg/kg | SE70984-9<br>2 | 18    14    RPD: 25               |
| Copper                                    | mg/kg | SE70984-9<br>2 | 42    36    RPD: 15               |
| Lead                                      | mg/kg | SE70984-9<br>2 | 340    400    RPD: 16             |
| Nickel                                    | mg/kg | SE70984-9<br>2 | 17    15    RPD: 12               |
| Zinc                                      | mg/kg | SE70984-9<br>2 | 410    340    RPD: 19             |



| QUALITY CONTROL                   | UNITS | Dup. Sm#       | Duplicate                   |
|-----------------------------------|-------|----------------|-----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Mercury)          |       | SE70984-9<br>2 | 30/07/2009   <br>30/07/2009 |
| Date Analysed (Mercury)           |       | SE70984-9<br>2 | 30/07/2009   <br>30/07/2009 |
| Mercury                           | mg/kg | SE70984-9<br>2 | 0.06    0.06    RPD: 0      |

### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced: 31/07/2009 NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a>. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

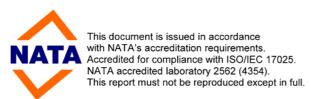
### **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

**Internal Standard**: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

## **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





# ANALYTICAL REPORT

31 July 2009

**Coffey Environments Pty Ltd** 

2/54 Northbourne Avenue PO Box 1986 **CANBERRA** ACT 2602

**Attention: Chris Gunton** 

Your Reference: EC00233AA

Our Reference: SE70874 Samples: 22 Soils, 3 Waters

> Received: 24/7/09

**Preliminary Report Sent:** Not Issued

These samples were analysed in accordance with your written instructions.

For and on Behalf of:

**SGS ENVIRONMENTAL SERVICES** 

**Client Services:** Simon Matthews Simon.Matthews@sgs.com

Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: **Edward Ibrahim** Edward.Ibrahim@sgs.com

Results Approved and/or Authorised by:

Organics Signatory

Huong Erawford Metals Signatory



| OC Pesticides in Soil                   |       |            |            |            |                |                |
|-----------------------------------------|-------|------------|------------|------------|----------------|----------------|
| Our Reference:                          | UNITS | SE70874-1  | SE70874-4  | SE70874-8  | SE70874-1<br>1 | SE70874-1<br>6 |
| Your Reference                          |       | RE02_0.0-0 | RE10_0.0-0 | RE15_0.0-0 | RE20_0.0-0     | RE28_0.0-0     |
|                                         |       | .2         | .2         | .2         | .2             | .2             |
| Sample Matrix                           |       | Soil       | Soil       | Soil       | Soil           | Soil           |
| Date Sampled                            |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009     | 23/07/2009     |
| Depth                                   |       | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2        | 0.0-0.2        |
| Date Extracted                          |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009     | 28/07/2009     |
| Date Analysed                           |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009     | 28/07/2009     |
| HCB                                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| alpha-BHC                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| gamma-BHC (Lindane)                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Heptachlor                              | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Aldrin                                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| beta-BHC                                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| delta-BHC                               | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Heptachlor Epoxide                      | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| o,p-DDE                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| alpha-Endosulfan                        | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| trans-Chlordane                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| cis-Chlordane                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| trans-Nonachlor                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| p,p-DDE                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Dieldrin                                | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Endrin                                  | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| o,p-DDD                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| o,p-DDT                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| <i>beta-</i> Endosulfan                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| p,p-DDD                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| p,p-DDT                                 | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Endosulfan Sulphate                     | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Endrin Aldehyde                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Methoxychlor                            | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| Endrin Ketone                           | mg/kg | <0.1       | <0.1       | <0.1       | <0.1           | <0.1           |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 97         | 98         | 96         | 99             | 99             |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| OC Pesticides in Soil |       |                       |                       |                |
|-----------------------|-------|-----------------------|-----------------------|----------------|
| Our Reference:        | UNITS | SE70874-1<br>8        | SE70874-2<br>1        | SE70874-2<br>2 |
| Your Reference        |       | OS05_0.0-<br>0.2      | OS10_0.0-<br>0.2      | QC1            |
| Sample Matrix         |       | Soil                  | Soil                  | Soil           |
| Date Sampled<br>Depth |       | 23/07/2009<br>0.0-0.2 | 23/07/2009<br>0.0-0.2 | 23/07/2009     |
| Date Extracted        |       | 28/07/2009            | 28/07/2009            | 28/07/2009     |
| Date Analysed         |       | 28/07/2009            | 28/07/2009            | 28/07/2009     |
| НСВ                   | mg/kg | <0.1                  | <0.1                  | <0.1           |
| alpha-BHC             | mg/kg | <0.1                  | <0.1                  | <0.1           |
| gamma-BHC (Lindane)   | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Heptachlor            | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Aldrin                | mg/kg | <0.1                  | <0.1                  | <0.1           |
| beta-BHC              | mg/kg | <0.1                  | <0.1                  | <0.1           |
| delta-BHC             | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Heptachlor Epoxide    | mg/kg | <0.1                  | <0.1                  | <0.1           |
| o,p-DDE               | mg/kg | <0.1                  | <0.1                  | <0.1           |
| alpha-Endosulfan      | mg/kg | <0.1                  | <0.1                  | <0.1           |
| trans-Chlordane       | mg/kg | <0.1                  | <0.1                  | <0.1           |
| cis-Chlordane         | mg/kg | <0.1                  | <0.1                  | <0.1           |
| trans-Nonachlor       | mg/kg | <0.1                  | <0.1                  | <0.1           |
| p,p-DDE               | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Dieldrin              | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Endrin                | mg/kg | <0.1                  | <0.1                  | <0.1           |
| o,p-DDD               | mg/kg | <0.1                  | <0.1                  | <0.1           |
| o,p-DDT               | mg/kg | <0.1                  | <0.1                  | <0.1           |
| beta-Endosulfan       | mg/kg | <0.1                  | <0.1                  | <0.1           |
| p,p-DDD               | mg/kg | <0.1                  | <0.1                  | <0.1           |
| p,p-DDT               | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Endosulfan Sulphate   | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Endrin Aldehyde       | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Methoxychlor          | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Endrin Katana         | mg/kg | <0.1                  | <0.1                  | <0.1           |
| Endrin Ketone         | mg/kg | <0.1                  | <0.1                  | <0.1           |



| OP Pesticides in Soil by GCMS |       |            |            |            |            |            |
|-------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                | UNITS | SE70874-1  | SE70874-4  | SE70874-8  | SE70874-1  | SE70874-1  |
|                               |       |            |            |            | 1          | 6          |
| Your Reference                |       | RE02_0.0-0 | RE10_0.0-0 | RE15_0.0-0 | RE20_0.0-0 | RE28_0.0-0 |
|                               |       | .2         | .2         | .2         | .2         | .2         |
| Sample Matrix                 |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                  |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                         |       | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    |
| Date Extracted                |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Date Analysed                 |       | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 | 28/07/2009 |
| Dichlorvos                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Dimethoate                    | mg/kg | <1         | <1         | <1         | <1         | <1         |
| Diazinon                      | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Fenitrothion                  | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Malathion                     | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| Chlorpyrifos-ethyl            | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Parathion-ethyl               | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Bromofos-ethyl                | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Methidathion                  | mg/kg | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Ethion                        | mg/kg | <0.2       | <0.2       | <0.2       | <0.2       | <0.2       |
| Azinphos-methyl               | mg/kg | <0.20      | <0.20      | <0.20      | <0.20      | <0.20      |
| 2-fluorobiphenyl (Surr)       | %     | 100        | 100        | 104        | 100        | 108        |
| d14-p-Terphenyl (Surr)        | %     | 96         | 96         | 100        | 96         | 100        |

WORLD RECOGNISED
ACCREDITATION

| OP Pesticides in Soil by GCMS |       |                       |                       |                |
|-------------------------------|-------|-----------------------|-----------------------|----------------|
| Our Reference:                | UNITS | SE70874-1<br>8        | SE70874-2<br>1        | SE70874-2<br>2 |
| Your Reference                |       | OS05_0.0-             | OS10_0.0-             | QC1            |
| Sample Matrix                 |       | Soil                  | Soil                  | Soil           |
| Date Sampled Depth            |       | 23/07/2009<br>0.0-0.2 | 23/07/2009<br>0.0-0.2 | 23/07/2009     |
| Date Extracted                |       | 28/07/2009            | 28/07/2009            | 28/07/2009     |
| Date Analysed                 |       | 28/07/2009            | 28/07/2009            | 28/07/2009     |
| Dichlorvos                    | mg/kg | <1                    | <1                    | <1             |
| Dimethoate                    | mg/kg | <1                    | <1                    | <1             |
| Diazinon                      | mg/kg | <0.5                  | <0.5                  | <0.5           |
| Fenitrothion                  | mg/kg | <0.2                  | <0.2                  | <0.2           |
| Malathion                     | mg/kg | <0.20                 | <0.20                 | <0.20          |
| Chlorpyrifos-ethyl            | mg/kg | <0.2                  | <0.2                  | <0.2           |
| Parathion-ethyl               | mg/kg | <0.2                  | <0.2                  | <0.2           |
| Bromofos-ethyl                | mg/kg | <0.2                  | <0.2                  | <0.2           |
| Methidathion                  | mg/kg | <0.5                  | <0.5                  | <0.5           |
| Ethion                        | mg/kg | <0.2                  | <0.2                  | <0.2           |
| Azinphos-methyl               | mg/kg | <0.20                 | <0.20                 | <0.20          |
| 2-fluorobiphenyl (Surr)       | %     | 108                   | 104                   | 104            |
| d14-p-Terphenyl (Surr)        | %     | 104                   | 100                   | 92             |

WORLD RECOGNISED
ACCREDITATION

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70874-1  | SE70874-2  | SE70874-3  | SE70874-4  | SE70874-5  |
| Your Reference            |       | RE02_0.0-0 | RE05_0.0-0 | RE06_0.0-0 | RE10_0.0-0 | RE13_0.0-0 |
|                           |       | .2         | .2         | .2         | .2         | .2         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                     |       | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    |
| Date Extracted (Metals)   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (Metals)    |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Arsenic                   | mg/kg | 6          | 6          | 8          | 5          | 7          |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | <0.3       | <0.3       |
| Chromium                  | mg/kg | 16         | 19         | 18         | 15         | 19         |
| Copper                    | mg/kg | 29         | 19         | 15         | 5.5        | 21         |
| Lead                      | mg/kg | 6          | 8          | 7          | 6          | 11         |
| Nickel                    | mg/kg | 18         | 22         | 20         | 13         | 22         |
| Zinc                      | mg/kg | 24         | 38         | 31         | 17         | 62         |
|                           |       |            |            |            |            |            |

| Metals in Soil by ICP-OES |       |            |            |            |            |                |
|---------------------------|-------|------------|------------|------------|------------|----------------|
| Our Reference:            | UNITS | SE70874-6  | SE70874-7  | SE70874-8  | SE70874-9  | SE70874-1<br>0 |
| Your Reference            |       | RE14_0.0-0 | RE14_0.5-0 | RE15_0.0-0 | RE19_0.0-0 | RE19_0.5-0     |
|                           |       | .2         | .6         | .2         | .2         | .6             |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled              |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009     |
| Depth                     |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.5-0.6        |
| Date Extracted (Metals)   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009     |
| Date Analysed (Metals)    |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009     |
| Arsenic                   | mg/kg | 6          | 7          | 8          | 4          | 4              |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | <0.3       | <0.3           |
| Chromium                  | mg/kg | 18         | 19         | 18         | 17         | 18             |
| Copper                    | mg/kg | 16         | 18         | 38         | 19         | 19             |
| Lead                      | mg/kg | 14         | 15         | 4          | 8          | 7              |
| Nickel                    | mg/kg | 20         | 21         | 20         | 18         | 19             |
| Zinc                      | mg/kg | 59         | 60         | 24         | 37         | 35             |

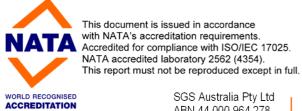


| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  |
|                           |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference            |       | RE20_0.0-0 | RE20_0.5-0 | RE22_0.0-0 | RE26_0.0-0 | RE26_0.5-0 |
|                           |       | .2         | .6         | .2         | .2         | .6         |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                     |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.5-0.6    |
| Date Extracted (Metals)   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (Metals)    |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Arsenic                   | mg/kg | 7          | 4          | 3          | 3          | 3          |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | <0.3       | <0.3       |
| Chromium                  | mg/kg | 18         | 19         | 17         | 16         | 16         |
| Copper                    | mg/kg | 18         | 20         | 7.9        | 6.2        | 6.5        |
| Lead                      | mg/kg | 10         | 11         | 5          | 6          | 6          |
| Nickel                    | mg/kg | 27         | 28         | 17         | 12         | 12         |
| Zinc                      | mg/kg | 60         | 61         | 27         | 19         | 17         |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-2  |
|                           |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference            |       | RE28_0.0-0 | RE28_0.5-0 | OS05_0.0-  | OS07_0.0-  | OS08_0.0-  |
|                           |       | .2         | .6         | 0.2        | 0.2        | 0.2        |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                     |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    |
| Date Extracted (Metals)   |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (Metals)    |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Arsenic                   | mg/kg | 10         | 9          | 5          | <3         | <3         |
| Cadmium                   | mg/kg | <0.3       | <0.3       | <0.3       | <0.3       | <0.3       |
| Chromium                  | mg/kg | 16         | 21         | 9.6        | 17         | 18         |
| Copper                    | mg/kg | 9.7        | 11         | 12         | 11         | 11         |
| Lead                      | mg/kg | 8          | 11         | 6          | 4          | 5          |
| Nickel                    | mg/kg | 20         | 25         | 16         | 18         | 21         |
| Zinc                      | mg/kg | 41         | 46         | 18         | 29         | 35         |

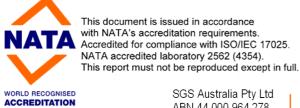


This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.


Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Metals in Soil by ICP-OES |       |            |            |
|---------------------------|-------|------------|------------|
| Our Reference:            | UNITS | SE70874-2  | SE70874-2  |
|                           |       | 1          | 2          |
| Your Reference            |       | OS10_0.0-  | QC1        |
|                           |       | 0.2        |            |
| Sample Matrix             |       | Soil       | Soil       |
| Date Sampled              |       | 23/07/2009 | 23/07/2009 |
| Depth                     |       | 0.0-0.2    | -          |
| Date Extracted (Metals)   |       | 27/07/2009 | 27/07/2009 |
| Date Analysed (Metals)    |       | 27/07/2009 | 27/07/2009 |
| Arsenic                   | mg/kg | 6          | 5          |
| Cadmium                   | mg/kg | <0.3       | <0.3       |
| Chromium                  | mg/kg | 15         | 17         |
| Copper                    | mg/kg | 8.8        | 5.8        |
| Lead                      | mg/kg | 5          | 6          |
| Nickel                    | mg/kg | 19         | 13         |
| Zinc                      | mg/kg | 30         | 18         |

| Mercury Cold Vapor/Hg Analyser |       |                  |                  |                  |                  |                  |
|--------------------------------|-------|------------------|------------------|------------------|------------------|------------------|
| Our Reference:                 | UNITS | SE70874-1        | SE70874-2        | SE70874-3        | SE70874-4        | SE70874-5        |
| Your Reference                 |       | RE02_0.0-0<br>.2 | RE05_0.0-0<br>.2 | RE06_0.0-0<br>.2 | RE10_0.0-0<br>.2 | RE13_0.0-0<br>.2 |
| Sample Matrix                  |       | Soil             | Soil             | Soil             | Soil             | Soil             |
| Date Sampled                   |       | 23/07/2009       | 23/07/2009       | 23/07/2009       | 23/07/2009       | 23/07/2009       |
| Depth                          |       | 0.0-0.2          | 0.0-0.2          | 0.0-0.2          | 0.0-0.2          | 0.0-0.2          |
| Date Extracted (Mercury)       |       | 27/07/2009       | 27/07/2009       | 27/07/2009       | 27/07/2009       | 27/07/2009       |
| Date Analysed (Mercury)        |       | 27/07/2009       | 27/07/2009       | 27/07/2009       | 27/07/2009       | 27/07/2009       |
| Mercury                        | mg/kg | <0.05            | <0.05            | <0.05            | <0.05            | <0.05            |


| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70874-6  | SE70874-7  | SE70874-8  | SE70874-9  | SE70874-1  |
|                                |       |            |            |            |            | 0          |
| Your Reference                 |       | RE14_0.0-0 | RE14_0.5-0 | RE15_0.0-0 | RE19_0.0-0 | RE19_0.5-0 |
|                                |       | .2         | .6         | .2         | .2         | .6         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                          |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.5-0.6    |
| Date Extracted (Mercury)       |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (Mercury)        |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  |
|                                |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference                 |       | RE20_0.0-0 | RE20_0.5-0 | RE22_0.0-0 | RE26_0.0-0 | RE26_0.5-0 |
|                                |       | .2         | .6         | .2         | .2         | .6         |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                          |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.5-0.6    |
| Date Extracted (Mercury)       |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (Mercury)        |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-2  |
|                                |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference                 |       | RE28_0.0-0 | RE28_0.5-0 | OS05_0.0-  | OS07_0.0-  | OS08_0.0-  |
|                                |       | .2         | .6         | 0.2        | 0.2        | 0.2        |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                          |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    |
| Date Extracted (Mercury)       |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Date Analysed (Mercury)        |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |
|--------------------------------|-------|------------|------------|
| Our Reference:                 | UNITS | SE70874-2  | SE70874-2  |
|                                |       | 1          | 2          |
| Your Reference                 |       | OS10_0.0-  | QC1        |
|                                |       | 0.2        |            |
| Sample Matrix                  |       | Soil       | Soil       |
| Date Sampled                   |       | 23/07/2009 | 23/07/2009 |
| Depth                          |       | 0.0-0.2    | -          |
| Date Extracted (Mercury)       |       | 27/07/2009 | 27/07/2009 |
| Date Analysed (Mercury)        |       | 27/07/2009 | 27/07/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      |



| BTEX in Water (µg/L)  |       |            |            |
|-----------------------|-------|------------|------------|
| Our Reference:        | UNITS | SE70874-2  | SE70874-2  |
|                       |       | 3          | 5          |
| Your Reference        |       | TB1        | TS1        |
| Sample Matrix         |       | Water      | Water      |
| Date Sampled          |       | 23/07/2009 | 23/07/2009 |
| Depth                 |       | -          | -          |
| Date Extracted (BTEX) |       | 28/07/2009 | 28/07/2009 |
| Date Analysed (BTEX)  |       | 29/07/2009 | 29/07/2009 |
| Benzene               | μg/L  | <0.5       | 250        |
| Toluene               | μg/L  | <0.5       | 250        |
| Ethylbenzene          | μg/L  | <0.5       | 240        |
| Total Xylenes         | μg/L  | <1.5       | 230        |
| Surrogate             | %     | 65         | 122        |

| OC Pesticides in Water                  |       |            |
|-----------------------------------------|-------|------------|
| Our Reference:                          | UNITS | SE70874-2  |
| our Reference.                          | ONTO  | 4          |
| Your Reference                          |       | WB1        |
| Sample Matrix                           |       | Water      |
| Date Sampled                            |       | 23/07/2009 |
| Depth                                   |       | -          |
| Date Extracted                          |       | 28/07/2009 |
| Date Analysed                           |       | 28/07/2009 |
| НСВ                                     | μg/L  | <0.2       |
| alpha-BHC                               | μg/L  | <0.2       |
| gamma-BHC(lindane)                      | μg/L  | <0.2       |
| Heptachlor                              | μg/L  | <0.2       |
| Aldrin                                  | μg/L  | <0.2       |
| beta-BHC                                | μg/L  | <0.2       |
| delta-BHC                               | μg/L  | <0.2       |
| Heptachlor Epoxide                      | μg/L  | <0.2       |
| o,p-DDE                                 | μg/L  | <0.2       |
| alpha-Endosulfan                        | μg/L  | <0.2       |
| trans-Chlordane                         | μg/L  | <0.2       |
| cis-Chlordane                           | μg/L  | <0.2       |
| trans-Nonachlor                         | μg/L  | <0.2       |
| p,p-DDE                                 | μg/L  | <0.2       |
| Dieldrin                                | μg/L  | <0.2       |
| Endrin                                  | μg/L  | <0.2       |
| o,p-DDD                                 | μg/L  | <0.2       |
| o,p-DDT                                 | μg/L  | <0.2       |
| beta-Endosulfan                         | μg/L  | <0.2       |
| p,p-DDD                                 | μg/L  | <0.2       |
| p,p-DDT                                 | μg/L  | <0.2       |
| Endosulfan Sulphate                     | μg/L  | <0.2       |
| Endrin Aldehyde                         | μg/L  | <0.2       |
| Methoxychlor                            | μg/L  | <0.2       |
| Endrin Ketone                           | μg/L  | <0.2       |
| 2,4,5,6-Tetrachloro-m-xylene (Surrogate | %     | 71         |



| OP Pesticides in Water by GCMS |       |            |
|--------------------------------|-------|------------|
| Our Reference:                 | UNITS | SE70874-2  |
|                                |       | 4          |
| Your Reference                 |       | WB1        |
| Sample Matrix                  |       | Water      |
| Date Sampled                   |       | 23/07/2009 |
| Depth                          |       | -          |
| Date Extracted                 |       | 28/07/2009 |
| Date Analysed                  |       | 28/07/2009 |
| Dichlorvos                     | μg/L  | <1         |
| Dimethoate                     | μg/L  | <1         |
| Diazinon                       | μg/L  | <0.5       |
| Fenitrothion                   | μg/L  | <0.2       |
| Malathion                      | μg/L  | <0.20      |
| Chlorpyrifos-ethyl             | μg/L  | <0.2       |
| Parathion-ethyl                | μg/L  | <0.2       |
| Bromofos-ethyl                 | μg/L  | <0.2       |
| Methidathion                   | μg/L  | <0.5       |
| Ethion                         | μg/L  | <0.2       |
| Azinphos-methyl                | μg/L  | <0.20      |
| 2-fluorobiphenyl (Surr)        | %     | 92         |
| d14-p-Terphenyl (Surr)         | %     | 92         |

WORLD RECOGNISED
ACCREDITATION

| Trace HM (ICP-MS)-Dissolved   |       |            |
|-------------------------------|-------|------------|
| Our Reference:                | UNITS | SE70874-2  |
|                               |       | 4          |
| Your Reference                |       | WB1        |
| Sample Matrix                 |       | Water      |
| Date Sampled                  |       | 23/07/2009 |
| Depth                         |       | -          |
| Date Extracted (Metals-ICPMS) |       | 28/07/2009 |
| Date Analysed (Metals-ICPMS)  |       | 28/07/2009 |
| Arsenic                       | μg/L  | <1         |
| Cadmium                       | μg/L  | <0.1       |
| Chromium                      | μg/L  | <1         |
| Copper                        | μg/L  | <1         |
| Lead                          | μg/L  | <1         |
| Nickel                        | μg/L  | <1         |
| Zinc                          | μg/L  | <1         |

| Mercury Cold Vapor/Hg Analyser |       |                |
|--------------------------------|-------|----------------|
| Our Reference:                 | UNITS | SE70874-2<br>4 |
| Your Reference                 |       | WB1            |
| Sample Matrix                  |       | Water          |
| Date Sampled                   |       | 23/07/2009     |
| Depth                          |       | -              |
| Date Extracted (Mercury)       |       | 24/07/2009     |
| Date Analysed (Mercury)        |       | 24/07/2009     |
| Mercury (Dissolved)            | mg/L  | <0.0005        |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70874-1  | SE70874-2  | SE70874-3  | SE70874-4  | SE70874-5  |
| Your Reference           |       | RE02_0.0-0 | RE05_0.0-0 | RE06_0.0-0 | RE10_0.0-0 | RE13_0.0-0 |
|                          |       | .2         | .2         | .2         | .2         | .2         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                    |       | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    |
| Date Analysed (moisture) |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Moisture                 | %     | 14         | 10         | 12         | 9          | 8          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70874-6  | SE70874-7  | SE70874-8  | SE70874-9  | SE70874-1  |
|                          |       |            |            |            |            | 0          |
| Your Reference           |       | RE14_0.0-0 | RE14_0.5-0 | RE15_0.0-0 | RE19_0.0-0 | RE19_0.5-0 |
|                          |       | .2         | .6         | .2         | .2         | .6         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                    |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.5-0.6    |
| Date Analysed (moisture) |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Moisture                 | %     | 11         | 11         | 14         | 19         | 14         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  |
|                          |       | 1          | 2          | 3          | 4          | 5          |
| Your Reference           |       | RE20_0.0-0 | RE20_0.5-0 | RE22_0.0-0 | RE26_0.0-0 | RE26_0.5-0 |
|                          |       | .2         | .6         | .2         | .2         | .6         |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                    |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.5-0.6    |
| Date Analysed (moisture) |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Moisture                 | %     | 7          | 6          | 12         | 16         | 10         |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-1  | SE70874-2  |
|                          |       | 6          | 7          | 8          | 9          | 0          |
| Your Reference           |       | RE28_0.0-0 | RE28_0.5-0 | OS05_0.0-  | OS07_0.0-  | OS08_0.0-  |
|                          |       | .2         | .6         | 0.2        | 0.2        | 0.2        |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 | 23/07/2009 |
| Depth                    |       | 0.0-0.2    | 0.5-0.6    | 0.0-0.2    | 0.0-0.2    | 0.0-0.2    |
| Date Analysed (moisture) |       | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 | 27/07/2009 |
| Moisture                 | %     | 13         | 19         | 9.9        | 9          | 10         |



This document is issued in accordance with NATA's accreditation requirements. NATA with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Moisture                 |       |            |            |
|--------------------------|-------|------------|------------|
| Our Reference:           | UNITS | SE70874-2  | SE70874-2  |
|                          |       | 1          | 2          |
| Your Reference           |       | OS10_0.0-  | QC1        |
|                          |       | 0.2        |            |
| Sample Matrix            |       | Soil       | Soil       |
| Date Sampled             |       | 23/07/2009 | 23/07/2009 |
| Depth                    |       | 0.0-0.2    | -          |
| Date Analysed (moisture) |       | 27/07/2009 | 27/07/2009 |
| Moisture                 | %     | 15         | 10         |

| Method ID | Methodology Summary                                                                                                                                                                                                                                                                                                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEO-005   | OC/OP/PCB - Determination of a suite of Organchlorine Pesticides, Chlorinated Organo-phosphorus Pesticides and Polychlorinated Biphenyls (PCB's) by liquid-liquid extraction using dichloromethane for waters, or mechanical extraction using acetone / hexane for soils, followed by instrumentation analysis using GC/ECD. Based on USEPA 8081/8082. |
| AN420     | Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates, and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD/FID technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                           |
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                                                                                                                                                    |
| SEM-005   | Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.                                                                                                                                                                                                              |
| SEO-018   | BTEX / C6-C9 Hydrocarbons - Soil samples are extracted with methanol, purged and concentrated by a purge and trap apparatus, and then analysed using GC/MS technique. Water samples undergo the same analysis without the extraction step. Based on USEPA 5030B and 8260B.                                                                             |
| AN318     | Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.                                                                                                                                                                                                                                                |
| AN002     | Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 $\pm$ 5°C.                                                                                                                        |

WORLD RECOGNISED
ACCREDITATION

| QUALITY CONTROL  OC Pesticides in Soil   | UNITS | LOR | METHOD  | Blank   | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|------------------------------------------|-------|-----|---------|---------|------------------|-------------------------------------|-----------|------------------------------------------------|
| Date Extracted                           |       |     |         | 28/07/0 | SE70874-1        | 28/07/2009   <br>28/07/2009         | SE70874-4 | 28/07/09                                       |
| Date Analysed                            |       |     |         | 28/07/0 | SE70874-1        | 28/07/2009   <br>28/07/2009         | SE70874-4 | 28/07/09                                       |
| HCB                                      | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| alpha-BHC                                | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| gamma-BHC (Lindane)                      | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Heptachlor                               | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | SE70874-4 | 107%                                           |
| Aldrin                                   | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | SE70874-4 | 111%                                           |
| beta-BHC                                 | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| delta-BHC                                | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | SE70874-4 | 104%                                           |
| Heptachlor Epoxide                       | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| o,p-DDE                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| alpha-Endosulfan                         | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| trans-Chlordane                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| cis-Chlordane                            | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| trans-Nonachlor                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| p,p-DDE                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Dieldrin                                 | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | SE70874-4 | 107%                                           |
| Endrin                                   | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | SE70874-4 | 116%                                           |
| o,p-DDD                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| o,p-DDT                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| beta-Endosulfan                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| p,p-DDD                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| p,p-DDT                                  | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | SE70874-4 | 117%                                           |
| Endosulfan Sulphate                      | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Endrin Aldehyde                          | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Methoxychlor                             | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| Endrin Ketone                            | mg/kg | 0.1 | SEO-005 | <0.1    | SE70874-1        | <0.1    <0.1                        | [NR]      | [NR]                                           |
| 2,4,5,6-Tetrachloro-m-xy lene (Surrogate | %     | 0   | SEO-005 | 98      | SE70874-1        | 97    97    RPD: 0                  | SE70874-4 | 99%                                            |



| QUALITY CONTROL               | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|-------------------------------|-------|-----|--------|--------------|------------------|-----------------------------|-----------|----------------------------|
| OP Pesticides in Soil by GCMS |       |     |        |              |                  | Base + Duplicate +<br>%RPD  |           | Duplicate + %RPD           |
| Date Extracted                |       |     |        | 28/07/0<br>9 | SE70874-1        | 28/07/2009   <br>28/07/2009 | SE70874-8 | 28/07/09                   |
| Date Analysed                 |       |     |        | 28/07/0<br>9 | SE70874-1        | 28/07/2009   <br>28/07/2009 | SE70874-8 | 28/07/09                   |
| Dichlorvos                    | mg/kg | 1   | AN420  | <1           | SE70874-1        | <1    <1                    | SE70874-8 | 112%                       |
| Dimethoate                    | mg/kg | 1   | AN420  | <1           | SE70874-1        | <1    <1                    | [NR]      | [NR]                       |
| Diazinon                      | mg/kg | 0.5 | AN420  | <0.5         | SE70874-1        | <0.5    <0.5                | SE70874-8 | 104%                       |
| Fenitrothion                  | mg/kg | 0.2 | AN420  | <0.2         | SE70874-1        | <0.2    <0.2                | [NR]      | [NR]                       |
| Malathion                     | mg/kg | 0.2 | AN420  | <0.20        | SE70874-1        | <0.20    <0.20              | [NR]      | [NR]                       |
| Chlorpyrifos-ethyl            | mg/kg | 0.2 | AN420  | <0.2         | SE70874-1        | <0.2    <0.2                | SE70874-8 | 125%                       |
| Parathion-ethyl               | mg/kg | 0.2 | AN420  | <0.2         | SE70874-1        | <0.2    <0.2                | [NR]      | [NR]                       |
| Bromofos-ethyl                | mg/kg | 0.2 | AN420  | <0.2         | SE70874-1        | <0.2    <0.2                | [NR]      | [NR]                       |
| Methidathion                  | mg/kg | 0.5 | AN420  | <0.5         | SE70874-1        | <0.5    <0.5                | [NR]      | [NR]                       |
| Ethion                        | mg/kg | 0.2 | AN420  | <0.2         | SE70874-1        | <0.2    <0.2                | SE70874-8 | 118%                       |
| Azinphos-methyl               | mg/kg | 0.2 | AN420  | <0.20        | SE70874-1        | <0.20    <0.20              | SE70874-8 | 124%                       |
| 2-fluorobiphenyl (Surr)       | %     | 0   | AN420  | 96           | SE70874-1        | 100    100    RPD: 0        | SE70874-8 | 108%                       |
| d14-p-Terphenyl (Surr)        | %     | 0   | AN420  | 92           | SE70874-1        | 96    92    RPD: 4          | SE70874-8 | 100%                       |

| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |                |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 27/07/2<br>009 | SE70874-1        | 27/07/2009   <br>27/07/2009 | SE70874-2 | 27/07/2009                 |
| Date Analysed (Metals)    |       |     |         | 27/07/2<br>009 | SE70874-1        | 27/07/2009   <br>27/07/2009 | SE70874-2 | 27/07/2009                 |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3             | SE70874-1        | 6    6    RPD: 0            | SE70874-2 | 89%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3           | SE70874-1        | <0.3    <0.3                | SE70874-2 | 84%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3           | SE70874-1        | 16    17    RPD: 6          | SE70874-2 | 87%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE70874-1        | 29    23    RPD: 23         | SE70874-2 | 97%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1             | SE70874-1        | 6    5    RPD: 18           | SE70874-2 | 78%                        |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE70874-1        | 18    17    RPD: 6          | SE70874-2 | 85%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5           | SE70874-1        | 24    25    RPD: 4          | SE70874-2 | 92%                        |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL  Mercury Cold Vapor/Hg  Analyser | UNITS | LOR  | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate  Base + Duplicate +  %RPD | Spike Sm# | Matrix Spike %<br>Recovery<br>Duplicate + %RPD |
|--------------------------------------------------|-------|------|---------|----------------|------------------|-------------------------------------|-----------|------------------------------------------------|
| Date Extracted (Mercury)                         |       |      |         | 27/07/2<br>009 | SE70874-1        | 27/07/2009   <br>27/07/2009         | SE70874-2 | 27/07/2009                                     |
| Date Analysed<br>(Mercury)                       |       |      |         | 27/07/2<br>009 | SE70874-1        | 27/07/2009   <br>27/07/2009         | SE70874-2 | 27/07/2009                                     |
| Mercury                                          | mg/kg | 0.05 | SEM-005 | <0.05          | SE70874-1        | <0.05    <0.05                      | SE70874-2 | 108%                                           |

| QUALITY CONTROL       | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------|-------|-----|---------|--------------|------------------|-------------------------|-----------|----------------------------|
| BTEX in Water (µg/L)  |       |     |         |              |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted (BTEX) |       |     |         | 28/07/0<br>9 | [NT]             | [NT]                    | LCS       | 28/07/09                   |
| Date Analysed (BTEX)  |       |     |         | 29/07/0<br>9 | [NT]             | [NT]                    | LCS       | 29/07/09                   |
| Benzene               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                    | LCS       | 105%                       |
| Toluene               | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                    | LCS       | 106%                       |
| Ethylbenzene          | μg/L  | 0.5 | SEO-018 | <0.5         | [NT]             | [NT]                    | LCS       | 106%                       |
| Total Xylenes         | μg/L  | 1.5 | SEO-018 | <1.5         | [NT]             | [NT]                    | LCS       | 104%                       |
| Surrogate             | %     | 0   | SEO-018 | 95           | [NT]             | [NT]                    | LCS       | 82%                        |

| QUALITY CONTROL        | UNITS | LOR | METHOD  | Blank        | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|------------------------|-------|-----|---------|--------------|------------------|-------------------------|-----------|----------------------------|
| OC Pesticides in Water |       |     |         |              |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| Date Extracted         |       |     |         | 28/07/0      | [NT]             | [NT]                    | LCS       | 28/07/09                   |
| Date Analysed          |       |     |         | 28/07/0<br>9 | [NT]             | [NT]                    | LCS       | 28/07/09                   |
| HCB                    | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| alpha-BHC              | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| gamma-BHC(lindane)     | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Heptachlor             | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 94%                        |
| Aldrin                 | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 99%                        |
| beta-BHC               | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| delta-BHC              | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | LCS       | 91%                        |
| Heptachlor Epoxide     | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| o,p-DDE                | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| alpha-Endosulfan       | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| trans-Chlordane        | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| cis-Chlordane          | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |
| trans-Nonachlor        | μg/L  | 0.2 | SEO-005 | <0.2         | [NT]             | [NT]                    | [NR]      | [NR]                       |



This document is issued in accordance with NATA's accreditation requirements. NATA with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                             | UNITS | LOR | METHOD  | Blank | Duplicate<br>Sm# | Duplicate               | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------------------------|-------|-----|---------|-------|------------------|-------------------------|-----------|----------------------------|
| OC Pesticides in Water                      |       |     |         |       |                  | Base + Duplicate + %RPD |           | Duplicate + %RPD           |
| p,p-DDE                                     | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Dieldrin                                    | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | LCS       | 93%                        |
| Endrin                                      | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | LCS       | 98%                        |
| o,p-DDD                                     | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| o,p-DDT                                     | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| beta-Endosulfan                             | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| p,p-DDD                                     | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| p,p-DDT                                     | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | LCS       | 90%                        |
| Endosulfan Sulphate                         | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Endrin Aldehyde                             | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Methoxychlor                                | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| Endrin Ketone                               | μg/L  | 0.2 | SEO-005 | <0.2  | [NT]             | [NT]                    | [NR]      | [NR]                       |
| 2,4,5,6-Tetrachloro-m-xy<br>lene (Surrogate | %     | 0   | SEO-005 | 89    | [NT]             | [NT]                    | LCS       | 91%                        |

| QUALITY CONTROL                | UNITS | LOR | METHOD | Blank        | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|--------------------------------|-------|-----|--------|--------------|------------------|----------------------------|-----------|----------------------------|
| OP Pesticides in Water by GCMS |       |     |        |              |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| Date Extracted                 |       |     |        | 28/07/0<br>9 | [NT]             | [NT]                       | LCS       | 28/07/09                   |
| Date Analysed                  |       |     |        | 28/07/0<br>9 | [NT]             | [NT]                       | LCS       | 28/07/09                   |
| Dichlorvos                     | μg/L  | 1   | AN420  | <1           | [NT]             | [NT]                       | LCS       | 81%                        |
| Dimethoate                     | μg/L  | 1   | AN420  | <1           | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Diazinon                       | μg/L  | 0.5 | AN420  | <0.5         | [NT]             | [NT]                       | LCS       | 101%                       |
| Fenitrothion                   | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Malathion                      | μg/L  | 0.2 | AN420  | <0.20        | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Chlorpyrifos-ethyl             | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | LCS       | 110%                       |
| Parathion-ethyl                | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Bromofos-ethyl                 | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Methidathion                   | μg/L  | 0.5 | AN420  | <0.5         | [NT]             | [NT]                       | [NR]      | [NR]                       |
| Ethion                         | μg/L  | 0.2 | AN420  | <0.2         | [NT]             | [NT]                       | LCS       | 119%                       |
| Azinphos-methyl                | μg/L  | 0.2 | AN420  | <0.20        | [NT]             | [NT]                       | LCS       | 96%                        |
| 2-fluorobiphenyl (Surr)        | %     | 0   | AN420  | 70           | [NT]             | [NT]                       | LCS       | 110%                       |
| d14-p-Terphenyl (Surr)         | %     | 0   | AN420  | 65           | [NT]             | [NT]                       | LCS       | 95%                        |



This document is issued in accordance with NATA's accreditation requirements. NATA with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL                 | UNITS | LOR | METHOD | Blank          | Duplicate<br>Sm# | Duplicate                  | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------------|-------|-----|--------|----------------|------------------|----------------------------|-----------|----------------------------|
| Trace HM (ICP-MS)-Dissolved     |       |     |        |                |                  | Base + Duplicate +<br>%RPD |           | Duplicate + %RPD           |
| Date Extracted (Metals-ICPMS)   |       |     |        | 28/07/2<br>009 | [NT]             | [NT]                       | SE70874-1 | 28/07/2009                 |
| Date Analysed<br>(Metals-ICPMS) |       |     |        | 28/07/2<br>009 | [NT]             | [NT]                       | SE70874-1 | 28/07/2009                 |
| Arsenic                         | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                       | SE70874-1 | 101%                       |
| Cadmium                         | μg/L  | 0.1 | AN318  | <0.1           | [NT]             | [NT]                       | SE70874-1 | 105%                       |
| Chromium                        | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                       | SE70874-1 | 97%                        |
| Copper                          | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                       | SE70874-1 | 105%                       |
| Lead                            | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                       | SE70874-1 | 99%                        |
| Nickel                          | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                       | SE70874-1 | 106%                       |
| Zinc                            | μg/L  | 1   | AN318  | <1             | [NT]             | [NT]                       | SE70874-1 | 112%                       |

| QUALITY CONTROL  Mercury Cold Vapor/Hg | UNITS | LOR    | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate  Base + Duplicate + | Spike Sm# | Matrix Spike % Recovery Duplicate + %RPD |
|----------------------------------------|-------|--------|---------|----------------|------------------|-------------------------------|-----------|------------------------------------------|
| Analyser                               |       |        |         |                |                  | %RPD                          |           | ·                                        |
| Date Extracted (Mercury)               |       |        |         | 24/07/2<br>009 | [NT]             | [NT]                          | SE70874-1 | 24/07/2009                               |
| Date Analysed<br>(Mercury)             |       |        |         | 24/07/2<br>009 | [NT]             | [NT]                          | SE70874-1 | 24/07/2009                               |
| Mercury (Dissolved)                    | mg/L  | 0.0005 | SEM-005 | <0.000<br>5    | [NT]             | [NT]                          | SE70874-1 | 114%                                     |

| QUALITY CONTROL          | UNITS | LOR | METHOD | Blank |
|--------------------------|-------|-----|--------|-------|
| Moisture                 |       |     |        |       |
| Date Analysed (moisture) |       |     |        | [NT]  |
| Moisture                 | %     | 1   | AN002  | <1    |

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate  Base + Duplicate +  %RPD |
|-------------------------------------------|-------|----------------|-------------------------------------|
| Date Extracted (Metals)                   |       | SE70874-1<br>1 | 27/07/2009   <br>27/07/2009         |
| Date Analysed (Metals)                    |       | SE70874-1<br>1 | 27/07/2009   <br>27/07/2009         |
| Arsenic                                   | mg/kg | SE70874-1<br>1 | 7    4    RPD: 55                   |
| Cadmium                                   | mg/kg | SE70874-1<br>1 | <0.3    <0.3                        |
| Chromium                                  | mg/kg | SE70874-1<br>1 | 18    18    RPD: 0                  |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| QUALITY CONTROL Metals in Soil by ICP-OES | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|-------------------------------------------|-------|----------------|-----------------------------------|
| Copper                                    | mg/kg | SE70874-1<br>1 | 18    19    RPD: 5                |
| Lead                                      | mg/kg | SE70874-1<br>1 | 10    9.6    RPD: 4               |
| Nickel                                    | mg/kg | SE70874-1<br>1 | 27    26    RPD: 4                |
| Zinc                                      | mg/kg | SE70874-1<br>1 | 60    57    RPD: 5                |

| QUALITY CONTROL<br>Mercury Cold Vapor/Hg<br>Analyser | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|------------------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Mercury)                             |       | SE70874-1<br>1 | 27/07/2009   <br>27/07/2009       |
| Date Analysed (Mercury)                              |       | SE70874-1<br>1 | 27/07/2009   <br>27/07/2009       |
| Mercury                                              | mg/kg | SE70874-1<br>1 | <0.05    <0.05                    |



### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced: 28/07/09 NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms\_and\_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

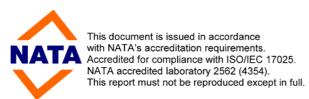
### **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

**Internal Standard**: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.


**Laboratory Control Sample**: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

## **Quality Acceptance Criteria**

**ACCREDITATION** 

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf





# ANALYTICAL REPORT

1 December 2009

**Coffey Environments Pty Ltd** 

17 Torrens St BRADDON ACT 2612

**Attention:** Julian Howard

Your Reference: EC00233AA

Our Reference: SE74004 Samples: 37 Soils, 1 Water

Received: 26/11/2009

Preliminary Report Sent: Not Issued

These samples were analysed in accordance with your written instructions.

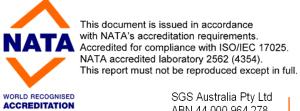
For and on Behalf of:

SGS ENVIRONMENTAL SERVICES

Client Services: Simon Matthews Simon.Matthews@sgs.com

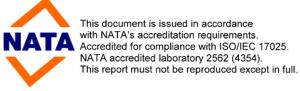
Sample Receipt: Angela Mamalicos AU.SampleReceipt.Sydney@sgs.com

Laboratory Manager: Edward Ibrahim Edward.Ibrahim@sgs.com


Results Approved and/or Authorised by:

Huong Crawford Metals Signatory




| Metals in Soil by ICP-OES |       |            |            |            |            |                |
|---------------------------|-------|------------|------------|------------|------------|----------------|
| Our Reference:            | UNITS | SE74004-1  | SE74004-3  | SE74004-6  | SE74004-8  | SE74004-1<br>0 |
| Your Reference            |       | MS3-16_0.  | MS3-18_0.  | MS3-21_0.  | MS3-23_0.  | MS3-25_0.      |
|                           |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2          |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled              |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009     |
| Date Extracted (Metals)   |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009     |
| Date Analysed (Metals)    |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009     |
| Arsenic                   | mg/kg | 32         | 40         | 39         | 27         | 23             |
| Cadmium                   | mg/kg | 0.3        | 0.4        | 0.4        | <0.3       | <0.3           |
| Chromium                  | mg/kg | 16         | 18         | 18         | 17         | 16             |
| Copper                    | mg/kg | 26         | 28         | 28         | 22         | 21             |
| Lead                      | mg/kg | 100        | 120        | 120        | 72         | 75             |
| Nickel                    | mg/kg | 12         | 15         | 14         | 16         | 15             |
| Zinc                      | mg/kg | 100        | 120        | 120        | 110        | 100            |

| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE74004-1  | SE74004-1  | SE74004-1  | SE74004-1  | SE74004-2  |
|                           |       | 2          | 3          | 5          | 7          | 0          |
| Your Reference            |       | MS3-27_0.  | MS3-28_0.  | MS3-30_0.  | MS3-32_0.  | MS3-34_0.  |
|                           |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Extracted (Metals)   |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Date Analysed (Metals)    |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Arsenic                   | mg/kg | 22         | 27         | 28         | 30         | 29         |
| Cadmium                   | mg/kg | <0.3       | <0.3       | 0.3        | 1.1        | 0.8        |
| Chromium                  | mg/kg | 16         | 19         | 18         | 18         | 18         |
| Copper                    | mg/kg | 19         | 23         | 23         | 28         | 30         |
| Lead                      | mg/kg | 60         | 75         | 88         | 160        | 150        |
| Nickel                    | mg/kg | 14         | 17         | 17         | 16         | 15         |
| Zinc                      | mg/kg | 100        | 120        | 110        | 290        | 250        |



| Metals in Soil by ICP-OES |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:            | UNITS | SE74004-2  | SE74004-2  | SE74004-2  | SE74004-2  | SE74004-3  |
|                           |       | 2          | 5          | 7          | 9          | 1          |
| Your Reference            |       | MS3-35_0.  | MS4-41_0.  | MS4-43_0.  | MS4-45_0.  | MS4-47_0.  |
|                           |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix             |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Extracted (Metals)   |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Date Analysed (Metals)    |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Arsenic                   | mg/kg | 35         | 6          | 8          | 8          | 4          |
| Cadmium                   | mg/kg | 1.0        | 1.1        | <0.3       | 1.3        | <0.3       |
| Chromium                  | mg/kg | 19         | 15         | 17         | 17         | 14         |
| Copper                    | mg/kg | 33         | 7.7        | 5.7        | 9.6        | 5.3        |
| Lead                      | mg/kg | 190        | 71         | 23         | 67         | 18         |
| Nickel                    | mg/kg | 16         | 12         | 14         | 14         | 10         |
| Zinc                      | mg/kg | 300        | 1,200      | 65         | 1,500      | 53         |

| Metals in Soil by ICP-OES |       |            |            |            |
|---------------------------|-------|------------|------------|------------|
| Our Reference:            | UNITS | SE74004-3  | SE74004-3  | SE74004-3  |
|                           |       | 3          | 5          | 6          |
| Your Reference            |       | MS4-49_0.  | MS4-51_0.  | QC100      |
|                           |       | 0-0.2      | 0-0.2      |            |
| Sample Matrix             |       | Soil       | Soil       | Soil       |
| Date Sampled              |       | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Extracted (Metals)   |       | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| , ,                       |       |            |            |            |
| Date Analysed (Metals)    |       | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Arsenic                   | mg/kg | 9          | 5          | 38         |
| Cadmium                   | mg/kg | <0.3       | <0.3       | 0.4        |
| Chromium                  | mg/kg | 16         | 14         | 19         |
| Copper                    | mg/kg | 6.9        | 4.9        | 27         |
| Lead                      | mg/kg | 23         | 20         | 130        |
| Nickel                    | mg/kg | 14         | 10         | 14         |
| Zinc                      | mg/kg | 69         | 48         | 140        |



| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |                |
|--------------------------------|-------|------------|------------|------------|------------|----------------|
| Our Reference:                 | UNITS | SE74004-1  | SE74004-3  | SE74004-6  | SE74004-8  | SE74004-1<br>0 |
| Your Reference                 |       | MS3-16_0.  | MS3-18_0.  | MS3-21_0.  | MS3-23_0.  | MS3-25_0.      |
|                                |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2          |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil           |
| Date Sampled                   |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009     |
| Date Extracted (Mercury)       |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009     |
| Date Analysed (Mercury)        |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009     |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05          |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE74004-1  | SE74004-1  | SE74004-1  | SE74004-1  | SE74004-2  |
|                                |       | 2          | 3          | 5          | 7          | 0          |
| Your Reference                 |       | MS3-27_0.  | MS3-28_0.  | MS3-30_0.  | MS3-32_0.  | MS3-34_0.  |
|                                |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Extracted (Mercury)       |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Date Analysed (Mercury)        |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |            |            |
|--------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:                 | UNITS | SE74004-2  | SE74004-2  | SE74004-2  | SE74004-2  | SE74004-3  |
|                                |       | 2          | 5          | 7          | 9          | 1          |
| Your Reference                 |       | MS3-35_0.  | MS4-41_0.  | MS4-43_0.  | MS4-45_0.  | MS4-47_0.  |
|                                |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix                  |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Extracted (Mercury)       |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Date Analysed (Mercury)        |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |

| Mercury Cold Vapor/Hg Analyser |       |            |            |            |
|--------------------------------|-------|------------|------------|------------|
| Our Reference:                 | UNITS | SE74004-3  | SE74004-3  | SE74004-3  |
|                                |       | 3          | 5          | 6          |
| Your Reference                 |       | MS4-49_0.  | MS4-51_0.  | QC100      |
|                                |       | 0-0.2      | 0-0.2      |            |
| Sample Matrix                  |       | Soil       | Soil       | Soil       |
| Date Sampled                   |       | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Extracted (Mercury)       |       | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Date Analysed (Mercury)        |       | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Mercury                        | mg/kg | <0.05      | <0.05      | <0.05      |



This document is issued in accordance with NATA's accreditation requirements. Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE74004-1  | SE74004-3  | SE74004-6  | SE74004-8  | SE74004-1  |
|                          |       |            |            |            |            | 0          |
| Your Reference           |       | MS3-16_0.  | MS3-18_0.  | MS3-21_0.  | MS3-23_0.  | MS3-25_0.  |
|                          |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Analysed (moisture) |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Moisture                 | %     | <1         | 2          | 1          | 1          | 1          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE74004-1  | SE74004-1  | SE74004-1  | SE74004-1  | SE74004-2  |
|                          |       | 2          | 3          | 5          | 7          | 0          |
| Your Reference           |       | MS3-27_0.  | MS3-28_0.  | MS3-30_0.  | MS3-32_0.  | MS3-34_0.  |
|                          |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Analysed (moisture) |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Moisture                 | %     | 1          | 2          | 1          | 2          | 3          |

| Moisture                 |       |            |            |            |            |            |
|--------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference:           | UNITS | SE74004-2  | SE74004-2  | SE74004-2  | SE74004-2  | SE74004-3  |
|                          |       | 2          | 5          | 7          | 9          | 1          |
| Your Reference           |       | MS3-35_0.  | MS4-41_0.  | MS4-43_0.  | MS4-45_0.  | MS4-47_0.  |
|                          |       | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      | 0-0.2      |
| Sample Matrix            |       | Soil       | Soil       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Analysed (moisture) |       | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Moisture                 | %     | 3          | 2          | 2          | 1          | <1         |

| Moisture                 |       |            |            |            |
|--------------------------|-------|------------|------------|------------|
| Our Reference:           | UNITS | SE74004-3  | SE74004-3  | SE74004-3  |
|                          |       | 3          | 5          | 6          |
| Your Reference           |       | MS4-49_0.  | MS4-51_0.  | QC100      |
|                          |       | 0-0.2      | 0-0.2      |            |
| Sample Matrix            |       | Soil       | Soil       | Soil       |
| Date Sampled             |       | 25/11/2009 | 25/11/2009 | 25/11/2009 |
| Date Analysed (moisture) |       | 27/11/2009 | 27/11/2009 | 27/11/2009 |
| Moisture                 | %     | 1          | 1          | <1         |



This document is issued in accordance with NATA's accreditation requirements. with NATA's accreditation requirements.

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562 (4354). This report must not be reproduced except in full.

| Method ID | Methodology Summary                                                                                                                                                                                                             |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SEM-010   | Determination of elements by ICP-OES following appropriate sample preparation / digestion process. Based on USEPA 6010C / APHA 21st Edition, 3120B.                                                                             |
| SEM-005   | Mercury - determined by Cold-Vapour AAS following appropriate sample preparation or digestion process. Based on APHA 21st Edition, 3112B.                                                                                       |
| AN002     | Preparation of soils, sediments and sludges undergo analysis by either air drying, compositing, subsampling and 1:5 soil water extraction where required. Moisture content is determined by drying the sample at 105 $\pm$ 5°C. |

WORLD RECOGNISED
ACCREDITATION

| QUALITY CONTROL           | UNITS | LOR | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|---------------------------|-------|-----|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Metals in Soil by ICP-OES |       |     |         |                |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Metals)   |       |     |         | 27/11/2<br>009 | SE74004-1        | 27/11/2009   <br>27/11/2009 | SE74004-3 | 27/11/2009                 |
| Date Analysed (Metals)    |       |     |         | 27/11/2<br>009 | SE74004-1        | 27/11/2009   <br>27/11/2009 | SE74004-3 | 27/11/2009                 |
| Arsenic                   | mg/kg | 3   | SEM-010 | <3             | SE74004-1        | 32    32    RPD: 0          | SE74004-3 | 98%                        |
| Cadmium                   | mg/kg | 0.3 | SEM-010 | <0.3           | SE74004-1        | 0.3    0.3    RPD: 0        | SE74004-3 | 71%                        |
| Chromium                  | mg/kg | 0.3 | SEM-010 | <0.3           | SE74004-1        | 16    15    RPD: 6          | SE74004-3 | 79%                        |
| Copper                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE74004-1        | 26    20    RPD: 26         | SE74004-3 | 92%                        |
| Lead                      | mg/kg | 1   | SEM-010 | <1             | SE74004-1        | 100    99    RPD: 1         | SE74004-3 | 108%                       |
| Nickel                    | mg/kg | 0.5 | SEM-010 | <0.5           | SE74004-1        | 12    11    RPD: 9          | SE74004-3 | 74%                        |
| Zinc                      | mg/kg | 0.5 | SEM-010 | <0.5           | SE74004-1        | 100    95    RPD: 5         | SE74004-3 | 128%                       |

| QUALITY CONTROL                   | UNITS | LOR  | METHOD  | Blank          | Duplicate<br>Sm# | Duplicate                   | Spike Sm# | Matrix Spike %<br>Recovery |
|-----------------------------------|-------|------|---------|----------------|------------------|-----------------------------|-----------|----------------------------|
| Mercury Cold Vapor/Hg<br>Analyser |       |      |         |                |                  | Base + Duplicate + %RPD     |           | Duplicate + %RPD           |
| Date Extracted (Mercury)          |       |      |         | 27/11/2<br>009 | SE74004-1        | 27/11/2009   <br>27/11/2009 | SE74004-3 | 27/11/2009                 |
| Date Analysed<br>(Mercury)        |       |      |         | 27/11/2<br>009 | SE74004-1        | 27/11/2009   <br>27/11/2009 | SE74004-3 | 27/11/2009                 |
| Mercury                           | mg/kg | 0.05 | SEM-005 | <0.05          | SE74004-1        | <0.05    <0.05              | SE74004-3 | 96%                        |

| QUALITY CONTROL                      | UNITS | LOR   | METHOD | Blank |
|--------------------------------------|-------|-------|--------|-------|
| Hold sample- <b>NO test</b> required |       |       |        |       |
| Sample on HOLD                       |       | INITI |        | INITI |
| Sample on HOLD                       |       | [NT]  |        | [NT]  |

| QUALITY CONTROL          | UNITS | LOR | METHOD | Blank |
|--------------------------|-------|-----|--------|-------|
| Moisture                 |       |     |        |       |
| Date Analysed (moisture) |       |     |        | [NT]  |
| Moisture                 | %     | 1   | AN002  | <1    |

| QUALITY CONTROL           | UNITS | Dup. Sm#       | Duplicate                   |
|---------------------------|-------|----------------|-----------------------------|
| Metals in Soil by ICP-OES |       |                | Base + Duplicate +<br>%RPD  |
| Date Extracted (Metals)   |       | SE74004-2<br>2 | 27/11/2009   <br>27/11/2009 |
| Date Analysed (Metals)    |       | SE74004-2<br>2 | 27/11/2009   <br>27/11/2009 |



This document is issued in accordance with NATA's accreditation requirements.
Accredited for compliance with ISO/IEC 17025.
NATA accredited laboratory 2562 (4354).
This report must not be reproduced except in full.

| QUALITY CONTROL           | UNITS | Dup. Sm#       | Duplicate               |
|---------------------------|-------|----------------|-------------------------|
| Metals in Soil by ICP-OES |       |                | Base + Duplicate + %RPD |
| Arsenic                   | mg/kg | SE74004-2<br>2 | 35    34    RPD: 3      |
| Cadmium                   | mg/kg | SE74004-2<br>2 | 1.0    1.0    RPD: 0    |
| Chromium                  | mg/kg | SE74004-2<br>2 | 19    18    RPD: 5      |
| Copper                    | mg/kg | SE74004-2<br>2 | 33    31    RPD: 6      |
| Lead                      | mg/kg | SE74004-2<br>2 | 190    190    RPD: 0    |
| Nickel                    | mg/kg | SE74004-2<br>2 | 16    16    RPD: 0      |
| Zinc                      | mg/kg | SE74004-2<br>2 | 300    310    RPD: 3    |

| QUALITY CONTROL<br>Mercury Cold Vapor/Hg<br>Analyser | UNITS | Dup. Sm#       | Duplicate Base + Duplicate + %RPD |
|------------------------------------------------------|-------|----------------|-----------------------------------|
| Date Extracted (Mercury)                             |       | SE74004-2<br>2 | 27/11/2009   <br>27/11/2009       |
| Date Analysed (Mercury)                              |       | SE74004-2<br>2 | 27/11/2009   <br>27/11/2009       |
| Mercury                                              | mg/kg | SE74004-2<br>2 | <0.05    <0.05                    |



### **Result Codes**

[INS] : Insufficient Sample for this test [RPD] : Relative Percentage Difference [NR] : Not Requested \* : Not part of NATA Accreditation

[NT] : Not tested [N/A] : Not Applicable

### **Report Comments**

Samples analysed as received. Solid samples expressed on a dry weight basis.

Date Organics extraction commenced:

NATA Corporate Accreditation No. 2562, Site No 4354

Note: Test results are not corrected for recovery (excluding Dioxins/Furans\*)

This document is issued by the Company subject to its General Conditions of Service
(www.sgs.com/terms\_and\_conditions.htm). Attention is drawn to the limitations of liability,
indemnification and jurisdictional issues established therein.

This document is to be treated as an original within the meaning of UCP 600. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

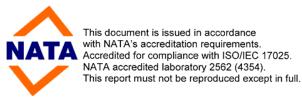
## **Quality Control Protocol**

**Method Blank**: An analyte free matrix to which all reagents are added in the same volume or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. A method blank is prepared every 20 samples.

**Duplicate**: A separate portion of a sample being analysed that is treated the same as the other samples in the batch. One duplicate is processed at least every 10 samples.

**Surrogate Spike**: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. Surrogates are added to samples before extraction to monitor extraction efficiency and percent recovery in each sample.

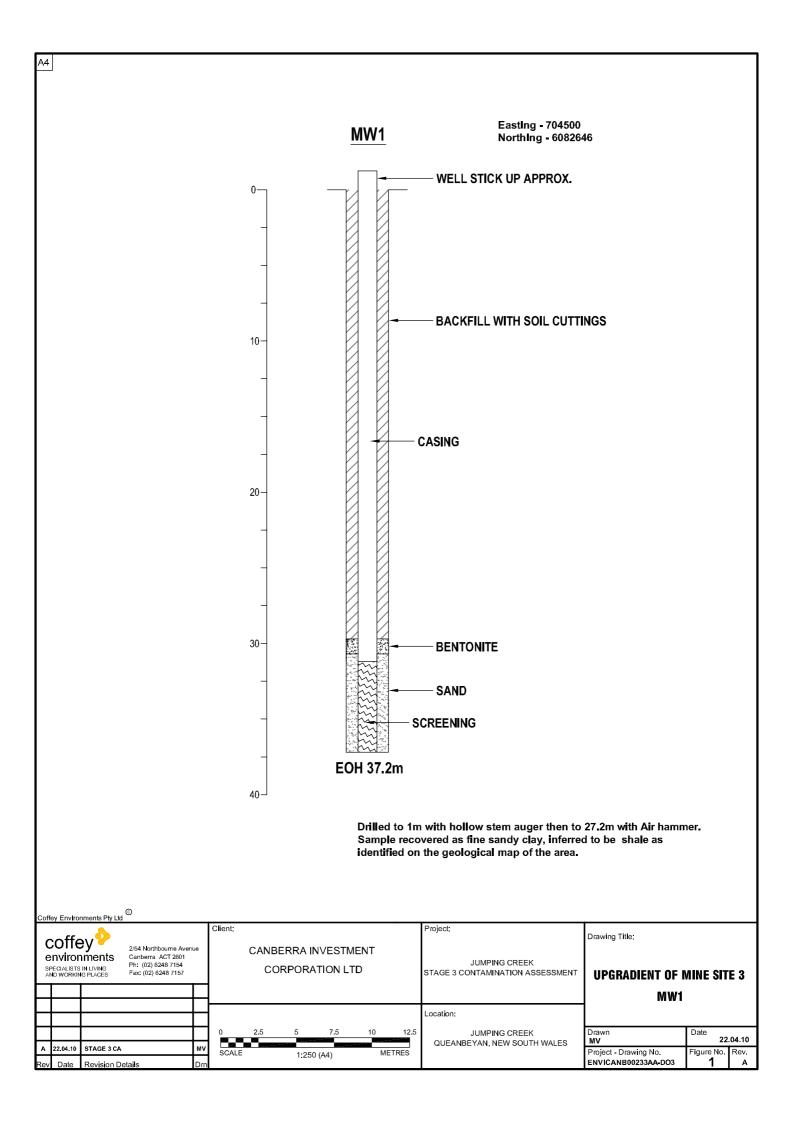
**Internal Standard**: Added to all samples requiring analysis for organics (where relevant) or metals by ICP after the extraction/digestion process; the compounds/elements serve to give a standard of retention time and/or response, which is invariant from run-to-run with the instruments.

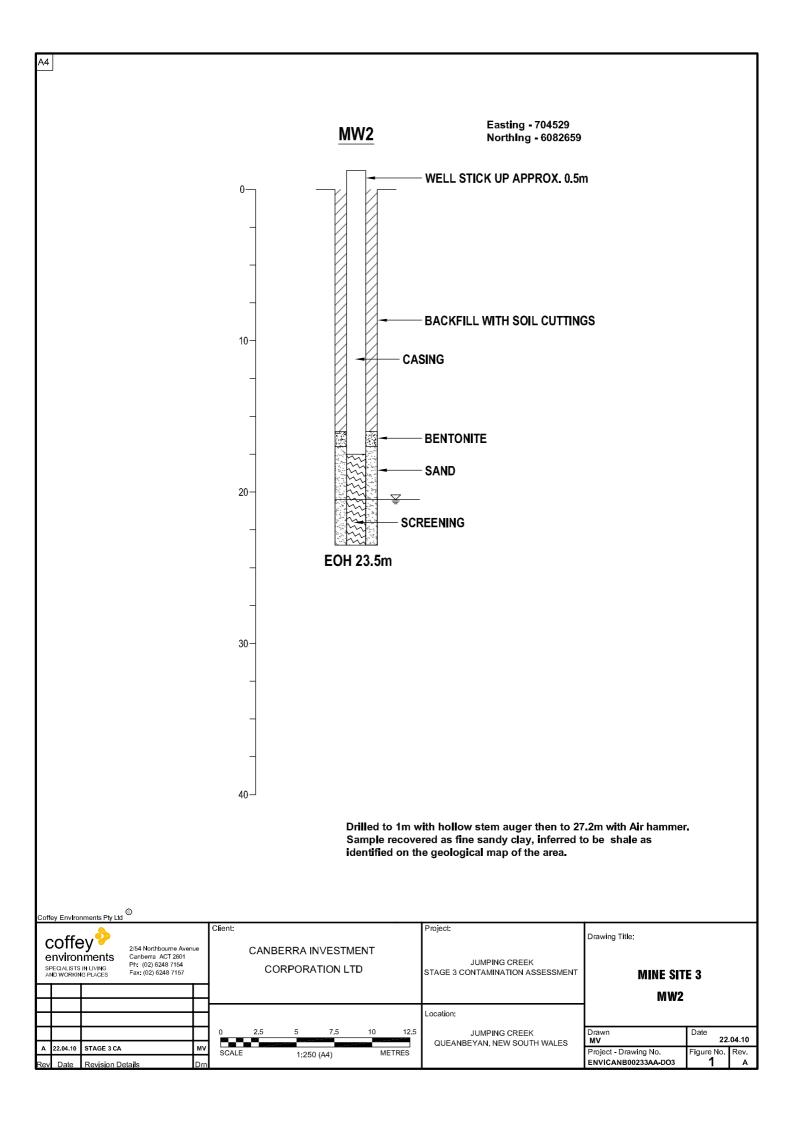

Laboratory Control Sample: A known matrix spiked with compound(s) representative of the target analytes. It is used to document laboratory performance. When the results of the matrix spike analysis indicates a potential problem due to the sample matrix itself, the LCS results are used to verify that the laboratory can perform the analysis in a clean matrix.

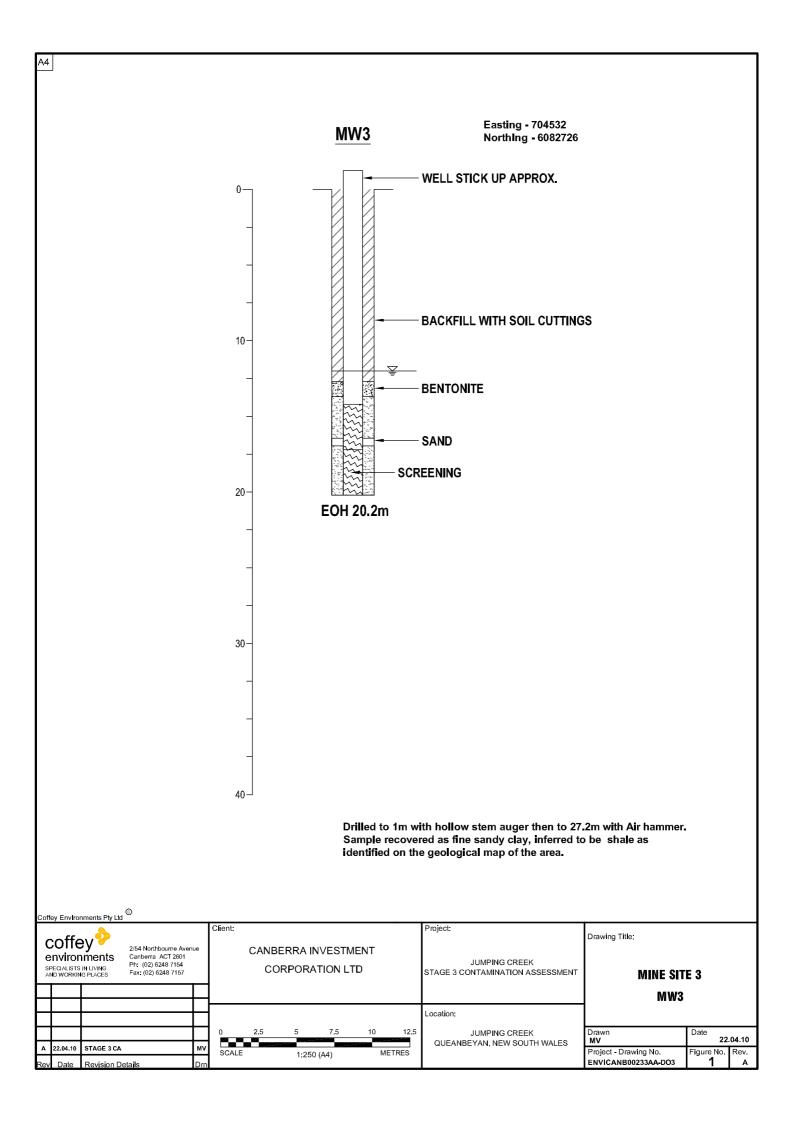
**Matrix Spike**: An aliquot of sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

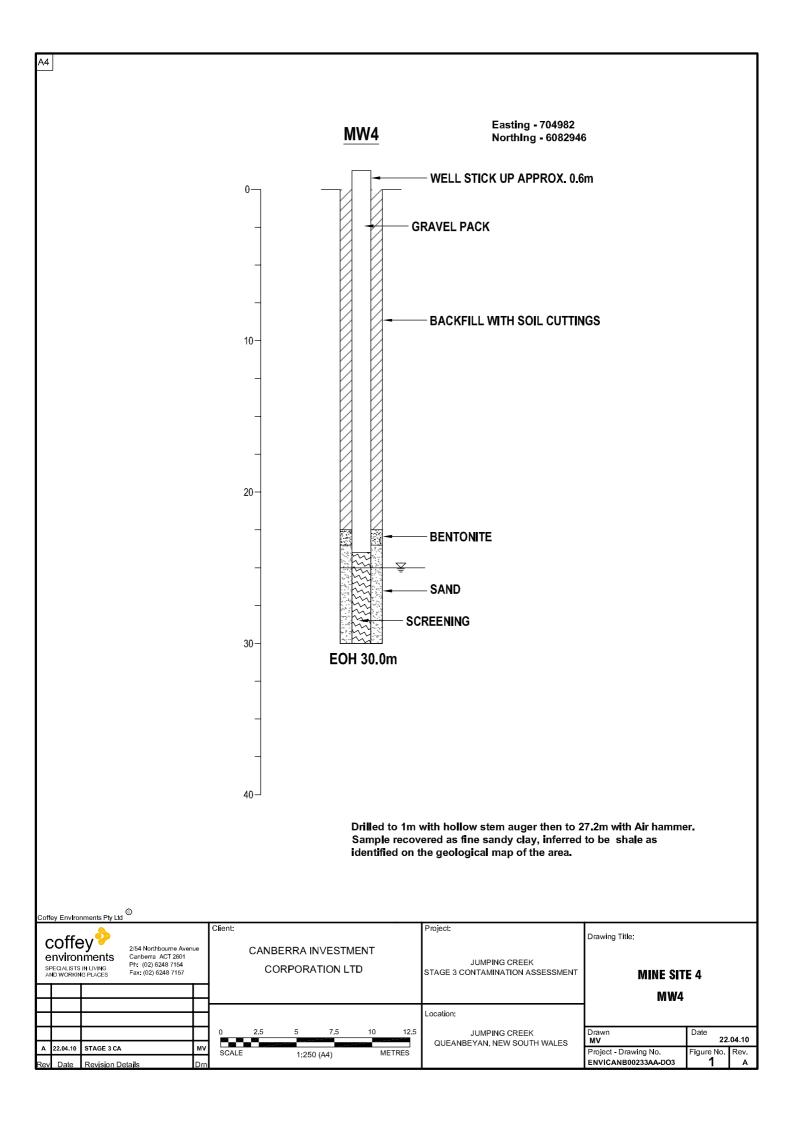
# **Quality Acceptance Criteria**

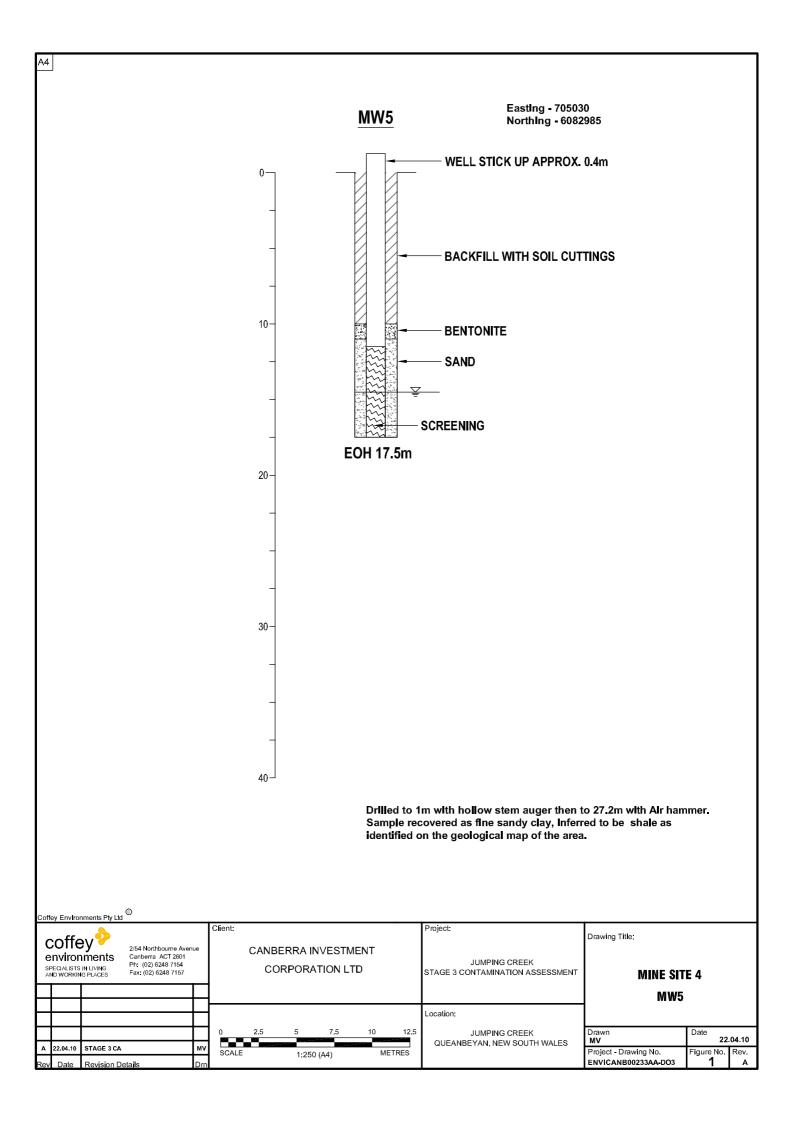
**ACCREDITATION** 

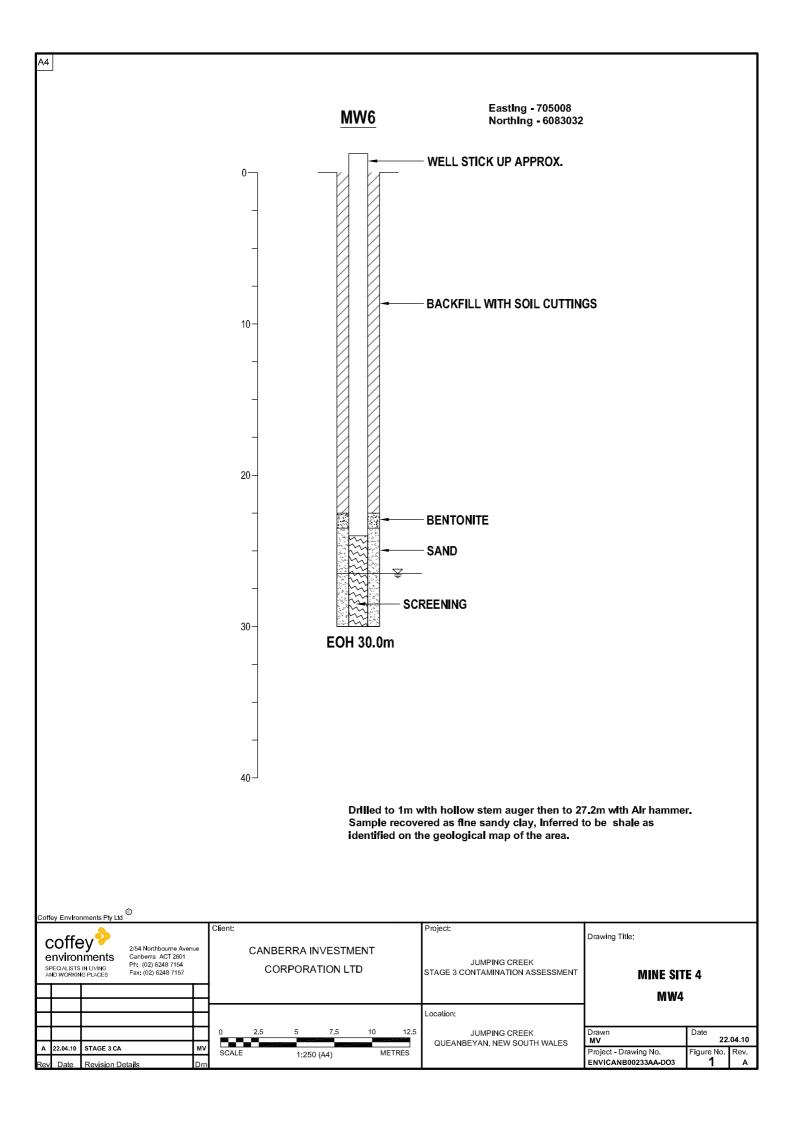

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.au.sgs.com/sgs-mp-au-env-qu-022-qa-qc-plan-en-09.pdf

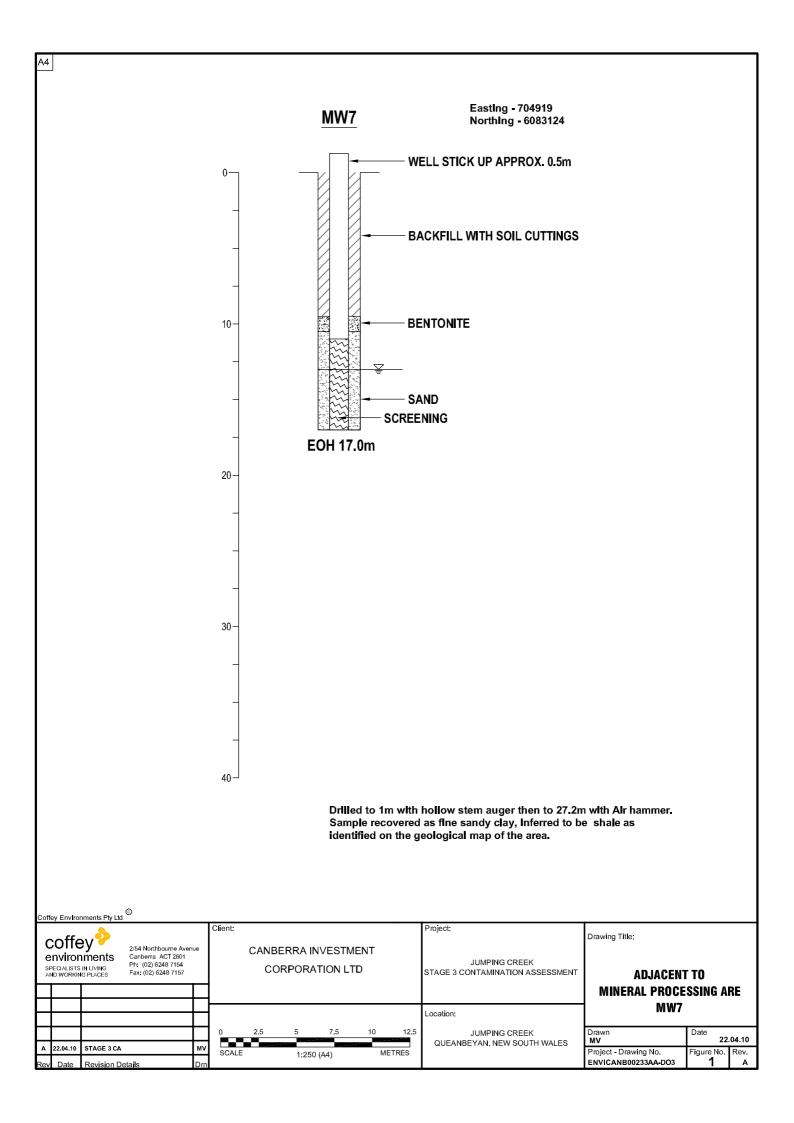


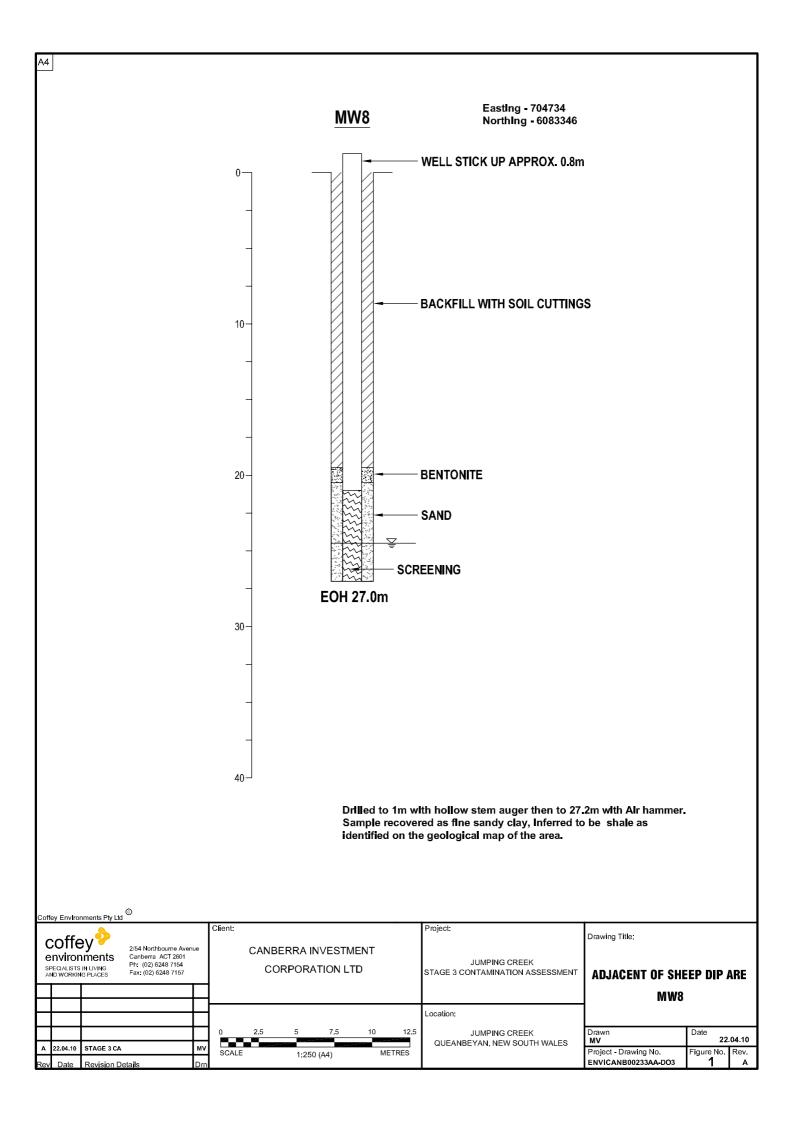


# FINAL DRAFT


# Appendix C Groundwater Well Construction Details, Hand Auger Logs and Field PID Results


Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW
















Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

**OS01** 

Principal: Date completed: **27.7.2009** 

| Borehole Location: Open Space or Residential Areas Checked by: JH |                                                                                                                                                                                                                                                              |         |       |                                 |       |                 |                                                          |                          |                                                    |                                                                                                                                                                                                     |                                          |                                                             |                       |                               |                          |          |                                              |                                                                                                                     |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|---------------------------------|-------|-----------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|----------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| drill                                                             | model                                                                                                                                                                                                                                                        | and     | mour  | nting: I                        | land. | Auger           |                                                          |                          | Easting:                                           | 704401                                                                                                                                                                                              | slope:                                   | -90°                                                        |                       |                               | ı                        | R.L. Sur | face:                                        |                                                                                                                     |
|                                                                   | diame                                                                                                                                                                                                                                                        |         |       |                                 | 100 m | m               |                                                          |                          | Northing                                           |                                                                                                                                                                                                     | bearing                                  | j:                                                          |                       |                               | (                        | datum:   |                                              |                                                                                                                     |
| uri                                                               | illing<br>5                                                                                                                                                                                                                                                  | IIIIO   | rina  |                                 |       |                 | mate                                                     |                          | ubstance                                           | •                                                                                                                                                                                                   |                                          |                                                             |                       | - ×                           | 6                        |          |                                              |                                                                                                                     |
| method                                                            | . t<br>. benetration<br>. s                                                                                                                                                                                                                                  | support | water | notes<br>samples,<br>tests, etc | RL    | depth<br>metres |                                                          | classification<br>symbol |                                                    | mate<br>/pe: plasticity or p<br>ur, secondary and                                                                                                                                                   | article characteri<br>d minor compone    |                                                             | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 pocket | a        |                                              | ructure and<br>nal observations                                                                                     |
| НА                                                                |                                                                                                                                                                                                                                                              |         |       | OS01                            |       |                 |                                                          | GS                       | Gravelly sine to coa                               | SANDbrown/red,<br>arse grained sand                                                                                                                                                                 | no plasticity clay<br>, fine to medium   | r, firm,<br>gravel                                          | M                     |                               |                          |          |                                              | -                                                                                                                   |
|                                                                   |                                                                                                                                                                                                                                                              |         | -     |                                 |       | _               |                                                          |                          |                                                    |                                                                                                                                                                                                     |                                          |                                                             |                       |                               |                          |          |                                              | -                                                                                                                   |
|                                                                   |                                                                                                                                                                                                                                                              |         |       |                                 |       |                 | 0 0                                                      |                          |                                                    |                                                                                                                                                                                                     |                                          |                                                             |                       |                               |                          |          |                                              |                                                                                                                     |
|                                                                   |                                                                                                                                                                                                                                                              |         |       |                                 |       |                 |                                                          |                          | Borehole                                           | OS01 terminated                                                                                                                                                                                     | at 0.3m                                  |                                                             |                       |                               |                          |          |                                              | -                                                                                                                   |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V                   | AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit *bit shown by suffix  C casing penetration 1 2 3 4 no resistance arging to refusal  water  10/1/98 water lev on date shown  water inflow |         |       |                                 |       |                 | no resista<br>anging to<br>refusal<br>8 water<br>e showr | ince                     | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter<br>n test (SPT)<br>vered | soil des<br>based or<br>system  moistur D dr M m W we Wp pl | e<br>y<br>oist        | classifica                    |                          |          | consistence VS S F St VSt H Fb VL L MD D VVD | very density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 28.7.2009

Borehole No.

**OS02** 

Principal: Date completed: **28.7.2009** 

Project: Jumping Creek

Logged by: CL

Rerebela Location: Open Space or Residential Areas

| Borehole Location: Open Space or Residential Areas Checked by: JH |                                                                                                                                                                                                                                               |         |         |                                 |        |                 |                                                        |                          |                                                    |                                                                                                                                                                                                      |                                        |                                                      |                       |                               |                            |          |                                            |                                                                                                                   |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------------------------------|--------|-----------------|--------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------|-----------------------|-------------------------------|----------------------------|----------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                                             | model                                                                                                                                                                                                                                         | and     | mou     | nting: I                        | land . | Auger           |                                                        |                          | Easting:                                           | 704597                                                                                                                                                                                               | slope:                                 | -90°                                                 |                       |                               | ı                          | R.L. Sur | face:                                      |                                                                                                                   |
|                                                                   | diame                                                                                                                                                                                                                                         |         | <b></b> |                                 | 100 m  | m               |                                                        | ! !                      | Northing                                           |                                                                                                                                                                                                      | bearing                                | :                                                    |                       |                               | (                          | datum:   |                                            |                                                                                                                   |
| Hari                                                              | illing                                                                                                                                                                                                                                        | INTO    | rma     |                                 |        |                 | mate                                                   |                          | ubstance                                           | •                                                                                                                                                                                                    |                                        |                                                      |                       | _ ×                           | . 6                        |          |                                            |                                                                                                                   |
| method                                                            | 2 penetration                                                                                                                                                                                                                                 | support | water   | notes<br>samples,<br>tests, etc | RL     | depth<br>metres | graphic log                                            | classification<br>symbol |                                                    | mate<br>/pe: plasticity or p<br>ur, secondary and                                                                                                                                                    | article characteri<br>I minor compone  |                                                      | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 penetro- | a        |                                            | ructure and<br>nal observations                                                                                   |
| Н                                                                 |                                                                                                                                                                                                                                               |         |         | OS02                            |        |                 |                                                        | SG                       | Sandy GF<br>to coarse                              | RAVELbrown, no<br>grained sand, fine                                                                                                                                                                 | plasticity clay, fii<br>to medium grav | m, fine<br>el                                        | M                     |                               |                            |          |                                            | -                                                                                                                 |
|                                                                   |                                                                                                                                                                                                                                               |         |         |                                 |        |                 |                                                        |                          | Borehole                                           | OS02 terminated                                                                                                                                                                                      | at 0.3m                                |                                                      |                       |                               |                            |          |                                            | _                                                                                                                 |
|                                                                   |                                                                                                                                                                                                                                               |         |         |                                 |        | _               |                                                        |                          |                                                    |                                                                                                                                                                                                      |                                        |                                                      |                       |                               |                            |          |                                            |                                                                                                                   |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T              | AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit *bit shown by suffix  C casing penetration 1 2 3 4 no resistance ranging to 10/1/98 water lev on date shown  Water inflow |         |         |                                 |        |                 | n resista<br>anging to<br>efusal<br>8 water<br>e shown | ince                     | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetration SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samprefusal | 63mm diameter<br>n test (SPT)<br>ered  | soil des based of system  moistur D dr M m W w Wp pl | n unified             | classifica                    |                            | S        | /S<br>S<br>=<br>St<br>/St<br>H<br>=b<br>/L | vy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

**OS03** 

Principal: Date completed: **24.7.2009** 

| Borehole Location: Ope                                                                                                                         | ed by:                             | JH                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| drill model and mounting:                                                                                                                      | Hand Auger                         | Easting:                                                                             | 704821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | slope: -90°                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R.L.                                                  | Surface:                                                                                                                             |
|                                                                                                                                                | 100 mm                             | Northing                                                                             | 6083565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bearing:                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | datu                                                  | m:                                                                                                                                   |
| drilling information                                                                                                                           | ma                                 | aterial substance                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | . ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                     |                                                                                                                                      |
| notes samples, tests, etc                                                                                                                      | depth RL metres b                  |                                                                                      | material  be: plasticity or particle cher, secondary and minor co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | omponents.                  | moisture<br>condition<br>consistency/<br>density index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100 pocket<br>200 pocket<br>300 pocket<br>300 mometer | structure and additional observations                                                                                                |
| 4                                                                                                                                              |                                    | GS Gravelly S to coarse g                                                            | AND brown, no plasticity rained sand, fine to med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | clay, firm, fine            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                |                                                                                                                                      |
| method  AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit | C casing<br>penetration<br>1 2 3 4 | U <sub>63</sub> U<br>D d<br>N sistance<br>I Nc S<br>V v<br>ter level P P<br>bwn Bs b | iples, tests Indisturbed sample 50mm di Indisturbed sample 63mm di Isturbed sample Isturbed sample Isturbed sample Isturbed sample Isturbed sample recovered Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed Isturbed | T)  moistu D d M n W w Wp p | cation symbols a scription on unified classificate records to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the |                                                       | consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

**OS04** 

Principal: Date completed: **24.7.2009** 

| Borehole Location: Open Space or Residential Areas Checked by: JH                                                                                                                                                                                                                                                                                                                   |                 |         |       |                                 |       |                                             |                                                                 |                          |                                                    |                                                                                                                                                                                                       |                                       |                                                           |                       |                               |                          |         |                                                                          |                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-------|---------------------------------|-------|---------------------------------------------|-----------------------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|--------------------------|---------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                                                                                                                                                                                                                                                                                                                                                               | mode            | l and   | mou   | nting: I                        | land. | Auger                                       |                                                                 |                          | Easting:                                           | 704930                                                                                                                                                                                                | slope:                                | -90°                                                      |                       |                               | ı                        | R.L. Su | rface:                                                                   |                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                     | e diam          |         |       |                                 | 100 m | m                                           | -                                                               |                          | Northing                                           |                                                                                                                                                                                                       | bearing                               | <b>g</b> :                                                |                       |                               | (                        | datum:  |                                                                          |                                                                                                                   |
| ar                                                                                                                                                                                                                                                                                                                                                                                  | illing          | Into    | orma  |                                 | i     |                                             | mate                                                            |                          | ubstance                                           | •                                                                                                                                                                                                     |                                       |                                                           |                       | . ×                           | 6                        |         |                                                                          |                                                                                                                   |
| method                                                                                                                                                                                                                                                                                                                                                                              | . 5 penetration | support | water | notes<br>samples,<br>tests, etc | RL    | depth<br>metres                             |                                                                 | classification<br>symbol |                                                    | <b>mate</b><br>ype: plasticity or pa<br>ur, secondary and                                                                                                                                             | article character<br>minor compone    |                                                           | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 pocket | a       |                                                                          | ructure and<br>nal observations                                                                                   |
| НА                                                                                                                                                                                                                                                                                                                                                                                  |                 |         |       | OS04                            |       |                                             |                                                                 |                          | to coarse                                          | SANDbrown, no pgrained sand, fine                                                                                                                                                                     | to medium grav                        | m, fine                                                   | M                     |                               |                          |         |                                                                          |                                                                                                                   |
| method  AS auger screwing* M mud M  AD auger drilling* C casing  RR roller/tricone  W washbore  CT cable tool  HA hand auger  DT diatube  B blank bit V V bit T TC bit *bit shown by suffix e.g. ADT  support  M mud M  C casing  penetration  1 2 3 4  no resist ranging 1 ranging 1 ranging 1 ranging 1 ranging 1 vater  10/1/98 water  on date show  water inflow  water outflow |                 |         |       |                                 |       | mud casing netratio 2 3 4 ter 10/1/9 on dat | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratior SPT - sample recow SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based o<br>system  moistur D di M m W w Wp pl |                       | classifica                    |                          |         | consistend<br>VS<br>S<br>F<br>St<br>VSt<br>H<br>Fb<br>VL<br>L<br>MD<br>D | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **OS05** 

Sheet 1 of 1

> ENVICANB00233AA Office Job No.:

> > CL

Canberra Investment Corporation Pty Ltd 23.7.2009 Date started:

Principal: 23.7.2009 Date completed:

Jumping Creek Project: Logged by: Borehole Location: Open Space or Residential Areas JΗ Checked by:

| Bor                                                                         | eho                                                                                                                          | le L  | ocat    | ion: <i>Ope</i>                 | n Sı   | oace                                                        | or F                                                       | Resid                    | ential Ai                                                                   | reas                                                                                                                                                                                       |                                            |                |                                          | Checke                        | d by:                           |                                      | JH                                                                  |                                    |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------|---------|---------------------------------|--------|-------------------------------------------------------------|------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|------------------------------------------|-------------------------------|---------------------------------|--------------------------------------|---------------------------------------------------------------------|------------------------------------|
| drill                                                                       | mod                                                                                                                          | el ar | nd mo   | ounting:                        | Hand A | Auger                                                       |                                                            |                          | Easting:                                                                    | 705282                                                                                                                                                                                     | slope:                                     | -90°           |                                          |                               | F                               | R.L. Surl                            | face:                                                               |                                    |
|                                                                             | dian                                                                                                                         |       |         |                                 | 100 m  | m                                                           |                                                            |                          | Northing                                                                    | 6083518                                                                                                                                                                                    | bearing                                    | :              |                                          |                               | c                               | latum:                               |                                                                     |                                    |
| dr                                                                          | _                                                                                                                            | _     | forn    | nation                          |        | _                                                           | mat                                                        |                          | ubstance                                                                    |                                                                                                                                                                                            |                                            | -              |                                          |                               |                                 |                                      |                                                                     |                                    |
| method                                                                      | الا<br>الا<br>الا                                                                                                            |       | support | notes<br>samples,<br>tests, etc | RL     | depth<br>metres                                             | graphic log                                                | classification<br>symbol | coloui                                                                      | mater<br>be: plasticity or pa<br>r, secondary and                                                                                                                                          | article characteri<br>minor compone        | nts.           | moisture<br>condition                    | consistency/<br>density index | 200 y pocket<br>300 ad penetro- | ı                                    | structure<br>additional ob                                          | e and<br>servations                |
| АН                                                                          |                                                                                                                              |       |         | OS05                            |        | -                                                           |                                                            | GSM                      | Gravelly Stine to medium gra                                                | andy SILTbrown<br>ium grained sand<br>avel                                                                                                                                                 | , no plasticity cla<br>I, traces of fine t | ıy, firm,<br>o | D                                        |                               |                                 |                                      | ne shrub roots p                                                    | resent                             |
|                                                                             |                                                                                                                              |       |         |                                 |        | -                                                           | 7 - 1<br>- 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3           |                          | Borehole O                                                                  | S05 terminated a                                                                                                                                                                           | at 0.2m                                    |                |                                          |                               |                                 |                                      |                                                                     |                                    |
| met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit<br>e.g. | auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit shown by suffix |       |         |                                 |        | casing<br>netration<br>2 3 4<br>2 3 4<br>4<br>ter<br>10/1/9 | no resista<br>ranging to<br>refusal<br>8 water<br>re shown | level                    | U <sub>63</sub> ui<br>D di<br>N st<br>N* S<br>Nc S<br>V va<br>P pi<br>Bs bi | ples, tests ndisturbed sample i ndisturbed sample i isturbed sample tandard penetration iPT - sample recove PT with solid cone ane shear (kPa) ressuremeter ulk sample nvironmental sample | 63mm diameter<br>test (SPT) –<br>ered      | W we           | cription<br>n unified<br>e<br>y<br>poist | classifica                    |                                 | V<br>  S<br>  F<br>  V<br>  L<br>  M | S soft firm St stiff St very H harr b friat //L very I loos //D mec | soft stiff dole loose e lium dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

**OS06** 

Principal: Date completed: **24.7.2009** 

| Bor                                                                          | ehol          | e L                                                                                                                                                | ocatio  | on: <b>Ope</b>                  | n Sį   | oace            | or R        | Resid                    | ential A                                                    | reas                                                                                                                                                                                        |                                 |                | (                                       | Checke                        | d by       | :       | JH                                        |                                                                                                                   |
|------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------|--------|-----------------|-------------|--------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------|-----------------------------------------|-------------------------------|------------|---------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                                                        | mode          | el ar                                                                                                                                              | nd moi  | unting:                         | Hand . | Auger           |             |                          | Easting:                                                    | 704841                                                                                                                                                                                      | slope:                          | -90°           |                                         |                               |            | R.L. Sı | ırface:                                   |                                                                                                                   |
|                                                                              | dian          |                                                                                                                                                    |         |                                 | 100 m  | m               |             |                          | Northing                                                    | 6083456                                                                                                                                                                                     | bearing:                        |                |                                         |                               |            | datum:  |                                           |                                                                                                                   |
| dri                                                                          | _             | _                                                                                                                                                  | form    | ation                           |        |                 | mate        |                          | ubstance                                                    |                                                                                                                                                                                             |                                 |                |                                         |                               |            |         |                                           |                                                                                                                   |
| method                                                                       | υ penetration | - 1 :                                                                                                                                              | support | notes<br>samples,<br>tests, etc | RL     | depth<br>metres | graphic log | classification<br>symbol | soil typ<br>coloui                                          | mater<br>be: plasticity or pa<br>r, secondary and                                                                                                                                           | article characteris             | stics,<br>nts. | moisture<br>condition                   | consistency/<br>density index | 100 pocket | а       | s<br>additic                              | tructure and<br>onal observations                                                                                 |
| HA                                                                           |               |                                                                                                                                                    |         | OS06                            |        |                 |             | GS                       | Gravelly S. to coarse g                                     | <b>AND</b> brown, no plrained sand, fine                                                                                                                                                    | lasticity clay, firm<br>gravel  | n, fine        | M                                       |                               |            |         |                                           |                                                                                                                   |
|                                                                              |               |                                                                                                                                                    |         |                                 |        |                 |             |                          | Borehole O                                                  | S06 terminated a                                                                                                                                                                            | at 0.2m                         |                |                                         |                               |            |         |                                           |                                                                                                                   |
| Met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit:<br>e.g. |               | auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit own by suffix  M n C c pene pene vate |         |                                 |        |                 |             | level                    | U <sub>63</sub> un D di N st N* S Nc S V va P pp Bs bi E ee | ples, tests ndisturbed sample ! ndisturbed sample t isturbed sample t sample tandard penetration PT - sample recove PT with solid cone ane shear (kPa) ressuremeter ulk nvironmental sample | 63mm diameter  test (SPT)  ered | W we           | cription<br>n unified<br>e<br>y<br>oist | classifica                    |            |         | consisten VS S F St VSt H Fb VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** Sheet 1 of 1

ENVICANB00233AA Canberra Investment Corporation Pty Ltd Client: 23.7.2009 Date started:

Borehole No.

Office Job No.:

**OS07** 

Principal: Date completed: 23.7.2009

| Borehole                                       | Location: <b>Ope</b>                                                                                         | en Space           | or Resid                                                         | ential Ar                                                     | reas                                                                                                                                                                                    |                      |              | C                      | checke                        | d by:                                   | JH                                    |                                                                                       |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------------------|-------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------|
| drill model a                                  | and mounting:                                                                                                | Hand Auger         |                                                                  | Easting:                                                      | 705393                                                                                                                                                                                  | slope:               | -90°         |                        |                               | R                                       | .L. Surface:                          |                                                                                       |
| hole diamet                                    |                                                                                                              | 100 mm             |                                                                  | Northing                                                      | 6083438                                                                                                                                                                                 | bearing:             |              |                        |                               | da                                      | atum:                                 |                                                                                       |
|                                                | nformation                                                                                                   | 1 1                | material s                                                       | ubstance                                                      |                                                                                                                                                                                         |                      |              |                        |                               | 1                                       | 1                                     |                                                                                       |
| method 1 7 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | notes<br>samples,<br>tests, etc                                                                              | depth<br>RL metres | graphic log<br>classification<br>symbol                          | soil typ<br>colour                                            | materia<br>e: plasticity or parti<br>, secondary and mi                                                                                                                                 | cle characterist     | tics,<br>ts. | moisture<br>condition  | consistency/<br>density index | 100<br>200 A penetro-<br>300 B penetro- |                                       | structure and onal observations                                                       |
| 123<br>WH                                      | OS07                                                                                                         | RL metres          | S SM                                                             | Gravelly Sa fine to medi                                      | secondary and mindy SILTbrown, num grained sand, fi                                                                                                                                     | o plasticity clay    | /, firm,     | M M                    | p<br>p                        | 100                                     |                                       |                                                                                       |
| method AS AD RR W CT HA DT B V T *bit shown by | auger screwing* auger drilling* roller/tricone washbore cable tool hand auger diatube blank bit V bit TC bit | water  ▼ 10/1/9    | no resistance<br>anging to<br>efusal<br>8 water level<br>e shown | U <sub>63</sub> ur D di N st N* SI NC SI V va P pr Bs bu E er | oles, tests  disturbed sample 50r  disturbed sample 63r  sturbed sample andard penetration te:  2T - sample recoveree  2T with solid cone une shear (kPa) essuremeter ulk sample  fusal | mm diameter st (SPT) | W we         | cription<br>unified of | classifica                    |                                         | consiste VS S F St VSt H Fb VL L MD D | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense |



1 of 1 **Borehole** Sheet

ENVICANB00233AA Canberra Investment Corporation Pty Ltd Client: 23.7.2009 Date started:

Borehole No.

Office Job No.:

**OS08** 

Principal: Date completed: 23.7.2009

| Borehole Location: <b>Open Space</b>   | e or Residential Areas                                                                                                                                    | Checked by: <b>JH</b>                                                                                                                                                                                                              |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| drill model and mounting: Hand Auger   | Easting: 705405 slope:                                                                                                                                    | -90° R.L. Surface:                                                                                                                                                                                                                 |
| nole diameter: 100 mm                  | Northing 6083251 bearing                                                                                                                                  | g: datum:                                                                                                                                                                                                                          |
| drilling information                   | material substance                                                                                                                                        |                                                                                                                                                                                                                                    |
| notes samples, tests, etc depti        | s ເປັນ colour, secondary and minor compone                                                                                                                | ents.   E 8   8 0   28 8 8 9                                                                                                                                                                                                       |
| 日本 123 応 多 RL metre                    | GSM Gravelly Sandy SILTbrown, no plasticity clifine to coarse grained sand, fine to medium                                                                | lav, firm. M Shrub roots present                                                                                                                                                                                                   |
| DT diatube water                       | on D disturbed sample  N standard penetration test (SPT)  no resistance ranging to  N' SPT - sample recovered  Nc SPT with solid cone  V vane shear (kPa) | classification symbols and soil description based on unified classification system  moisture D dry M moist W west  consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable                  |
| V V bit T TC bit  *bit shown by suffix | 98 water level P pressuremeter te shown Bs bulk sample E environmental sample rinflow R refusal                                                           | W         Wet         VL         very loose           Wp         plastic limit         L         loose           WL         liquid limit         MD         medium dense           D         dense           VD         very dense |



**OS09** 

**Borehole** Sheet 1 of 1 ENVICANB00233AA Office Job No.:

Borehole No.

Canberra Investment Corporation Pty Ltd 27.7.2009 Date started:

27.7.2009 Principal: Date completed:

| Boı                       | rehole          | Loc                                              | atio                                                 | n: <b>Ope</b>                   | n Sp                       | oace            | or F                                                                   | Resid                    | lential A                                                                            | reas                                                                                                                                                         |                                           |                                                           | (                     | Checke                        | ed by:                           | JH                                        |                                                                                                  |
|---------------------------|-----------------|--------------------------------------------------|------------------------------------------------------|---------------------------------|----------------------------|-----------------|------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                     | model           | and                                              | mou                                                  | nting: H                        | land /                     | Auger           |                                                                        |                          | Easting:                                                                             | 704739                                                                                                                                                       | slope:                                    | -90°                                                      |                       |                               | R                                | .L. Surface:                              |                                                                                                  |
|                           | e diame         |                                                  | <b></b>                                              |                                 | 100 m                      | m               |                                                                        | ante!                    | Northing                                                                             | 6083133                                                                                                                                                      | bearing                                   | g:                                                        |                       |                               | da                               | atum:                                     |                                                                                                  |
| ar                        | illing          | INTO                                             | rma                                                  |                                 |                            |                 | mat                                                                    |                          | ubstance                                                                             |                                                                                                                                                              |                                           |                                                           |                       | V                             |                                  |                                           |                                                                                                  |
| method                    | . 5 penetration | support                                          | water                                                | notes<br>samples,<br>tests, etc | RL                         | depth<br>metres | graphic log                                                            | classification<br>symbol |                                                                                      | mate<br>pe: plasticity or p<br>ur, secondary an                                                                                                              | particle character<br>d minor compon      |                                                           | moisture<br>condition | consistency/<br>density index | 100 pocket 200 pocket 300 pocket | 400                                       | tructure and<br>onal observations                                                                |
| НА                        |                 |                                                  |                                                      | OS09                            |                            | -               |                                                                        | SM                       | grained sa                                                                           | Tbrown, no plas                                                                                                                                              |                                           |                                                           | M                     |                               |                                  |                                           | c matter content (e.g.                                                                           |
|                           |                 |                                                  |                                                      | OS09                            |                            | 0. <u>5</u>     |                                                                        |                          | Borehole C                                                                           | DS09 terminated                                                                                                                                              | at 0.6m                                   |                                                           |                       |                               |                                  |                                           | _                                                                                                |
| AS AD RR W CT HA DT B V T | shown b         | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V I | ger d ler/tri shbo ble to nd au atube ank bi bit bit | ool<br>uger                     | M<br>C<br>per<br>1.2<br>wa | ter<br>10/1/9   | on<br>no resist<br>ranging t<br>refusal<br>8 water<br>e show<br>inflow | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V P<br>Bs E | nples, tests undisturbed sample disturbed sample standard penetratio SPT - sample recov vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter<br>on test (SPT)<br>vered | soil des<br>based o<br>system  moistur D di M m W w Wp pi |                       | classifica                    |                                  | consisten VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**OS10** Sheet 1 of 1

Borehole No.

CL

**Borehole** ENVICANB00233AA Office Job No.:

Canberra Investment Corporation Pty Ltd Client: 23.7.2009 Date started:

Principal: Date completed: 23.7.2009

| Bore                                                                            | ehole         | Lo                                             | catio                                                                                              | n: <b>Ope</b>                   | n Sį               | oace            | or F                                                            | Resid                    | ential A                                                                               | reas                                                                                                                                                                               |                                       |                                                              | (                     | Checke                        | ed by:                                | JH                                    | 1                                                                                                                     |
|---------------------------------------------------------------------------------|---------------|------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|-----------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------|-----------------------|-------------------------------|---------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| drill n                                                                         | nodel         | and                                            | mou                                                                                                | nting: I                        | Hand A             | Auger           |                                                                 |                          | Easting:                                                                               | 705375                                                                                                                                                                             | slope:                                | -90°                                                         |                       |                               | R.                                    | L. Surface                            |                                                                                                                       |
| hole                                                                            |               |                                                |                                                                                                    |                                 | 100 m              | m               | -                                                               |                          | Northing                                                                               | 6083069                                                                                                                                                                            | bearing                               | :                                                            |                       |                               | da                                    | atum:                                 |                                                                                                                       |
| dril                                                                            | _             | inte                                           | orma                                                                                               | ition                           | _                  |                 | mate                                                            |                          | ubstance                                                                               | 1                                                                                                                                                                                  |                                       |                                                              |                       |                               |                                       | 1                                     |                                                                                                                       |
| method                                                                          | benetration 5 | support                                        | water                                                                                              | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                                     | classification<br>symbol | soil ty<br>colou                                                                       | mate<br>pe: plasticity or paur, secondary and                                                                                                                                      | article characteri                    | stics,                                                       | moisture<br>condition | consistency/<br>density index | 100<br>200 A pocket<br>300 B penetro- |                                       | structure and<br>ditional observations                                                                                |
| HA                                                                              | 123           |                                                |                                                                                                    | OS10                            |                    | metres          |                                                                 | GSM                      | Gravelly S fine to coa                                                                 | Sandy SILTbrown rise grained sand                                                                                                                                                  | , no plasticity cla<br>fine to medium | ay, firm,                                                    | M                     |                               | 10                                    |                                       | pots present                                                                                                          |
| meth<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit sł<br>e.g. | od            | a<br>ro<br>c<br>h<br>d<br>b<br>V<br>T<br>by su | uger of bler/tri<br>ashbot ashe to and an and an and an and an an an an an an an an an an an an an | ool<br>uger                     | M<br>C<br>pe<br>1: | ter<br>10/1/9   | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V P B<br>BS E | mples, tests undisturbed sample disturbed sample standard penetration SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based of<br>system  moistur D dr M m W we Wp pl. | y<br>oist             | classifica                    |                                       | consi VS S F St VSt H Fb VL L MD D VD | stency/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** Sheet 1 of 1 ENVICANB00233AA

Canberra Investment Corporation Pty Ltd 27.7.2009 Date started:

Borehole No.

Office Job No.:

**OS11** 

27.7.2009 Principal: Date completed:

| Bor                                                                          | ehole           | e Lo                                                | catio                                                                              | n: <b>Ope</b>                   | n Sį                    | oace                  | or R                                                     | Resid                    | ential A                                           | Areas                                                                                                                                                                                    |                                     |                                                            | (                     | Checke                        | d by:                      |                                         | JH                                     |                                                                                                                   |
|------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|----------------------------|-----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                                                        | mode            | l and                                               | mou                                                                                | nting: I                        | land.                   | Auger                 |                                                          |                          | Easting:                                           | 704761                                                                                                                                                                                   | slope:                              | -90°                                                       |                       |                               | F                          | R.L. Sur                                | face:                                  |                                                                                                                   |
|                                                                              | diam            |                                                     |                                                                                    |                                 | 100 m                   | m                     |                                                          |                          | Northing                                           |                                                                                                                                                                                          | bearing                             | :                                                          |                       |                               | (                          | datum:                                  |                                        |                                                                                                                   |
| ar                                                                           | illing<br>E     | Into                                                | orma                                                                               |                                 | i                       | Н                     | mate                                                     |                          | ubstance                                           | )                                                                                                                                                                                        |                                     |                                                            |                       | . ×                           | ٥                          |                                         |                                        |                                                                                                                   |
| method                                                                       | . 5 penetration | support                                             | water                                                                              | notes<br>samples,<br>tests, etc | RL                      | depth<br>metres       | graphic log                                              | classification<br>symbol |                                                    | mater<br>/pe: plasticity or pa<br>ur, secondary and                                                                                                                                      | rticle characteri<br>minor compone  |                                                            | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 penetro- | a                                       |                                        | ructure and<br>nal observations                                                                                   |
| HA HA                                                                        | 123             |                                                     |                                                                                    | OS11                            |                         |                       |                                                          | GS                       | Gravelly fine to coa                               | SANDlight brown, arse grained sand,                                                                                                                                                      | no plasticity cla<br>fine to medium | y, firm,                                                   | M                     |                               | 10                         |                                         |                                        |                                                                                                                   |
| met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit:<br>e.g. | chod            | ai<br>w<br>ca<br>ha<br>di<br>bl<br>V<br>To<br>by su | uger d<br>ller/tri<br>ashbo<br>able to<br>and au<br>atube<br>ank b<br>bit<br>C bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1<br>wa | t <b>er</b><br>10/1/9 | no resista<br>anging to<br>refusal<br>8 water<br>e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample sundisturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample refusal | 63mm diameter<br>test (SPT)<br>red  | soil des<br>based of<br>system  moistur D dr M m W w Wp pl | n unified             | classifica                    |                            | S F S S S S S S S S S S S S S S S S S S | consistence VS S F St VSt H H WD D VVD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** Sheet 1 of 1 ENVICANB00233AA

Canberra Investment Corporation Pty Ltd Client: 27.7.2009 Date started:

Borehole No.

Office Job No.:

**OS12** 

Principal: Date completed: 27.7.2009

| Borel                                                                      | hole          | Loc                                      | catio                                                                                      | n: <b>Ope</b>                   | n Sį          | oace            | or R                                                   | Resid                    | ential A                                                                    | reas                                                                                                                                                                                                       |                                         |                                                            | (                     | Checke                        | d by       | :                                       | JH                                        |                                                                                       |
|----------------------------------------------------------------------------|---------------|------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------|---------------|-----------------|--------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|------------|-----------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|
| drill m                                                                    | odel          | and                                      | mou                                                                                        | nting:                          | Hand A        | Auger           |                                                        |                          | Easting:                                                                    | 704564                                                                                                                                                                                                     | slope:                                  | -90°                                                       |                       |                               |            | R.L. Sı                                 | urface:                                   |                                                                                       |
| hole d                                                                     |               |                                          | wree -                                                                                     |                                 | 100 m         | m               | mr = f                                                 | ء اماسد                  | Northing                                                                    | 6082950                                                                                                                                                                                                    | bearing:                                |                                                            |                       |                               |            | datum:                                  |                                           |                                                                                       |
| drill                                                                      | _             | Into                                     | rma                                                                                        |                                 |               |                 | mate                                                   |                          | ubstance                                                                    |                                                                                                                                                                                                            |                                         |                                                            |                       | . ×                           | d          |                                         |                                           |                                                                                       |
| 2                                                                          | s penetration | support                                  | water                                                                                      | notes<br>samples,<br>tests, etc | RL            | depth<br>metres | graphic log                                            | classification<br>symbol | colou                                                                       | mater<br>pe: plasticity or pa<br>ır, secondary and                                                                                                                                                         | rticle characteris<br>minor componel    | nts.                                                       | moisture<br>condition | consistency/<br>density index | 100 pocket | а                                       |                                           | tructure and<br>onal observations                                                     |
| T VH                                                                       |               |                                          |                                                                                            | OS12                            |               |                 |                                                        | GS                       | Gravelly S<br>medium to<br>gravel                                           | SANDred/brown, n<br>coarse grained sa                                                                                                                                                                      | o plasticity clay,<br>and, fine to medi | firm,                                                      | M                     |                               | 10         | 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |                                           |                                                                                       |
| method<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit she |               | rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | iger d<br>ller/tri<br>ashbo<br>ible to<br>ind au<br>atube<br>ank b<br>bit<br>C bit<br>ffix | ool<br>uger                     | M<br>C<br>per | ter<br>10/1/9   | n resista<br>anging to<br>efusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V V<br>P B<br>BS E | nples, tests undisturbed sample of indisturbed sample of disturbed sample of standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) oressuremeter buths sample environmental sample | 63mm diameter<br>test (SPT)<br>red      | soil des<br>based of<br>system  moistur D dr M m W w Wp pl | e<br>y<br>oist        | classifica                    |            |                                         | consister VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense |



Borehole No. **OS13** 

Sheet 1 of 1

Office Job No.:

Date completed:

ENVICANB00233AA

Canberra Investment Corporation Pty Ltd

24.7.2009 Date started: 24.7.2009

JH

Principal: Project:

**Borehole** 

Jumping Creek

CL Logged by:

Borehole Location: Open Space or Residential Areas

Checked by:

| drill model and mounting: Ha                                                                                                                                       | nd Auger                                                                                                                                 | Easting: 704864 slope:                                                                                                                                                                                                                                                                                         | -90° R.L                                                                                                                                                                                             | Surface:                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                    | ) mm                                                                                                                                     | Northing 6082900 bearing                                                                                                                                                                                                                                                                                       | g: dat                                                                                                                                                                                               | um:                                                                                                                                          |
| drilling information                                                                                                                                               |                                                                                                                                          | substance                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                              |
| pod hour products and product the samples, tests, etc tests, etc                                                                                                   | graphic log classification symbol                                                                                                        | material  soil type: plasticity or particle characte colour, secondary and minor compon                                                                                                                                                                                                                        | moisture condition consistency/ density index 200 Penetro-400 Penetro-400 meter condition moisture condition consistency/ density index 200 Penetro-400 meter conditions are conditional conditions. | structure and additional observations                                                                                                        |
| ₹ OS13                                                                                                                                                             | GS GS GS GS GS GS GS GS GS GS GS GS GS G                                                                                                 | Gravelly SANDdark brown, no plasticity of fine to medium grained sand, fine gravel                                                                                                                                                                                                                             | ay, firm, M                                                                                                                                                                                          |                                                                                                                                              |
| method AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit *bit shown by suffix | support M mud N nil C casing penetration 1 2 3 4 no resistance ranging to refusal  water  10/1/98 water level on date shown water inflow | notes, samples, tests U <sub>50</sub> undisturbed sample 50mm diameter U <sub>83</sub> undisturbed sample 63mm diameter D disturbed sample N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) P pressuremeter Bs bulk sample E environmental sample refusal | classification symbols and soil description based on unified classification system  moisture D dry M moist W wet Wp plastic limit W_L liquid limit                                                   | consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense |



**Borehole** Sheet 1 of 1

Canberra Investment Corporation Pty Ltd 24.7.2009 Date started:

Borehole No.

Office Job No.:

**OS14** 

ENVICANB00233AA

Principal: Date completed: 24.7.2009

| Bor                                             | rehole          | hole Location: <i>Open Space or Residential Areas</i> rodel and mounting: Hand Auger Easting: 704740 slope: -90° |                                                                                     |                                 |                         |                 |                                                           |                          |                                                    |                                                                                                                                                                                                                 |                                       | C                                                              | Checke                | ed by:                        | :          | JH      |                                                |                                                                                                                   |
|-------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------|-----------------------------------------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|------------|---------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                           | mode            | l and                                                                                                            | mou                                                                                 | nting: I                        | land.                   | Auger           |                                                           |                          | Easting:                                           | 704740                                                                                                                                                                                                          | slope:                                | -90°                                                           |                       |                               |            | R.L. Su | ırface:                                        |                                                                                                                   |
|                                                 | diam            |                                                                                                                  |                                                                                     |                                 | 100 m                   | m               |                                                           |                          | Northing                                           |                                                                                                                                                                                                                 | bearing                               |                                                                |                       |                               |            | datum:  |                                                |                                                                                                                   |
| Lar                                             | illing          | Imie                                                                                                             | orina                                                                               |                                 |                         |                 | mate                                                      |                          | ubstance                                           | 1                                                                                                                                                                                                               |                                       |                                                                |                       | - ×                           | 6          |         |                                                |                                                                                                                   |
| method                                          | . 5 penetration | support                                                                                                          | water                                                                               | notes<br>samples,<br>tests, etc | RL                      | depth<br>metres | graphic log                                               | classification<br>symbol |                                                    | materi<br>rpe: plasticity or par<br>ur, secondary and r                                                                                                                                                         | ticle characteris                     |                                                                | moisture<br>condition | consistency/<br>density index | 100 pocket | a       |                                                | ructure and<br>nal observations                                                                                   |
| HA HA                                           | 123             |                                                                                                                  |                                                                                     | OS14                            |                         |                 |                                                           | GS                       | Gravelly 8 medium to gravel                        | SANDbrown/red, no coarse grained sa                                                                                                                                                                             | o plasticity clay,<br>nd, fine to med | firm,                                                          | D                     |                               | 11.        | 0 0     |                                                |                                                                                                                   |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V | thod            | a<br>w<br>c<br>h<br>d<br>b<br>V<br>T<br>by su                                                                    | uger d<br>iller/tri<br>ashbo<br>able to<br>and au<br>atube<br>ank b<br>bit<br>C bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1<br>wa | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P BS E | mples, tests undisturbed sample 5 undisturbed sample 6 disturbed sample standard penetration t SPT - sample recover SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample refusal | 3mm diameter<br>test (SPT)<br>red     | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | y<br>oist             | classifica                    |            |         | consistence VS S F St VSt H F F b VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

**OS15** 

Principal: Date completed: **24.7.2009** 

| Bor                       | rehole          | e Lo                                                        | atio                                                                    | n: Ope                          | n Sp                       | oace            | or F                                                            | Resid                    | lential A                                                                                | reas                                                                                                                                                                              |                                                 |                                                                | C                     | Checke                        | ed by      | ·:      | JH                                        |                                                                                                                    |
|---------------------------|-----------------|-------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------|-----------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|------------|---------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                     | model           | and                                                         | mou                                                                     | nting: I                        | land /                     | Auger           |                                                                 |                          | Easting:                                                                                 | 704610                                                                                                                                                                            | slope:                                          | -90°                                                           |                       |                               |            | R.L. Su | ırface:                                   |                                                                                                                    |
|                           | e diame         |                                                             | ww                                                                      |                                 | 100 m                      | m               |                                                                 | !!                       | Northing                                                                                 | 6087807                                                                                                                                                                           | bearing                                         | j:                                                             |                       |                               |            | datum:  |                                           |                                                                                                                    |
| ari                       | illing          | into                                                        | rma                                                                     |                                 |                            |                 | mate                                                            |                          | ubstance                                                                                 |                                                                                                                                                                                   |                                                 |                                                                |                       | Ų                             |            | ,       |                                           |                                                                                                                    |
| method                    | . 5 penetration | support                                                     | water                                                                   | notes<br>samples,<br>tests, etc | RL                         | depth<br>metres | graphic log                                                     | classification<br>symbol |                                                                                          | pe: plasticity or բ<br>ır, secondary an                                                                                                                                           | erial<br>particle characteri<br>d minor compone |                                                                | moisture<br>condition | consistency/<br>density index | 100 pocket | 'a      |                                           | tructure and<br>nal observations                                                                                   |
| НА                        |                 |                                                             |                                                                         | OS15                            |                            | 0.5             |                                                                 | SM                       | grained sa                                                                               | nd<br>AYred, high pla:                                                                                                                                                            | v plasticity clay, s                            |                                                                | M                     |                               |            |         |                                           | -                                                                                                                  |
|                           |                 |                                                             |                                                                         | OS15                            |                            |                 |                                                                 |                          | Borehole C                                                                               | DS15 terminated                                                                                                                                                                   | at 0.6m                                         |                                                                |                       |                               |            |         |                                           |                                                                                                                    |
| AS AD RR W CT HA DT B V T | shown           | au<br>ro<br>wa<br>ca<br>ha<br>di<br>bl<br>V<br>T (<br>by su | iger diller/tri<br>ashbo<br>ible to<br>and au<br>atube<br>ank bi<br>bit | ore<br>ool<br>uger              | M<br>C<br>per<br>1.2<br>wa | ter<br>10/1/9   | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V V V<br>P BS E | nples, tests undisturbed sample undisturbed sample standard penetratic SPT - sample recor SPT - sample recor spane shear (kPa) oressuremeter pulk sample environmental sam efusal | e 63mm diameter<br>on test (SPT)<br>vered<br>e  | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | y<br>oist             | classifica                    |            |         | consisten VS S F St VSt H Fb VL L MD D VD | cy/density index  very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **OS16** 

1 of 1 Sheet

ENVICANB00233AA Office Job No.:

CL

Canberra Investment Corporation Pty Ltd Client: 24.7.2009 Date started:

Principal: Date completed: 24.7.2009

| Bor                                                                            | ehole         | Loc                                                  | atior                                                                          | ո։ <b>Ope</b>                   | n Sp          | oace                             | or F                                                           | Resid                    | lential Ar                                                                                                                                                                                                    | eas                                                                                                                                                                                                       |                                                      |                                                           | (                     | Checke                        | ed by:     | :      | JH                                        |                                                                                                                    |
|--------------------------------------------------------------------------------|---------------|------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|---------------|----------------------------------|----------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|------------|--------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                                                                          | model         | and r                                                | nour                                                                           | nting: I                        | land /        | Auger                            |                                                                |                          | Easting:                                                                                                                                                                                                      | 705167                                                                                                                                                                                                    | slope:                                               | -90°                                                      |                       |                               | l          | R.L. S | urface:                                   |                                                                                                                    |
|                                                                                | diame         |                                                      |                                                                                |                                 | 100 m         | m                                | -                                                              |                          | Northing                                                                                                                                                                                                      | 6082798                                                                                                                                                                                                   | bearing                                              | :                                                         |                       |                               |            | datum  | :                                         |                                                                                                                    |
| dri                                                                            | lling i<br>⊏  | info                                                 | rma                                                                            | tion                            |               |                                  | mat                                                            |                          | ubstance                                                                                                                                                                                                      |                                                                                                                                                                                                           |                                                      |                                                           |                       |                               |            | -      |                                           |                                                                                                                    |
| method                                                                         | 1 penetration | support                                              | water                                                                          | notes<br>samples,<br>tests, etc | RL            | depth<br>metres                  | graphic log                                                    | classification<br>symbol | colour                                                                                                                                                                                                        | mater<br>e: plasticity or pa<br>r, secondary and                                                                                                                                                          | nticle characteris<br>minor compone                  | nts.                                                      | moisture<br>condition | consistency/<br>density index | 100 pocket | a      |                                           | structure and<br>onal observations                                                                                 |
| HH HH                                                                          |               |                                                      |                                                                                | OS16                            |               | -                                |                                                                | MS                       | grained sand                                                                                                                                                                                                  | <b>D</b> brown, low pla                                                                                                                                                                                   |                                                      |                                                           | М                     |                               |            | G      | irass Root                                | S                                                                                                                  |
|                                                                                |               |                                                      |                                                                                | OS16                            |               | 0. <u>5</u>                      |                                                                |                          | Pershala OS                                                                                                                                                                                                   | S16 terminated a                                                                                                                                                                                          | ot 0.6m                                              |                                                           |                       |                               |            |        |                                           | -                                                                                                                  |
| meti<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit s<br>e.g. | nod           | aug<br>roll<br>wa<br>cab<br>har<br>dia<br>bla<br>V b | ger dr<br>er/tric<br>shbor<br>ole too<br>nd au<br>tube<br>nk bit<br>oit<br>bit | re<br>ol<br>ger                 | M<br>C<br>pei | ter<br>10/1/9<br>on dat<br>water | on<br>no resista<br>ranging t<br>refusal<br>8 water<br>se show | level                    | notes, samp           U <sub>50</sub> un           D         dis           N         sta           Nc         SF           V         va           P         pr           Bs         bu           E         en | oles, tests Idisturbed sample is Idisturbed sample is Sturbed sample el andard penetration PT - sample recove PT with solid cone Inne shear (kPa) lessuremeter Ilk sample Ilk sample Invironmental sample | 50mm diameter<br>63mm diameter<br>test (SPT)<br>ered | soil des<br>based o<br>system  moistur D dr M m W w Wp pl |                       | classifica                    |            |        | consister VS S F St VSt H Fb VL L MD D VD | ncy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **OS17** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Principal: Date completed: **24.7.2009** 

| Во                                                          | Borehole Location: Open Space or Residential Areas Checked by: JH                               |                                                |                                                                                       |                                 |                    |                 |                                                                 |                          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                           |                       |                               |              |                 |                                           |                                                                                                                   |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|-----------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|--------------|-----------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill model and mounting: Hand Auger Easting: 704579 slope: |                                                                                                 |                                                |                                                                                       |                                 |                    |                 | -90°                                                            | 90° R.L. Surface:        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                           |                       |                               |              |                 |                                           |                                                                                                                   |
|                                                             | hole diameter: 100 mm Northing 6082648 bearing: datum:  drilling information material substance |                                                |                                                                                       |                                 |                    |                 |                                                                 |                          |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                           |                       |                               |              |                 |                                           |                                                                                                                   |
| ar                                                          | <del></del>                                                                                     | INTO                                           | rma                                                                                   |                                 |                    |                 | mate                                                            |                          | ubstance                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                           |                       | V                             | ير ا         | ,               |                                           |                                                                                                                   |
| method                                                      | . 5 penetration                                                                                 | support                                        | water                                                                                 | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                                     | classification<br>symbol | material soil type: plasticity or particle characteristics, colour, secondary and minor components. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        |                                                           | moisture<br>condition | consistency/<br>density index | 100 y pocket | %<br>000<br>004 | additio                                   | tructure and<br>onal observations                                                                                 |
| ¥Η                                                          |                                                                                                 |                                                |                                                                                       | OS17                            |                    |                 |                                                                 | MS<br>MS                 | fine grained                                                                                        | <b>ND</b> ¤lark brown, k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        |                                                           | М                     |                               |              |                 | Grass roots                               | present                                                                                                           |
|                                                             |                                                                                                 |                                                |                                                                                       | OS17                            |                    | 0. <u>5</u>     |                                                                 |                          | fine graine                                                                                         | d sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |                                                           |                       |                               |              |                 |                                           | _                                                                                                                 |
| GEO 5.3 Issue 3 Kev.2 T A B T A H T B V T A B T A H T B V T | shown b                                                                                         | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d<br>ler/tri<br>ashbo<br>ble to<br>and au<br>atube<br>ank bi<br>bit<br>bit<br>bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1: | ter<br>10/1/9   | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | notes, sam U <sub>50</sub>                                                                          | nples, tests Indisturbed sample Indisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed sample Idisturbed samp | 50mm diameter<br>63mm diameter<br>n test (SPT)<br>ered | soil des<br>based o<br>system  moistur D di M m W w Wp pi |                       | classifica                    |              |                 | consisten VS S F St VSt H Fb VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** Sheet 1 of 1

Canberra Investment Corporation Pty Ltd 24.7.2009 Date started:

Borehole No.

Office Job No.:

**OS18** 

ENVICANB00233AA

Principal: Date completed: 24.7.2009

| Borehole Location: Open Space or Residential Areas Checked by: JH                               |               |                                                        |                            |      |                 |                                                           |                          |                                                                                                     |                                                                                                                                                                                                        |                               |                                                            |                       |                               |                             |                                           |                                                                                                                    |
|-------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------|----------------------------|------|-----------------|-----------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|-----------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill model and mounting: Hand Auger Easting: 704636 slope: -90                                 |               |                                                        |                            |      |                 |                                                           |                          | R.L. Surface:                                                                                       |                                                                                                                                                                                                        |                               |                                                            |                       |                               |                             |                                           |                                                                                                                    |
| hole diameter: 100 mm Northing 6082566 bearing: datum:  drilling information material substance |               |                                                        |                            |      |                 |                                                           |                          |                                                                                                     |                                                                                                                                                                                                        |                               |                                                            |                       |                               |                             |                                           |                                                                                                                    |
| L ar                                                                                            | <del></del>   | IITOI                                                  |                            |      | 1               | mate                                                      |                          | ubstance                                                                                            | •                                                                                                                                                                                                      |                               |                                                            |                       | . ×                           | 6                           |                                           |                                                                                                                    |
| method                                                                                          | 1 penetration | support                                                | note<br>sample<br>tests, e | es,  | depth<br>metres | graphic log                                               | classification<br>symbol | material soil type: plasticity or particle characteristics, colour, secondary and minor components. |                                                                                                                                                                                                        |                               |                                                            | moisture<br>condition | consistency/<br>density index | 100 A pocket 200 A penetro- |                                           | tructure and<br>onal observations                                                                                  |
| НА                                                                                              |               |                                                        | OS1:                       |      |                 |                                                           | GS                       | dravelly to coarse                                                                                  | SANDbrown, no pgrained sand                                                                                                                                                                            | lasticity clay, firr          |                                                            | M                     |                               |                             | Grass roots                               | present                                                                                                            |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T                                            | shown b       | aug<br>rolle<br>was<br>cab<br>har<br>dia<br>bla<br>V b | bit<br>īx                  | PD W | vater<br>10/1/9 | no resista<br>ranging to<br>refusal<br>8 water<br>e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E                                                  | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>test (SPT) - | soil des<br>based of<br>system  moistur D dr M m W w Wp pl | y<br>oist             | classifica                    |                             | consister VS S F St VSt H Fb VL L MD D VD | vey/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **OS19** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Principal: Date completed: **24.7.2009** 

| The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | Borehole Location: Open Space or Residential Areas Checked by: JH                                                                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Material substance   Materia   | drill model and mounting: Hand Auge                                                                                                                                               | pe: -90° R.L. Surface:                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Both   Section   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   Part   | •                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
| Testing   Security   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Testing   Tes   | <del></del>                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | _ × o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
| Toethod  Jugger screwing* AD  Jugger screwing* RR  RO  Toelforticition RR  RR  Toelforticone RR  Toelforticone RR  New washbror  Teleforticone N  N  N  N  N  N  N  N  N  N  N  N  N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8   12   6   12   aeb                                                                                                                                                             |                                                                                                                                                                                                                                                                                 | acteristics, ponents.   To be compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the compared to the  |  |  |  |  |  |  |  |
| AS auger screwing* AD auger drilling* RR roller/tricone W washbore  M mud N nil U <sub>50</sub> undisturbed sample 50mm diameter U <sub>63</sub> undisturbed sample 63mm diameter U <sub>63</sub> undisturbed sample 63mm diameter U <sub>63</sub> undisturbed sample 63mm diameter U <sub>63</sub> based on unified classification S soft S soft N standard penetration test (SPT) S standard penetration test (SPT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AH H                                                                                                                                                                              | SG Sandy GRAVELbrown, no plasticity clar to medium grained sand, fine to medium                                                                                                                                                                                                 | ay, firm, fine M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| HA hand auger DT diatube B blank bit V V bit  Nc SPT with solid cone V vane shear (kPa) D dry M moist Fb friable W wet V wery loose W wet V by plastic limit U loose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AS auger screwing* AD auger drilling* RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit  M mud C casir penetra 1 2 3  water  1 0/10  1 0/10 | N nil U <sub>50</sub> undisturbed sample 50mm diamet undisturbed sample 63mm diamet undisturbed sample 63mm diamet disturbed sample 63mm diamet N standard penetration test (SPT) SPT - sample recovered Nc SPT with solid cone V vane shear (kPa) Pressuremeter Bs bulk sample | teter soil description based on unified classification system      moisture   D dry   H hard   M moist   W wet   W plastic limit     W plastic limit   W wet   W loose   L   loose      VS very soft   S soft   F firm   St stiff   VS total   S stiff   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS total   VS t |  |  |  |  |  |  |  |



**Borehole** 

Borehole No. **OS20** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Principal: Date completed: **24.7.2009** 

| Bor                       | rehole          | Loc                                               | atio                                                                                  | n: <b>Ope</b>                   | n Sp                        | oace            | or F                                                     | Resid                    | ential A                                                                                    | reas                                                                                                                                                                        |                                                                   |                                                               | C                     | Checke                        | ed by        | <b>/</b> :        | JH                                                                              |                                                                                                                   |
|---------------------------|-----------------|---------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-----------------|----------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|--------------|-------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                     | model           | and                                               | moui                                                                                  | nting: I                        | land /                      | Auger           |                                                          |                          | Easting:                                                                                    | 704589                                                                                                                                                                      | slope:                                                            | -90°                                                          |                       |                               |              | R.L.              | Surface:                                                                        |                                                                                                                   |
|                           | diame           |                                                   | ur- :                                                                                 |                                 | 00 m                        | m               | ·                                                        | - u! - !                 | Northing                                                                                    | 6082467                                                                                                                                                                     | bearing                                                           | j:                                                            |                       |                               |              | datu              | m:                                                                              |                                                                                                                   |
| ar                        | illing          | nto                                               | rma                                                                                   |                                 |                             |                 | mate                                                     |                          | ubstance                                                                                    |                                                                                                                                                                             |                                                                   |                                                               |                       | . ~                           |              | 5                 |                                                                                 |                                                                                                                   |
| method                    | 1 penetration   | support                                           | water                                                                                 | notes<br>samples,<br>tests, etc | RL                          | depth<br>metres | graphic log                                              | classification<br>symbol |                                                                                             | pe: plasticity or purports, secondary ar                                                                                                                                    | particle character<br>d minor compone                             |                                                               | moisture<br>condition | consistency/<br>density index | 100 y pocket | 900<br>400<br>700 | additio                                                                         | ructure and<br>nal observations                                                                                   |
| НА                        |                 |                                                   |                                                                                       | OS20                            |                             | -               |                                                          | MS                       | grained sa                                                                                  | AYred/brown, n                                                                                                                                                              | lasticity clay, soft                                              |                                                               | М                     |                               |              |                   | Grass roots                                                                     | oresent -                                                                                                         |
|                           |                 |                                                   |                                                                                       | OS20                            |                             | 0. <u>5</u>     |                                                          |                          | firm, fine to                                                                               | o medium graine                                                                                                                                                             | d sand                                                            |                                                               |                       |                               |              |                   |                                                                                 | -                                                                                                                 |
| AS AD RR W CT HA DT B V T | thod<br>shown b | au<br>rol<br>wa<br>cal<br>ha<br>dia<br>bla<br>V I | ger di<br>ler/trid<br>shbo<br>ole to<br>nd au<br>itube<br>ink bi<br>oit<br>bit<br>fix | re<br>ol<br>ıger                | M<br>C<br>per<br>1.2<br>wa' | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | notes, sar<br>U <sub>50</sub><br>U <sub>63</sub><br>D<br>N<br>N*<br>Nc<br>V<br>P<br>Bs<br>E | nples, tests undisturbed sample disturbed sample disturbed sample standard penetrati SPT - sample reco vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 50mm diameter<br>e 63mm diameter<br>on test (SPT)<br>vered<br>e | soil des<br>based o<br>system  moistur  D di  M m  W w  Wp pl |                       | classifica                    |              |                   | consistence<br>VS<br>S<br>F<br>St<br>VSt<br>H<br>Fb<br>VL<br>L<br>MD<br>D<br>VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 28.7.2009

Borehole No.

RE01

Principal: Date completed: **28.7.2009** 

| Bor                                                                 | reho | ole            | Loc                                     | atio                                                                                 | n: <b>Ope</b>                   | n Sį               | oace            | or F                                                     | Resid                    | ential Ar                                                     | reas                                                                                                                                                                                 |                                       |                                                          | (                                                                     | Checke                        | ed by:                                  | J                                   | H                                      |
|---------------------------------------------------------------------|------|----------------|-----------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|----------------------------------------------------------|--------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|-----------------------------------------|-------------------------------------|----------------------------------------|
| drill                                                               | mo   | del            | and                                     | mou                                                                                  | nting: I                        | Hand A             | Auger           |                                                          |                          | Easting:                                                      | 704703                                                                                                                                                                               | slope:                                | -90°                                                     | •                                                                     |                               | R.                                      | L. Surfa                            | ce:                                    |
| hole                                                                |      |                |                                         |                                                                                      |                                 | 100 m              | m               | -                                                        |                          | Northing                                                      | 6083588                                                                                                                                                                              | bearing                               | j:                                                       |                                                                       |                               | da                                      | tum:                                |                                        |
| dr                                                                  | _    | _              | nfo                                     | rma                                                                                  | ition                           |                    |                 | mat                                                      |                          | ubstance                                                      |                                                                                                                                                                                      |                                       |                                                          | _                                                                     |                               | J                                       | _                                   |                                        |
| method                                                              | 1 2  | S perietration | support                                 | water                                                                                | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                              | classification<br>symbol | soil typ<br>colour                                            | mate e: plasticity or pa                                                                                                                                                             | article character                     | istics,<br>ents.                                         | moisture<br>condition                                                 | consistency/<br>density index | 100 x pocket 200 x penetro- 300 m meter |                                     | structure and additional observations  |
| НА                                                                  |      |                |                                         |                                                                                      | RE01                            |                    | _               |                                                          | SC                       | soft, fine to                                                 | Yfight brown, medium grained                                                                                                                                                         | sand                                  |                                                          | M                                                                     |                               |                                         |                                     |                                        |
|                                                                     |      |                |                                         |                                                                                      |                                 |                    | 0.5             |                                                          | SC                       | Sandy CLA<br>soft, fine to<br>gravel                          | (Y∄ght brown, m<br>medium grained                                                                                                                                                    | ledium plasticity                     | clay,<br>fine                                            |                                                                       |                               |                                         |                                     |                                        |
|                                                                     |      |                |                                         |                                                                                      | RE01                            |                    |                 |                                                          |                          |                                                               |                                                                                                                                                                                      |                                       |                                                          |                                                                       |                               |                                         |                                     |                                        |
|                                                                     |      |                |                                         |                                                                                      |                                 |                    | _               |                                                          |                          | sorenole Ri                                                   | E01 terminated a                                                                                                                                                                     | at U.om                               |                                                          |                                                                       |                               |                                         |                                     |                                        |
| met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit | shov |                | ro<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d<br>ler/tri<br>ashbo<br>ble to<br>and au<br>atube<br>ank b<br>bit<br>bit<br>bit | ool<br>uger                     | M<br>C<br>pe<br>1: | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e shown | level                    | U <sub>63</sub> ur D di N st N* SI Nc SI V va P pr Bs bu E er | ples, tests ndisturbed sample disturbed sample sturbed sample andard penetratior PT - sample recove PT with solid cone ane shear (kPa) essuremeter ulk sample vironmental samp fusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based of<br>system  moistur D d M m W w Wp p | cation syscription on unified re ry noist yet lastic limit quid limit | classifica                    |                                         | COT VS S F St VSI H Fb VL L MD D VD | hard<br>friable<br>very loose<br>loose |



Borehole No.

RE02

Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Principal: Date completed: 23.7.2009

| Borehol                                                                              | le Locati  | on: <b>Ope</b>                  | n Spac           | or Re       | sidential A                                                                                                   | reas                                                                                                                                                                                                                                |                                        |      | C                      | Checke                        | d by:                                      | JH                                        |                                                                                                                    |
|--------------------------------------------------------------------------------------|------------|---------------------------------|------------------|-------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|------------------------|-------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill mode                                                                           | lel and mo | unting:                         | Hand Auge        |             | Easting:                                                                                                      | 705139                                                                                                                                                                                                                              | slope:                                 | -90° |                        |                               | R.                                         | L. Surface:                               |                                                                                                                    |
| hole diam                                                                            |            |                                 | 100 mm           | 1           | Northing                                                                                                      | 6083562                                                                                                                                                                                                                             | bearing:                               |      |                        |                               | da                                         | atum:                                     |                                                                                                                    |
|                                                                                      | g inform   | ation<br>                       |                  | -           | al substance                                                                                                  |                                                                                                                                                                                                                                     |                                        |      | -                      |                               |                                            | 1                                         |                                                                                                                    |
| method<br>15<br>penetration                                                          | 9 E        | notes<br>samples,<br>tests, etc | dept<br>RL metre | graphic log | တ် color                                                                                                      | <b>materi</b><br>pe: plasticity or par<br>ır, secondary and n                                                                                                                                                                       | ticle characteristi<br>ninor component | S.   | moisture<br>condition  | consistency/<br>density index | 100 pocket 200 pocket 300 pocket 300 meter |                                           | tructure and<br>onal observations                                                                                  |
| Н                                                                                    |            | RE02                            |                  |             | SILTY SAI fine to med                                                                                         | <b>ND</b> :dark brown, low<br>dium grained sand                                                                                                                                                                                     | plasticity clay, s                     | oft, | М                      |                               |                                            | Shrub roots                               | present                                                                                                            |
|                                                                                      |            |                                 |                  |             | Borehole F                                                                                                    | RE02 terminated at                                                                                                                                                                                                                  | 0.3m                                   |      |                        |                               |                                            |                                           |                                                                                                                    |
| method<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit showr<br>e.g. |            | ore<br>cool<br>auger<br>e       | water            | N ni        | U <sub>50</sub> U <sub>50</sub> U<br>U <sub>63</sub> L<br>D S<br>N S<br>N S<br>N C S<br>V V N<br>D B<br>B B E | nples, tests Indisturbed sample 50 Indisturbed sample 60 Indisturbed sample standard penetration to SPT - sample recovers Indisturbed sample recovers Indisturbed sample shear (kPa) Indisturbed sample environmental sample efusal | 3mm diameter est (SPT) ed              |      | cription<br>unified of | classifica                    |                                            | consister VS S F St VSt H Fb VL L MD D VD | ccy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 28.7.2009

Borehole No.

RE03

Principal: Date completed: **28.7.2009** 

| Bor                                             | reho  | le I          | _oc                                            | atio                                                                      | n: <b>Ope</b>                   | n Sį               | oace            | or F                                                            | Resid                    | ential A                                                                               | reas                                                                                                                                                                          |                                         |                                                          | (                                                                       | Checke                        | ed by      | <b>/</b> : | JH                                        |                                                                                                                    |
|-------------------------------------------------|-------|---------------|------------------------------------------------|---------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|-----------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|------------|------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                                           | mod   | lel a         | nd ı                                           | nou                                                                       | nting: H                        | land A             | Auger           |                                                                 |                          | Easting:                                                                               | 704586                                                                                                                                                                        | slope:                                  | -90°                                                     |                                                                         |                               |            | R.L. S     | urface:                                   |                                                                                                                    |
|                                                 | e dia |               |                                                |                                                                           |                                 | 100 m              | m               | -                                                               |                          | Northing                                                                               | 6083517                                                                                                                                                                       | bearing                                 | j:                                                       |                                                                         |                               |            | datum      |                                           |                                                                                                                    |
| ar                                              | _     | $\overline{}$ | 110                                            | rma                                                                       | tion                            |                    |                 | mate                                                            |                          | ubstance                                                                               |                                                                                                                                                                               |                                         |                                                          |                                                                         | . ×                           | ا ا        | 5          |                                           |                                                                                                                    |
| method                                          | 12    | - 1           | support                                        | water                                                                     | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                                     | classification<br>symbol |                                                                                        | mate<br>pe: plasticity or p<br>ur, secondary and                                                                                                                              | article character<br>d minor compone    |                                                          | moisture<br>condition                                                   | consistency/<br>density index | 100 pocket | Pa         |                                           | tructure and<br>onal observations                                                                                  |
| H                                               |       |               |                                                | -                                                                         | RE03                            |                    |                 |                                                                 | sc                       | soft, fine to                                                                          | AYred/brown, money medium grained and a second process. AYred/brown, money medium grained and a second process.                                                               | d sand                                  |                                                          | M                                                                       |                               |            |            |                                           | -                                                                                                                  |
|                                                 |       |               |                                                |                                                                           |                                 |                    | 0. <u>5</u>     |                                                                 |                          |                                                                                        |                                                                                                                                                                               |                                         |                                                          |                                                                         |                               |            |            |                                           | -                                                                                                                  |
|                                                 |       |               |                                                |                                                                           | RE03                            |                    |                 |                                                                 |                          | Borehole F                                                                             | RE03 terminated                                                                                                                                                               | at 0.6m                                 |                                                          |                                                                         |                               |            |            |                                           |                                                                                                                    |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V | show  | n by          | roll<br>was<br>cab<br>har<br>dia<br>bla<br>V b | ger d<br>er/trio<br>shbo<br>ole to<br>nd au<br>tube<br>nk bi<br>it<br>bit | ol<br>iger                      | M<br>C<br>pe<br>1: | ter<br>10/1/9   | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V V P<br>Bs E | nples, tests undisturbed sample undisturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) oressuremeter oulk sample environmental sample | 63mm diameter<br>n test (SPT)<br>erered | soil des<br>based of<br>system  moistur D d M m W w Wp p | cation syscription on unified recry coolst lest lastic limit quid limit | classifica                    |            |            | consisten VS S F St VSt H Fb VL L MD D VD | ccy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 28.7.2009

Borehole No.

RE04

Principal: Date completed: **28.7.2009** 

Project: Jumping Creek

Logged by: CL

Reverbels Location: Open Space or Posidential Areas

| Bor                                                                            | ehole          | Loc                                | catio                                                              | n: <b>Ope</b>                   | n Sį              | oace                  | or R        | Resid                    | ential A                                         | Areas                                                                                                                                                                                                   |                                  |                                                               | (                     | Checke                        | ed by      | •       | JH                                  |                                                                                                  |
|--------------------------------------------------------------------------------|----------------|------------------------------------|--------------------------------------------------------------------|---------------------------------|-------------------|-----------------------|-------------|--------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|------------|---------|-------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                                                                          | model          | and                                | mou                                                                | nting: H                        | land.             | Auger                 |             |                          | Easting:                                         | 704689                                                                                                                                                                                                  | slope:                           | -90°                                                          |                       |                               |            | R.L. Sı | urface:                             |                                                                                                  |
|                                                                                | diame          |                                    | ww                                                                 |                                 | 100 m             | m                     |             |                          | Northing                                         |                                                                                                                                                                                                         | bearing:                         |                                                               |                       |                               |            | datum:  |                                     |                                                                                                  |
| ari                                                                            | lling          | INTO                               | rma                                                                |                                 |                   |                       | mate        |                          | ubstance                                         | •                                                                                                                                                                                                       |                                  |                                                               |                       | . ×                           | ۲          |         |                                     |                                                                                                  |
| method                                                                         | 12 penetration | support                            | water                                                              | notes<br>samples,<br>tests, etc | RL                | depth<br>metres       | graphic log | classification<br>symbol |                                                  | materi<br>/pe: plasticity or par<br>ur, secondary and r                                                                                                                                                 | ticle characteris                |                                                               | moisture<br>condition | consistency/<br>density index | 100 pocket | a       |                                     | ructure and<br>nal observations                                                                  |
| АН                                                                             |                |                                    |                                                                    | RE04                            |                   |                       |             | GSC                      | clay, firm,                                      | Sandy CLAYtight b<br>fine to coarse grain                                                                                                                                                               | ed sand, fine gi                 | city<br>ravel                                                 | M                     |                               |            |         |                                     | -                                                                                                |
| meti<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit s<br>e.g. | hod            | ro<br>wa<br>ca<br>ha<br>dia<br>bla | iger d<br>ller/tri<br>ashbo<br>ible to<br>and au<br>atube<br>ank b | re<br>ool<br>uger               | M<br>C<br>pe<br>1 | t <b>er</b><br>10/1/9 |             | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs | mples, tests undisturbed sample 5 undisturbed sample 6 disturbed sample standard penetration I SPT - sample recover SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample | 3mm diameter<br>test (SPT)<br>ed | soil des<br>based o<br>system  moistur  D dr  M m  W w  Wp pl |                       | classifica                    |            |         | consistence VS S F St VSt H Fb VL L | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense |



Borehole No.

**RE05** 

Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Principal: Date completed: 23.7.2009

| Bor                                                                           | reh | ole           | e Lo    | ocat                                                     | ion: Ope                        | n S          | pace            | or F                                                       | Resid                    | ential A                                           | reas                                 |                                           |                                                             | (                     | Checke                        | ed by:                              | JH                                                                          |                                    |
|-------------------------------------------------------------------------------|-----|---------------|---------|----------------------------------------------------------|---------------------------------|--------------|-----------------|------------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------------------------|-----------------------|-------------------------------|-------------------------------------|-----------------------------------------------------------------------------|------------------------------------|
| drill                                                                         | mo  | del           | an      | d mo                                                     | ounting:                        | Hand .       | Auger           |                                                            |                          | Easting:                                           | 705035                               | slope:                                    | -90°                                                        |                       |                               | R.I                                 | Surface:                                                                    |                                    |
| hole                                                                          |     |               |         |                                                          |                                 | 100 m        | m               |                                                            | aulel e                  | Northing                                           |                                      | bearin                                    | g:                                                          |                       |                               | da                                  | tum:                                                                        |                                    |
| arı                                                                           | _   | _             | Ini     | Orn                                                      | nation                          |              |                 | mat                                                        |                          | ubstance                                           | 1                                    |                                           |                                                             |                       | ~                             | 4                                   |                                                                             |                                    |
| method                                                                        | 1   | S penetration | troddia | water                                                    | notes<br>samples,<br>tests, etc | RL           | depth<br>metres | graphic log                                                | classification<br>symbol |                                                    | pe: plasticity or<br>ur, secondary a | terial particle characte nd minor compon  |                                                             | moisture<br>condition | consistency/<br>density index | 100 pocket 200 d penetro- 300 meter |                                                                             |                                    |
| VH VH                                                                         |     |               |         |                                                          | RE05                            | N.L.         | metres          |                                                            | GSM                      | Gravelly since to me                               | Sandy SILTbro                        | wn, no plasticity c<br>and, fine to mediu | lay, firm,                                                  | D                     |                               | 0.000                               | Grass roots                                                                 |                                    |
| mett<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit:<br>e.g. | sho |               | by s    | auge<br>vash<br>cable<br>nand<br>diatu<br>blank<br>/ bit | bit                             | M<br>C<br>pe | iter<br>10/1/9  | no resista<br>ranging to<br>refusal<br>8 water<br>re shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E |                                      | tion test (SPT)<br>overed<br>ne           | soil des<br>based or<br>system  moistur D dr M m W we Wp pl | e<br>y<br>oist        | classifica                    |                                     | S soft F firm St stiff VSt very H harr Fb frial VL very L loos MD med D den | soft stiff lole loose e lium dense |



Borehole No.

RE06

Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Principal: Date completed: 23.7.2009

| Bor                                                  | rehole         | Loc                                            | atio                                                                             | n: Ope                          | n Sį                    | oace            | or F                                                     | Resid                    | ential A                                           | \reas                                                                                                                                                                              |                                         |                                                                         | (                     | Checke                        | ed by:                                  |          | JH                                          |                                                                                                                  |
|------------------------------------------------------|----------------|------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|-----------------------------------------|----------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| drill                                                | model          | and                                            | mou                                                                              | nting: I                        | land.                   | Auger           |                                                          |                          | Easting:                                           | 705156                                                                                                                                                                             | slope:                                  | -90°                                                                    |                       |                               | F                                       | R.L. Sur | rface:                                      |                                                                                                                  |
|                                                      | diame          |                                                | ww                                                                               |                                 | 100 m                   | m               |                                                          | ! !                      | Northing                                           |                                                                                                                                                                                    | bearing                                 | ):                                                                      |                       |                               | c                                       | datum:   |                                             |                                                                                                                  |
| ar                                                   | illing         | INTO                                           | rma                                                                              |                                 |                         |                 | mate                                                     |                          | ubstance                                           | •                                                                                                                                                                                  |                                         |                                                                         |                       | . ×                           | ۲                                       |          |                                             |                                                                                                                  |
| method                                               | 1 Spenetration | support                                        | water                                                                            | notes<br>samples,<br>tests, etc | RL                      | depth<br>metres | graphic log                                              | classification<br>symbol |                                                    | mate<br>/pe: plasticity or p<br>ur, secondary and                                                                                                                                  | article characteri<br>d minor compone   |                                                                         | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro-            | 1        |                                             | ucture and<br>nal observations                                                                                   |
| PH HA                                                | 123            |                                                |                                                                                  | RE06                            |                         | -               |                                                          | GSC                      | Gravelly sfirm, fine to gravel                     | Sandy CLAYred/lo coarse grained                                                                                                                                                    | brown, low plasti<br>sand, fine to med  | city clay,                                                              | M                     |                               | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |          | ass roots p                                 | resent                                                                                                           |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T | shown t        | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | iger diller/tri<br>ashbo<br>ible to<br>ind au<br>atube<br>ank bi<br>bit<br>C bit | ool<br>uger                     | M<br>C<br>pe<br>1<br>wa | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sam refusal | 63mm diameter<br>n test (SPT)<br>erered | soil des<br>based o<br>system<br>moistur<br>D dr<br>M m<br>W w<br>Wp pl |                       | classifica                    |                                         |          | consistence VS S F St VSt H Fb VL L MD D VD | y/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE07

Principal: Date completed: **27.7.2009** 

| Bor                       | ehole         | Loc                                            | atio                                                                   | n: <b>Ope</b>                   | n Sp   | oace            | or R                                                      | Resid                    | ential A                                                                             | reas                                                                                                                                                                                  |                                         |                                                           | (                     | Checke                        | ed by        | <i>'</i> : | JH                                     |                                                                                                        |
|---------------------------|---------------|------------------------------------------------|------------------------------------------------------------------------|---------------------------------|--------|-----------------|-----------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|--------------|------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|
| drill                     | model         | and                                            | mou                                                                    | nting: H                        | land / | Auger           |                                                           |                          | Easting:                                                                             | 704399                                                                                                                                                                                | slope:                                  | -90°                                                      |                       |                               |              | R.L. S     | urface:                                |                                                                                                        |
|                           | diame         |                                                |                                                                        |                                 | 100 m  | m               |                                                           | !!                       | Northing                                                                             | 6083463                                                                                                                                                                               | bearing                                 | ):                                                        |                       |                               |              | datum      | :                                      |                                                                                                        |
| dr                        | illing        | into                                           | rma                                                                    | ition                           | i      |                 | mate                                                      |                          | ubstance                                                                             |                                                                                                                                                                                       |                                         |                                                           |                       |                               |              |            |                                        |                                                                                                        |
| method                    | 1 penetration | support                                        | water                                                                  | notes<br>samples,<br>tests, etc | RL     | depth<br>metres | graphic log                                               | classification<br>symbol | 1                                                                                    | mate<br>pe: plasticity or pa<br>ur, secondary and                                                                                                                                     | article characteri<br>minor compone     |                                                           | moisture<br>condition | consistency/<br>density index | 100 y pocket | Pa 📗       |                                        | tructure and<br>onal observations                                                                      |
| HA                        |               |                                                |                                                                        | RE07                            |        |                 |                                                           | MS                       |                                                                                      | <b>ND</b> ±lark brown, lo                                                                                                                                                             |                                         |                                                           | М                     |                               |              |            |                                        | -                                                                                                      |
|                           |               |                                                |                                                                        |                                 |        | 0.5             | <u>:</u>                                                  | SC                       | Sandy CL<br>firm, fine g                                                             | <b>AY</b> fight brown, m<br>rained sand                                                                                                                                               | edium plasticity                        | clay,                                                     | D                     |                               |              |            |                                        | -                                                                                                      |
|                           |               |                                                |                                                                        | RE07                            |        |                 |                                                           |                          | Borehole F                                                                           | RE07 terminated a                                                                                                                                                                     | at 0.6m                                 |                                                           |                       |                               |              |            |                                        |                                                                                                        |
| AS AD RR W CT HA DT B V T | chod          | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d<br>ler/tri<br>ashbo<br>ble to<br>and au<br>atube<br>ank b<br>bit | ool<br>uger                     | M<br>C | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V P<br>Bs E | nples, tests undisturbed sample undisturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter pulk sample environmental samp refusal | 63mm diameter<br>n test (SPT) -<br>ered | soil des<br>based o<br>system  moistur D di M m W w Wp pi |                       | classifica                    |              |            | consisten VS S F St VSt H Fb VL L MD D | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE08

Principal: Date completed: **27.7.2009** 

| Bor                       | rehole               | Loca                                                             | tion: Ope                       | n Sp           | ace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or F                                           | Resid                    | ential A                                           | Areas                                                                                                                                                                |                                     |                                                                | C                     | Checke                        | ed by:                    | JH                                        |                                                                                                                    |
|---------------------------|----------------------|------------------------------------------------------------------|---------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|---------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                     | model                | and m                                                            | ounting:                        | Hand A         | uger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                          | Easting:                                           | 704551                                                                                                                                                               | slope:                              | -90°                                                           |                       |                               | R.                        | L. Surface:                               |                                                                                                                    |
|                           | e diame              |                                                                  |                                 | 100 mm         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                          | Northing                                           |                                                                                                                                                                      | bearing                             | j:                                                             |                       |                               | da                        | atum:                                     |                                                                                                                    |
| Lar                       |                      | niori                                                            | mation                          |                | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mate                                           |                          | ubstance                                           | )                                                                                                                                                                    |                                     |                                                                |                       | - ×                           | 6                         |                                           |                                                                                                                    |
| method                    | . T<br>. Denetration | support                                                          | notes<br>samples,<br>tests, etc | RL n           | depth<br>netres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | graphic log                                    | classification<br>symbol |                                                    | mater<br>/pe: plasticity or pa<br>ur, secondary and                                                                                                                  | article character<br>minor compone  |                                                                | moisture<br>condition | consistency/<br>density index | 100 pocket 200 a penetro- |                                           | tructure and<br>onal observations                                                                                  |
| Н                         |                      |                                                                  | RE08                            |                | -<br>0. <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                | SM                       | medium g                                           | RAVELbrown, no plast rained sand, trace                                                                                                                              | s of fine gravel                    | rm, fine                                                       | D                     |                               |                           |                                           | _                                                                                                                  |
|                           |                      |                                                                  | RE08                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                          | Borehole I                                         | RE08 terminated a                                                                                                                                                    | at 0.6m                             |                                                                |                       |                               |                           |                                           |                                                                                                                    |
| AS AD RR W CT HA DT B V T | thod<br>shown b      | auge<br>rolle<br>wasl<br>cable<br>hand<br>diatu<br>blan<br>V bit | k bit<br>:<br>oit               | pene 1 2 water | etration 3 4 nr ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration ration | n no resista anging to efusal  3 water e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample refusal | 63mm diameter<br>test (SPT)<br>ered | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | n unified             | classifica                    |                           | consister VS S F St VSt H Fb VL L MD D VD | ccy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Borehole No.

RE09

Client: Canberra Investment Corporation Pty Ltd Date started: 28.7.2009

Principal: Date completed: **28.7.2009** 

| Roi                                                            | ren  | ole           | Lo                                         | catio                                                                             | n: <b>Ope</b>                   | n Sp   | oace            | or F                                                      | esia                     | entiai A            | reas                                                                                                                                                                       |                                           |                            | (                     | Checke                        | d by:                                        |                       | JH                                                                      |
|----------------------------------------------------------------|------|---------------|--------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------|--------|-----------------|-----------------------------------------------------------|--------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|-----------------------|-------------------------------|----------------------------------------------|-----------------------|-------------------------------------------------------------------------|
| drill                                                          | l mo | odel          | and                                        | mou                                                                               | nting: I                        | land / | Auger           |                                                           |                          | Easting:            | 704703                                                                                                                                                                     | slope:                                    | -90°                       |                       |                               | R.                                           | L. Surf               | ace:                                                                    |
|                                                                |      | ame           |                                            |                                                                                   |                                 | 100 m  | m               |                                                           |                          | Northing            | 6083402                                                                                                                                                                    | bearing:                                  |                            |                       |                               | da                                           | tum:                  |                                                                         |
| dr                                                             | _    | _             | info                                       | rma                                                                               | ition                           | 1      |                 | mate                                                      |                          | ubstance            |                                                                                                                                                                            |                                           |                            |                       |                               |                                              | 1                     |                                                                         |
| method                                                         | 1    | S penetration | support                                    | water                                                                             | notes<br>samples,<br>tests, etc | RL     | depth<br>metres | graphic log                                               | classification<br>symbol | colou               | mater<br>pe: plasticity or pa<br>ır, secondary and                                                                                                                         | rticle characterist                       | ts.                        | moisture<br>condition | consistency/<br>density index | 100 pocket 200 pocket 300 pocket 300 momento |                       | structure and additional observations                                   |
| НА                                                             |      |               |                                            |                                                                                   | RE09                            |        |                 |                                                           | SM                       | Sandy SIL medium gr | .Tbrown, no plasti<br>ained sand, traces                                                                                                                                   | city clay, soft, fine<br>s of fine gravel | e to                       | M                     |                               |                                              |                       | ss roots                                                                |
| met                                                            |      |               | aı                                         | uger s                                                                            | crewing*                        |        |                 | N N                                                       | nil                      | notes, sam          | nples, tests                                                                                                                                                               | 1                                         | soil des                   | cation sy             |                               |                                              |                       | onsistency/density index<br>S very soft                                 |
| AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit<br>e.g. | sho  | own b         | ro<br>w<br>ca<br>ha<br>di<br>bl<br>V<br>To | ller/tri<br>ashbo<br>able to<br>and au<br>atube<br>ank bi<br>bit<br>C bit<br>ffix | ore<br>ool<br>uger              | pei    | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>63</sub>     | undisturbed sample of disturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample efusal | test (SPT)                                | moistur D di M m W w Wp pl | y<br>oist             |                               | ition                                        | H<br>F<br>V<br>L<br>M | firm stiff St very stiff hard b friable L very loose loose medium dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Borehole No.

RE10

Principal: Date completed: 23.7.2009

| Bor                                                                  | ehole         | e Lo                                                        | catio                                                                              | n: <b>Ope</b>                   | n Sp          | oace                             | or F                                                     | Resid                    | lential A       | reas                                                                                                                                                                                                          |                                      |                                                                | (                     | Checke                        | d by:          |         | JH                                        |                                                                                                                    |
|----------------------------------------------------------------------|---------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|---------------|----------------------------------|----------------------------------------------------------|--------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|----------------|---------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                                                                | mode          | l and                                                       | mou                                                                                | nting: I                        | land /        | Auger                            |                                                          |                          | Easting:        | 705256                                                                                                                                                                                                        | slope:                               | -90°                                                           |                       |                               | F              | R.L. St | ırface:                                   |                                                                                                                    |
|                                                                      | diam          |                                                             |                                                                                    |                                 | 100 m         | m                                |                                                          |                          | Northing        | 6083405                                                                                                                                                                                                       | bearing:                             |                                                                |                       |                               | c              | datum:  |                                           |                                                                                                                    |
| dr                                                                   | illing<br>_   | info                                                        | rma                                                                                | ition                           |               | 1                                | mat                                                      | _                        | ubstance        |                                                                                                                                                                                                               |                                      |                                                                |                       |                               | ,              | _       |                                           |                                                                                                                    |
| method                                                               | T penetration | support                                                     | water                                                                              | notes<br>samples,<br>tests, etc | RL            | depth<br>metres                  | graphic log                                              | classification<br>symbol | color           | mater<br>pe: plasticity or pa<br>ur, secondary and                                                                                                                                                            | rticle characteris<br>minor componer | nts.                                                           | moisture<br>condition | consistency/<br>density index | 200 A penetro- | a       |                                           | tructure and<br>onal observations                                                                                  |
| АН                                                                   |               |                                                             |                                                                                    | RE10                            |               | -                                |                                                          | SM                       |                 | .TY⊅rown, low pla                                                                                                                                                                                             | sticity clay, fine                   | to                                                             | М                     |                               |                |         | oots prese                                | nt                                                                                                                 |
|                                                                      |               |                                                             |                                                                                    |                                 |               | _                                |                                                          |                          | Borehole F      | RE10 terminated a                                                                                                                                                                                             | t 0.3m                               |                                                                |                       |                               |                |         |                                           |                                                                                                                    |
| Met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit: | shown         | au<br>ro<br>wa<br>ca<br>ha<br>di<br>bl.<br>V<br>T(<br>by su | iger d<br>ller/tri<br>ashbo<br>ble to<br>ind au<br>atube<br>ank bi<br>bit<br>C bit | ore<br>ool<br>uger              | M<br>C<br>pei | ter<br>10/1/9<br>on dat<br>water | no resista<br>ranging t<br>refusal<br>8 water<br>e showi | level                    | U <sub>50</sub> | inples, tests undisturbed sample 6 undisturbed sample 6 disturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample refusal | 33mm diameter<br>test (SPT)<br>red   | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | e<br>oist             | classifica                    |                |         | consisten VS S F St VSt H Fb VL L MD D VD | cy/density index  very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

**RE11** 

Principal: Date completed: 27.7.2009

| Borehole Location:                                                                                                                      | Open Space                                | or Resid                                                           | lential Are                                                                                                                                                                                           | as                                                                                                                                                                      |                                                                         |                           | С                     | hecke                         | d by:                                    | JI                                                     | 4                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|-----------------------|-------------------------------|------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|
| drill model and mounting                                                                                                                | g: Hand Auger                             |                                                                    | Easting:                                                                                                                                                                                              | 704436                                                                                                                                                                  | slope:                                                                  | -90°                      |                       |                               | R                                        | .L. Surfac                                             | e:                                                                              |
| hole diameter:                                                                                                                          | 100 mm                                    |                                                                    | Northing                                                                                                                                                                                              | 6083349                                                                                                                                                                 | bearing:                                                                |                           |                       |                               | d                                        | atum:                                                  |                                                                                 |
| drilling informatio                                                                                                                     | n<br>                                     | material s                                                         | ubstance                                                                                                                                                                                              |                                                                                                                                                                         |                                                                         |                           |                       | v                             | <u> </u>                                 | 1                                                      |                                                                                 |
| method method support water sets                                                                                                        | otes mples, ts, etc RL depth metres       |                                                                    | colour, s                                                                                                                                                                                             | material plasticity or particlesecondary and mino                                                                                                                       | or components.                                                          |                           | moisture<br>condition | consistency/<br>density index | 200 A pocket                             |                                                        | structure and<br>dditional observations                                         |
| AH III                                                                                                                                  | RE11 -                                    | SM                                                                 | Sandy SILT± medium grain                                                                                                                                                                              | 1 terminated at 0.2                                                                                                                                                     | clay, soft, fine<br>ine gravel                                          |                           | M                     |                               | 01 10 10 10 10 10 10 10 10 10 10 10 10 1 |                                                        |                                                                                 |
| method AS auger screw AD auger drillin RR roller/tricone W washbore CT cable tool HA hand auger DT diatube B blank bit V V bit T TC bit | C casing penetration 1 2 3 4 water 10/1/5 | no resistance<br>ranging to<br>refusal<br>8 water level<br>e shown | U <sub>63</sub> undi           D         distu           N         stan           N*         SPT           Nc         SPT           V         vane           P         pres           Bs         bulk | es, tests sturbed sample 50mn sturbed sample 63mn irbed sample dard penetration test - sample recovered with solid cone e shear (kPa) suremeter sample ronmental sample | n diameter s n diameter b s (SPT) n n n n n n n n n n n n n n n n n n n | M moi<br>V wet<br>Vp plas | ription<br>unified o  |                               |                                          | con<br>VS<br>S<br>F<br>St<br>VSt<br>H<br>Fb<br>VL<br>L | very soft soft firm stiff very stiff hard friable very loose loose medium dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE12

Principal: Date completed: 27.7.2009

| Bor                                                                         | ehol          | le L  | ocati                                                                               | on: <i>Ope</i>                  | n Sį          | oace                             | or F                                                             | Resid                    | lential Ar                                                    | reas                                                                                                                                                                                                                  |                                       |                                                               | (                     | Checke                        | ed by:                    | J                                                                       | 'H                                                                            |
|-----------------------------------------------------------------------------|---------------|-------|-------------------------------------------------------------------------------------|---------------------------------|---------------|----------------------------------|------------------------------------------------------------------|--------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|---------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| drill                                                                       | mode          | el ar | id mo                                                                               | unting:                         | Hand A        | Auger                            |                                                                  |                          | Easting:                                                      | 704785                                                                                                                                                                                                                | slope:                                | -90°                                                          |                       |                               | R                         | .L. Surfa                                                               | ce:                                                                           |
|                                                                             | dian          |       |                                                                                     |                                 | 100 m         | m                                |                                                                  |                          | Northing                                                      | 6083335                                                                                                                                                                                                               | bearing:                              | :                                                             |                       |                               | da                        | atum:                                                                   |                                                                               |
| dr                                                                          | _             | _     | torm                                                                                | ation                           | i             |                                  | mat                                                              |                          | ubstance                                                      |                                                                                                                                                                                                                       |                                       |                                                               |                       |                               | ,                         | _                                                                       |                                                                               |
| method                                                                      | . benetration |       | support                                                                             | notes<br>samples,<br>tests, etc | RL            | depth<br>metres                  | graphic log                                                      | classification<br>symbol | colour                                                        | mater<br>e: plasticity or pa<br>r, secondary and                                                                                                                                                                      | rticle characteris<br>minor compone   | nts.                                                          | moisture<br>condition | consistency/<br>density index | 100 pocket 200 d penetro- |                                                                         | structure and<br>additional observations                                      |
| НА                                                                          |               |       |                                                                                     | RE12                            |               | _                                |                                                                  | SM                       | medium gra                                                    | f⊅rown, low plast<br>ined sand, traces                                                                                                                                                                                | s of fine gravel                      |                                                               | M                     |                               |                           |                                                                         |                                                                               |
|                                                                             |               |       |                                                                                     |                                 |               | 0.5                              |                                                                  | GSC                      | Gravelly Sa<br>clay, firm, fin<br>medium gra                  | andy CLAYtight bene to medium gra                                                                                                                                                                                     | orown, low plasti<br>nined sand, fine | city                                                          | D                     |                               |                           |                                                                         |                                                                               |
|                                                                             |               |       |                                                                                     | RE12                            |               |                                  |                                                                  |                          | Borehole RI                                                   | E12 terminated a                                                                                                                                                                                                      | t 0.6m                                |                                                               |                       |                               |                           |                                                                         |                                                                               |
|                                                                             |               |       |                                                                                     |                                 |               | _                                |                                                                  |                          |                                                               |                                                                                                                                                                                                                       |                                       |                                                               |                       |                               |                           |                                                                         |                                                                               |
| Met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit<br>e.g. | showi         | n by  | auger<br>roller/t<br>washb<br>cable<br>hand a<br>diatub<br>blank<br>V bit<br>TC bit | tool<br>auger<br>e<br>bit       | M<br>C<br>per | ter<br>10/1/9<br>on dat<br>water | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>se shown | level                    | U <sub>63</sub> ur D di N st N* SI Nc SI V va P pr Bs bu E er | ples, tests  ndisturbed sample 6  sturbed sample 6  sturbed sample 6  sturbed sample 6  andard penetration PT - sample recove PT with solid cone ane shear (kPa)  essuremeter  ulk sample  nvironmental sample  fusal | 63mm diameter<br>test (SPT) –<br>red  | soil des<br>based o<br>system  moistur  D di  M m  W w  Wp pl | y<br>oist             | classifica                    |                           | Cor<br>VS<br>S<br>F<br>St<br>VSi<br>H<br>Fb<br>VL<br>L<br>MD<br>D<br>VD | soft firm stiff t very stiff hard friable very loose loose medium dense dense |



**Borehole** 

Borehole No. **RE13** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Principal: Date completed: 23.7.2009

| Boreho                                                                              | ole L | _oca                                                                       | tion: Ope                       | n Spa                                            | се о               | or Resid                                | lential A                                            | reas                                                                                                                                                                                        |                                         |          | (                                       | Checke                        | d by:                                   | J                                                                          | IH                                                                            |
|-------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------|---------------------------------|--------------------------------------------------|--------------------|-----------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|-----------------------------------------|-------------------------------|-----------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| drill mod                                                                           | del a | nd m                                                                       | ounting:                        | Hand Au                                          | jer                |                                         | Easting:                                             | 704936                                                                                                                                                                                      | slope:                                  | -90°     |                                         |                               | R                                       | R.L. Surfa                                                                 | ce:                                                                           |
| hole dia                                                                            |       |                                                                            |                                 | 100 mm                                           |                    | 4                                       | Northing                                             | 6083344                                                                                                                                                                                     | bearing:                                |          |                                         |                               | d                                       | atum:                                                                      |                                                                               |
|                                                                                     | _     | ntorr                                                                      | nation                          | <del>                                     </del> | _ r                |                                         | ubstance                                             |                                                                                                                                                                                             |                                         |          |                                         | ~                             | 4                                       |                                                                            |                                                                               |
| method<br>1                                                                         |       | support                                                                    | notes<br>samples,<br>tests, etc | de<br>RL me                                      | pth<br>tres        | graphic log<br>classification<br>symbol | colou                                                | mater<br>be: plasticity or pa<br>ir, secondary and                                                                                                                                          | rticle characteris<br>minor componer    | nts.     | moisture<br>condition                   | consistency/<br>density index | 200 A pocket                            |                                                                            | structure and additional observations                                         |
| T 12                                                                                | 23    |                                                                            | RE13                            | RL me                                            | Ires               | GSM  GSM  GSM  GSM  GSM  GSM  GSM  GSM  | Gravelly S fine to med medium gra                    | andy SILTbrown,<br>lium grained sand                                                                                                                                                        | no plasticity clar<br>traces of fine to | y, firm, | M                                       |                               | 0.0000000000000000000000000000000000000 | 97                                                                         |                                                                               |
| method<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit show<br>e.g. |       | auge<br>roller<br>wash<br>cable<br>hand<br>diatu<br>blank<br>V bit<br>TC b | e tool<br>auger<br>be<br>c bit  | water  10 or                                     | ration 4 no r rang | water level<br>shown<br>low             | U <sub>63</sub> u D d N s N* S Nc S V v P p Bs b E e | iples, tests indisturbed sample 5 indisturbed sample 6 itsandard penetration SPT - sample recove SPT with solid cone rane shear (kPa) pressuremeter bulk sample environmental sample efusal | i3mm diameter<br>test (SPT)<br>red      | W we     | cription<br>n unified<br>e<br>y<br>oist | classifica                    |                                         | COI<br>VS<br>S<br>S<br>F<br>St<br>VS<br>H<br>Fb<br>VL<br>L<br>MD<br>D<br>V | soft firm stiff t very stiff hard friable very loose loose medium dense dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Borehole No.

**RE14** 

Principal: Date completed: 23.7.2009

Project: Jumping Creek

Logged by: CL

Rerebela Location: Open Space or Residential Areas

| Bor                                             | ehole                       | Loca                                                      | ation: Op                    | en S   | расе            | or F                                                       | Resid                    | ential A                                           | Areas                                                                                                                                                                                               |                                           |                             | (                     | Checke                        | ed by:                                               | JH                                        |                                                                                                  |
|-------------------------------------------------|-----------------------------|-----------------------------------------------------------|------------------------------|--------|-----------------|------------------------------------------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------|-----------------------|-------------------------------|------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                                           | model                       | and n                                                     | nounting:                    | Hand   | Auger           |                                                            |                          | Easting:                                           | 705039                                                                                                                                                                                              | slope:                                    | -90°                        |                       |                               | R.                                                   | L. Surface:                               |                                                                                                  |
|                                                 | diame                       |                                                           | matic :-                     | 100 m  | nm              |                                                            |                          | Northing                                           |                                                                                                                                                                                                     | bearing                                   | j:                          |                       |                               | da                                                   | atum:                                     |                                                                                                  |
| ar                                              |                             | inor                                                      | mation                       | 1      |                 | mat                                                        |                          | ubstance                                           | •                                                                                                                                                                                                   |                                           |                             |                       | _ ×                           | 6                                                    |                                           |                                                                                                  |
| method                                          | . T<br>. Denetration<br>. S | support                                                   | notes<br>sample:<br>tests, e |        | depth<br>metres | graphic log                                                | classification<br>symbol |                                                    | mate<br>ype: plasticity or p<br>our, secondary and                                                                                                                                                  | article character<br>d minor compone      |                             | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 pocket<br>300 pocket<br>300 pocket |                                           | structure and<br>onal observations                                                               |
| НА                                              |                             |                                                           | RE14                         |        | 0.5             |                                                            | SM                       | grained s                                          | ETbrown, low pla and, traces of fine Sandy CLAYbrov to medium grained                                                                                                                               | vn/red, low plast                         | icity clay,                 | D                     |                               |                                                      |                                           |                                                                                                  |
|                                                 |                             |                                                           | RE14                         |        | _               |                                                            |                          | Borehole                                           | RE14 terminated                                                                                                                                                                                     | at 0.6m                                   |                             |                       |                               |                                                      |                                           |                                                                                                  |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V | shown b                     | aug<br>rolle<br>was<br>cab<br>han<br>diat<br>blar<br>V bi | nk bit<br>t<br>bit<br>x      | M C pe | ater<br>10/1/9  | no resista<br>ranging to<br>refusal<br>8 water<br>re shown | level                    | U <sub>50</sub><br>U <sub>63</sub><br>D<br>N<br>N* | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter<br>in test (SPT)<br>vered | moistur D dr M m W we Wp pl | e<br>y<br>oist        | classifica                    |                                                      | consister VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Borehole No.

**RE15** 

Principal: Date completed: 23.7.2009

| Bor                                                                            | ehole         | Loc                                                         | ation:    | Ope                           | n Sp          | oace            | or F                                                     | Resid                    | ential A                | reas                                                                                                                                                                                  |                                       |                                                        | C                     | Checke                        | d by:                        |         | JH                                                                              |                                                                                                                    |
|--------------------------------------------------------------------------------|---------------|-------------------------------------------------------------|-----------|-------------------------------|---------------|-----------------|----------------------------------------------------------|--------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|-----------------------|-------------------------------|------------------------------|---------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                                                                          | model         | and r                                                       | nountir   | ng: H                         | land A        | Auger           |                                                          |                          | Easting:                | 705309                                                                                                                                                                                | slope:                                | -90°                                                   |                       |                               | F                            | R.L. Su | ırface:                                                                         |                                                                                                                    |
|                                                                                | diame         |                                                             | 47        |                               | 00 m          | m               |                                                          |                          | Northing                | 6083337                                                                                                                                                                               | bearing                               | :                                                      |                       |                               | c                            | datum:  |                                                                                 |                                                                                                                    |
| dri                                                                            |               | info                                                        | rmatio    | on                            |               |                 | mate                                                     |                          | ubstance                |                                                                                                                                                                                       |                                       |                                                        |                       |                               | 1                            |         |                                                                                 |                                                                                                                    |
| method                                                                         | 5 penetration | support                                                     | sa        | notes<br>amples,<br>ests, etc | RL            | depth<br>metres | graphic log                                              | classification<br>symbol | color                   | mate<br>pe: plasticity or pa<br>ır, secondary and                                                                                                                                     | article characteri<br>minor compone   | ents.                                                  | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- | 1       |                                                                                 | tructure and<br>onal observations                                                                                  |
| HA                                                                             |               |                                                             |           | RE15                          |               | -               |                                                          | GSM                      | Gravelly S fine to coal | sandy SILTbrown<br>rse grained sand,                                                                                                                                                  | , no plasticity cli<br>fine to medium | ay, firm,<br>gravel                                    | M                     |                               |                              |         | irub roots                                                                      | present                                                                                                            |
|                                                                                |               |                                                             |           |                               |               |                 | 0. 0. 0                                                  |                          | Borehole F              | RE15 terminated a                                                                                                                                                                     | at 0.3m                               |                                                        |                       |                               |                              |         |                                                                                 |                                                                                                                    |
| metil<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bits<br>e.g. | hod           | aug<br>roll<br>was<br>cab<br>har<br>dia<br>bla<br>V b<br>TC | bit<br>īx | ng*<br>ne                     | M<br>C<br>per | ter<br>10/1/98  | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub>         | nples, tests undisturbed sample undisturbed sample istandard penetratior SPT - sample recove SPT with solid cone vane shear (kPa) oressuremeter bulk sample environmental samp efusal | 63mm diameter<br>n test (SPT)<br>ered | soil des based of system  moistur D dr M m W we Wp ple | e<br>y<br>oist        | classifica                    |                              |         | consistend<br>VS<br>S<br>F<br>St<br>VSt<br>H<br>FFb<br>VL<br>L<br>MD<br>D<br>VD | cy/density index  very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

**RE16** 

Principal: Date completed: **27.7.2009** 

| Boreh                                    | ole              | Loc                                      | atio                                                    | n: <b>One</b>                   | ח כו         | nace            | or F                                                       | Resid                    | ential Ar                                                           | eas                                                                                                                                                                                                                |                                     |                                                            |                       | Checke                        |            | <i>,</i> . | JH                                                                         |                                                                                                                |
|------------------------------------------|------------------|------------------------------------------|---------------------------------------------------------|---------------------------------|--------------|-----------------|------------------------------------------------------------|--------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|------------|------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                          |                  |                                          |                                                         |                                 |              | Auger           | Ji r                                                       | ·osiu                    | Easting:                                                            | 704311                                                                                                                                                                                                             | slope:                              | -90°                                                       |                       | JI I GONE                     | ,u by      |            | Surface:                                                                   |                                                                                                                |
| ole di                                   |                  |                                          | -                                                       |                                 | 100 m        |                 |                                                            |                          | Northing                                                            | 6083310                                                                                                                                                                                                            | bearing                             |                                                            |                       |                               |            | datur      |                                                                            |                                                                                                                |
|                                          |                  |                                          | rma                                                     | ition                           | -5 111       |                 | mat                                                        | erial s                  | ubstance                                                            |                                                                                                                                                                                                                    | 20011119                            | •                                                          |                       |                               |            | uatul      | 111                                                                        |                                                                                                                |
| ן ע                                      | no penetration s | support                                  | water                                                   | notes<br>samples,<br>tests, etc | RL           | depth<br>metres | graphic log                                                | classification<br>symbol |                                                                     | mater<br>e: plasticity or pa<br>secondary and                                                                                                                                                                      | rticle characteri                   |                                                            | moisture<br>condition | consistency/<br>density index | 100 pocket | Pa         |                                                                            | cture and<br>I observations                                                                                    |
|                                          |                  |                                          |                                                         | RE16                            |              | _               |                                                            | GS                       | to coarse gra                                                       | NDbrown, no plained sand, fine                                                                                                                                                                                     | asticity clay, fir                  | n, fine                                                    | D                     |                               |            |            |                                                                            |                                                                                                                |
|                                          |                  |                                          |                                                         | RE16                            |              | 0. <u>5</u>     |                                                            |                          |                                                                     |                                                                                                                                                                                                                    |                                     |                                                            |                       |                               |            |            |                                                                            |                                                                                                                |
|                                          |                  |                                          |                                                         |                                 |              | _               | 0                                                          |                          | Borehole RE                                                         | 16 terminated a                                                                                                                                                                                                    | t 0.6m                              |                                                            |                       |                               |            |            |                                                                            |                                                                                                                |
| ethod<br>S<br>D<br>R<br>T<br>A<br>T<br>T |                  | rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d ler/tri shbo ble to nd au atube ank b bit bit fix | re<br>ool<br>uger               | M<br>C<br>pe | ater<br>10/1/9  | no resista<br>ranging to<br>refusal<br>8 water<br>re shown | level                    | U <sub>63</sub> und D dis N sta N* SP NC SP V val P pre Bs bul E en | cles, tests disturbed sample sedisturbed sample sedisturbed sample sedisturbed sample sedisturbed sample sedisturbed sample recover with solid cone me shear (kPa) sessuremeter lik sample vironmental sample usal | 63mm diameter<br>test (SPT)<br>ered | soil des<br>based of<br>system  moistur D dr M m W w Wp pl | y<br>oist             | classifica                    |            |            | consistency/<br>VS<br>S<br>F<br>St<br>VSt<br>H<br>Fb<br>VL<br>L<br>MD<br>D | density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

**RE17** 

Principal: Date completed: **27.7.2009** 

| Во                                                      | rehole          | Loc                                                    | ation: <b>Op</b>               | en S <sub>i</sub> | расе            | or F                                                       | Resid                    | ential A                                           | Areas                                                                                                                                                                                               |                                           |                                                               | (                     | Checke                        | ed by:                       | JH                                       |                                                                                                       |
|---------------------------------------------------------|-----------------|--------------------------------------------------------|--------------------------------|-------------------|-----------------|------------------------------------------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------|
| drill                                                   | model           | and r                                                  | mounting:                      | Hand              | Auger           |                                                            |                          | Easting:                                           | 704582                                                                                                                                                                                              | slope:                                    | -90°                                                          |                       |                               | R                            | R.L. Surface:                            |                                                                                                       |
|                                                         | e diame         |                                                        | matic=                         | 100 m             | ım              |                                                            | -ul-!                    | Northing                                           |                                                                                                                                                                                                     | bearing                                   | j:                                                            |                       |                               | d                            | atum:                                    |                                                                                                       |
| ar                                                      | <del></del>     | IIIIOI                                                 | mation                         | 1                 |                 | mat                                                        |                          | ubstance                                           | •                                                                                                                                                                                                   |                                           |                                                               |                       | _ ×                           | . 6                          |                                          |                                                                                                       |
| method                                                  | . 5 penetration | support                                                | notes<br>samples<br>tests, etc | ;                 | depth<br>metres | graphic log                                                | classification<br>symbol | 1                                                  | mate<br>ype: plasticity or p<br>ur, secondary an                                                                                                                                                    | particle character<br>d minor compone     |                                                               | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- |                                          | structure and<br>tional observations                                                                  |
| VΗ                                                      |                 |                                                        | RE17                           |                   | _               |                                                            | SM                       | Sandy SI<br>grained sa                             | LTY-brown, low p<br>and, traces of fine                                                                                                                                                             | lasticity clay, sofi                      | ; fine                                                        | D                     |                               |                              |                                          | _                                                                                                     |
|                                                         |                 |                                                        |                                |                   |                 |                                                            |                          | Borehole                                           | RE17 terminated                                                                                                                                                                                     | at 0.3m                                   |                                                               |                       |                               |                              |                                          |                                                                                                       |
|                                                         | thod            |                                                        |                                |                   | 0.5             |                                                            |                          | notos sa                                           | malac tasts                                                                                                                                                                                         |                                           | classifi                                                      | nation su             | mhole a                       | nd                           | consists                                 |                                                                                                       |
| GEO 5.3 Issue 3 Kev.z<br>T A B D B A T<br>T A B T B A T | shown           | aug<br>rolli<br>was<br>cab<br>har<br>dia<br>bla<br>V b | bit<br>ix                      | M C pee 1 wa      | nter<br>10/1/9  | no resista<br>ranging to<br>refusal<br>8 water<br>re shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter<br>on test (SPT)<br>vered | soil des<br>based o<br>system  moistur  D di  M m  W w  Wp pl |                       | classifica                    |                              | consiste VS S F St VSt H Fb VL L MD D VD | very soft soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Borehole Sheet 1 of 1
Office Job No.: ENVI

Client: Canberra Investment Corporation Pty Ltd Office Job No.: ENVICANB00233AA

27.7.2009

Borehole No.

**RE18** 

Principal: Date completed: **27.7.2009** 

| Bor                                                                           | ehole           | Loc                                            | atio                                                    | n: Ope                          | n Sį               | oace            | or F                                                   | Resid                    | ential A                                           | reas                                                                                                                                                                                                   |                                       |                                                                         | C                     | Checke                        | ed by:                                   |                                             | JH                              |                                                                                                                   |
|-------------------------------------------------------------------------------|-----------------|------------------------------------------------|---------------------------------------------------------|---------------------------------|--------------------|-----------------|--------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------------------------|---------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                                                         | model           | and                                            | mou                                                     | nting: I                        | land i             | Auger           |                                                        |                          | Easting:                                           | 704695                                                                                                                                                                                                 | slope:                                | -90°                                                                    |                       |                               | F                                        | R.L. Sur                                    | face:                           |                                                                                                                   |
|                                                                               | diame           |                                                |                                                         |                                 | 100 m              | m               |                                                        |                          | Northing                                           |                                                                                                                                                                                                        | bearing                               | :                                                                       |                       |                               | (                                        | datum:                                      |                                 |                                                                                                                   |
| arı                                                                           | illing<br>_     | Into                                           | rma                                                     | ition                           | 1                  |                 | mate                                                   |                          | ubstance                                           | 1                                                                                                                                                                                                      |                                       |                                                                         |                       |                               | 4                                        | i                                           |                                 |                                                                                                                   |
| method                                                                        | . 5 penetration | support                                        | water                                                   | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                            | classification<br>symbol |                                                    | mate<br>pe: plasticity or pa<br>ur, secondary and                                                                                                                                                      | article characteri<br>minor compone   |                                                                         | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 pocket<br>300 penetro- | 1                                           |                                 | ructure and<br>nal observations                                                                                   |
| Н                                                                             |                 |                                                |                                                         | RE18                            |                    | 0.5             |                                                        | sc                       | grained sa                                         | "AYred, medium p                                                                                                                                                                                       |                                       |                                                                         | М                     |                               |                                          |                                             |                                 |                                                                                                                   |
|                                                                               |                 |                                                |                                                         | RE18                            |                    |                 |                                                        |                          | Borehole I                                         | RE18 terminated a                                                                                                                                                                                      | at 0.6m                               |                                                                         |                       |                               |                                          |                                             |                                 |                                                                                                                   |
| mett<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit:<br>e.g. | shown I         | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d ler/tri shbo ble to nd au atube ank b bit bit fix | ool<br>uger                     | M<br>C<br>pe<br>1: | ter<br>10/1/9   | n resista<br>anging to<br>efusal<br>8 water<br>e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratior SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based o<br>system<br>moistur<br>D di<br>M m<br>W w<br>Wp pl | y<br>oist             | classifica                    |                                          | \<br>  S<br>  N<br>  H<br>  F<br>  N<br>  L | /S<br>S<br>St<br>/St<br>H<br>Fb | ey/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **RE19** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Principal: Date completed: 23.7.2009

| Bore                                                          | hole          | Lo                                         | catio                                                    | n: <b>Ope</b>                   | n Sį                    | oace            | or F                                                    | Resid                    | ential A                                                                                          | reas                                                                                                                                                                                                             |                                                 |                                                           | (                                                                                                     | Checke                        | ed by | y:                           | JH                                                                                                                                                         |
|---------------------------------------------------------------|---------------|--------------------------------------------|----------------------------------------------------------|---------------------------------|-------------------------|-----------------|---------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|-------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| drill m                                                       | nodel         | and                                        | mou                                                      | nting: H                        | land .                  | Auger           |                                                         |                          | Easting:                                                                                          | 705079                                                                                                                                                                                                           | slope:                                          | -90°                                                      |                                                                                                       |                               |       | R.L                          | Surface:                                                                                                                                                   |
| hole d                                                        | diame         | eter:                                      |                                                          | 1                               | 100 m                   | m               |                                                         |                          | Northing                                                                                          | 6083260                                                                                                                                                                                                          | bearing                                         | g:                                                        |                                                                                                       |                               |       | datı                         | um:                                                                                                                                                        |
| drill                                                         | ling          | info                                       | rma                                                      | ition                           |                         |                 | mat                                                     | erial s                  | ubstance                                                                                          |                                                                                                                                                                                                                  |                                                 |                                                           |                                                                                                       |                               |       |                              |                                                                                                                                                            |
|                                                               | 5 penetration | support                                    | water                                                    | notes<br>samples,<br>tests, etc | RL                      | depth<br>metres | graphic log                                             | classification<br>symbol | colou                                                                                             | <b>materi</b><br>pe: plasticity or par<br>ur, secondary and r                                                                                                                                                    | ticle character<br>ninor compone                | ents.                                                     | moisture<br>condition                                                                                 | consistency/<br>density index | kF    | 300 pp penetro-<br>400 meter | structure and additional observations                                                                                                                      |
| HA                                                            |               |                                            |                                                          | RE19                            |                         | 0.5             |                                                         | MS                       | fine graine                                                                                       | <b>ND</b> ⊐ark brown, Iow                                                                                                                                                                                        |                                                 |                                                           | M                                                                                                     |                               |       |                              | Grass roots present                                                                                                                                        |
|                                                               |               |                                            |                                                          | RE19                            |                         | 0. <u>0</u>     |                                                         |                          | Rorehole F                                                                                        | RE19 terminated at                                                                                                                                                                                               | 0.6m                                            |                                                           |                                                                                                       |                               |       |                              |                                                                                                                                                            |
| metho<br>AS<br>AD<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit sh |               | ai<br>w<br>ca<br>ha<br>di<br>bl<br>V<br>Ti | uger of aller/trashbot able to and a atube ank bit C bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1<br>wa | ter<br>10/1/9   | no resista<br>ranging t<br>refusal<br>8 water<br>e show | level                    | notes, sam<br>U <sub>50</sub> L<br>U <sub>63</sub> L<br>D C<br>N S<br>NC S<br>V V<br>P F<br>Bs be | nples, tests Indisturbed sample 5 Indisturbed sample 6 disturbed sample estandard penetration 1 SPT - sample recover SPT with solid cone vane shear (kPa) oressuremeter oulk sample environmental sample refusal | 0mm diameter<br>3mm diameter<br>est (SPT)<br>ed | soil des<br>based o<br>system  moistur D di M m W w Wp pi | cation sy<br>ceription<br>in unified<br>re<br>re<br>ry<br>noist<br>leet<br>lastic limit<br>quid limit | classifica                    |       |                              | consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense |



1 of 1 **Borehole** Sheet

Canberra Investment Corporation Pty Ltd Client: 23.7.2009 Date started:

Borehole No.

Office Job No.:

RE20

ENVICANB00233AA

Principal: Date completed: 23.7.2009

Jumping Creek CL Project: Logged by:

| Boreh                                                                             | nole l        | Locati                                                                              | on: <i>Ope</i>                    | n Sp               | ace                         | or F                                                | Resid                    | ential A                                                                     | reas                                                                                                                                                                                                                             |                                     |                                                                | C                     | Checke                        | d by:                        |        | JH                                        |                                                                                                  |
|-----------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------|-----------------------------------|--------------------|-----------------------------|-----------------------------------------------------|--------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|------------------------------|--------|-------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill mo                                                                          | odel a        | and mo                                                                              | unting:                           | Hand A             | Auger                       |                                                     |                          | Easting:                                                                     | 705202                                                                                                                                                                                                                           | slope:                              | -90°                                                           |                       |                               | ı                            | R.L. S | urface:                                   |                                                                                                  |
| hole di                                                                           |               |                                                                                     |                                   | 100 mn             | n                           |                                                     |                          | Northing                                                                     | 6083256                                                                                                                                                                                                                          | bearing                             | :                                                              |                       |                               |                              | datum  | :                                         |                                                                                                  |
| _                                                                                 | _             | nform                                                                               | ation                             |                    |                             | mat                                                 |                          | ubstance                                                                     |                                                                                                                                                                                                                                  |                                     |                                                                |                       |                               | ,                            |        |                                           |                                                                                                  |
| 밀                                                                                 | s penetration | support<br>water                                                                    | notes<br>samples,<br>tests, etc   | RL i               | depth<br>metres             | graphic log                                         | classification<br>symbol | soil typ<br>colou                                                            | mater<br>be: plasticity or pa<br>ir, secondary and                                                                                                                                                                               | article characteri                  | stics,<br>ents.                                                | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 A penetro- | a      |                                           | tructure and<br>onal observations                                                                |
| HA                                                                                |               |                                                                                     | RE20                              |                    | 0.5                         |                                                     | GSM                      | Gravelly S                                                                   | andy SILTbrown grained sand                                                                                                                                                                                                      | , no plasticity cla                 | ay, firm,                                                      | D                     |                               | - 200                        |        | rass roots                                | present                                                                                          |
|                                                                                   |               |                                                                                     | RE20                              |                    | _                           | 0 0                                                 |                          | Borehole R                                                                   | RE20 terminated a                                                                                                                                                                                                                | at 0.6m                             |                                                                |                       |                               |                              |        |                                           |                                                                                                  |
|                                                                                   |               |                                                                                     |                                   |                    | _                           |                                                     |                          |                                                                              |                                                                                                                                                                                                                                  |                                     |                                                                |                       |                               |                              |        |                                           |                                                                                                  |
| metho<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit sho<br>e.g. |               | auger<br>roller/t<br>washb<br>cable<br>hand a<br>diatub<br>blank<br>V bit<br>TC bit | oore<br>tool<br>auger<br>e<br>bit | M<br>C open<br>1 2 | r<br>t <b>er</b><br>10/1/98 | no resista<br>anging trefusal<br>8 water<br>e showi | level                    | U <sub>63</sub> u<br>D d<br>N s<br>N* S<br>Nc S<br>V v<br>P p<br>Bs b<br>E e | nples, tests undisturbed sample i undisturbed sample i listurbed sample i listurbed sample i standard penetration SPT - sample recove sPT with solid cone rane shear (KPa) oressuremeter unit sample environmental sample efusal | 63mm diameter<br>test (SPT)<br>ered | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | y<br>oist             | classifica                    |                              |        | consisten VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE21

Principal: Date completed: **27.7.2009** 

| Boı                       | rehole          | Loca                                                                       | tion: Ope                       | n Sį                | oace            | or F                                                      | Resid                    | ential A                                           | Areas                                                                                                                                                                                                 |                                       |                                                                         | (                     | Checke                        | ed by:                    | JH                                        |                                                                                                  |
|---------------------------|-----------------|----------------------------------------------------------------------------|---------------------------------|---------------------|-----------------|-----------------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|---------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                     | model           | and m                                                                      | ounting:                        | Hand A              | Auger           |                                                           |                          | Easting:                                           | 704633                                                                                                                                                                                                | slope:                                | -90°                                                                    |                       |                               | R                         | .L. Surface:                              |                                                                                                  |
|                           | e diame         |                                                                            |                                 | 100 m               | m               |                                                           | !-!                      | Northing                                           |                                                                                                                                                                                                       | bearing                               | ):                                                                      |                       |                               | da                        | atum:                                     |                                                                                                  |
| ar                        |                 | intorr                                                                     | nation                          |                     |                 | mate                                                      |                          | ubstance                                           | •                                                                                                                                                                                                     |                                       |                                                                         |                       | . ~                           | ۲                         | 1                                         |                                                                                                  |
| method                    | . 5 penetration | support                                                                    | notes<br>samples,<br>tests, etc | RL                  | depth<br>metres | graphic log                                               | classification<br>symbol |                                                    | mate<br>/pe: plasticity or pa<br>ur, secondary and                                                                                                                                                    | article character<br>minor compone    |                                                                         | moisture<br>condition | consistency/<br>density index | 100 pocket 200 A penetro- |                                           | structure and<br>onal observations                                                               |
| VΗ                        |                 |                                                                            | RE21                            |                     | -               |                                                           | SM                       | Sandy SI<br>coarse gra                             | LTbrown, low plas<br>ained sand, traces                                                                                                                                                               | sticity clay, soft,<br>of fine gravel | fine to                                                                 | D                     |                               |                           |                                           |                                                                                                  |
|                           |                 |                                                                            |                                 |                     | -               |                                                           |                          | Borehole                                           | RE21 terminated a                                                                                                                                                                                     | at 0.3m                               |                                                                         |                       |                               |                           |                                           |                                                                                                  |
| AS AD RR W CT HA DT B V T | shown b         | auge<br>roller<br>wash<br>cable<br>hand<br>diatu<br>blank<br>V bit<br>TC b | auger<br>be<br>bit              | M<br>C<br>pee<br>1: | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratior SPT - sample recow SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based o<br>system<br>moistur<br>D dr<br>M m<br>W w<br>Wp pl |                       | classifica                    |                           | consister VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



1 of 1 **Borehole** Sheet

ENVICANB00233AA Canberra Investment Corporation Pty Ltd Client: 23.7.2009 Date started:

Borehole No.

Office Job No.:

RE22

Principal: Date completed: 23.7.2009

Jumping Creek CL Project: Logged by:

| Bor                                | ehole         | e Lo                                     | catio                                                     | n: <b>Ope</b>                   | n Sp          | oace                                      | or F                                                      | Resid                    | ential A                                      | reas                                                                                                                                 |                                           |                                | (                                  | Checke                        | d by:          |         | JH                                         |                                                                              |
|------------------------------------|---------------|------------------------------------------|-----------------------------------------------------------|---------------------------------|---------------|-------------------------------------------|-----------------------------------------------------------|--------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|------------------------------------|-------------------------------|----------------|---------|--------------------------------------------|------------------------------------------------------------------------------|
| drill                              | mode          | l and                                    | mou                                                       | nting:                          | Hand /        | Auger                                     |                                                           |                          | Easting:                                      | 705313                                                                                                                               | slope:                                    | -90°                           |                                    |                               |                | R.L. Su | rface:                                     |                                                                              |
|                                    | diam          |                                          |                                                           |                                 | 100 m         | m                                         |                                                           |                          | Northing                                      | 6083207                                                                                                                              | bearing                                   | :                              |                                    |                               |                | datum:  |                                            |                                                                              |
| arı                                | _             | Inte                                     | orma                                                      | ation                           |               |                                           | mat                                                       |                          | ubstance                                      |                                                                                                                                      |                                           |                                |                                    | ,                             | <u> </u>       |         |                                            |                                                                              |
| method                             | 5 penetration | support                                  | water                                                     | notes<br>samples,<br>tests, etc | RL            | depth<br>metres                           | graphic log                                               | classification<br>symbol | color                                         | mate<br>pe: plasticity or pa<br>ur, secondary and                                                                                    | article characteri<br>I minor compone     | nts.                           | moisture<br>condition              | consistency/<br>density index | 200 A penetro- | a       |                                            | tructure and<br>onal observations                                            |
| HAH                                | 123           | 3 8                                      | w                                                         | RE22                            | RL            | metres                                    |                                                           | GSM                      | Gravelly S<br>fine to coar<br>gravel          | ar, secondary and Sandy SILTbrown rse grained sand,                                                                                  | n, no plasticity cla<br>traces of fine to | ay, firm,                      | M M                                | 8                             | 100            | 4000    |                                            |                                                                              |
| metil<br>AS<br>AD<br>RR            | hod           | a<br>ro                                  | uger o                                                    |                                 | M<br>C<br>pei | pport<br>mud<br>casing<br>netration       |                                                           | nil                      | U <sub>50</sub> ւ<br>U <sub>63</sub> ւ<br>D c | nples, tests<br>undisturbed sample<br>undisturbed sample<br>disturbed sample                                                         | 63mm diameter                             | soil des                       | cation sy<br>cription<br>n unified |                               |                |         | VS<br>S<br>F                               | cy/density index very soft soft firm                                         |
| W<br>CT<br>HA<br>DT<br>B<br>V<br>T | shown         | w<br>c<br>h<br>d<br>b<br>V<br>T<br>by su | ashboable to<br>and a<br>iatube<br>lank b<br>bit<br>C bit | ore<br>ool<br>uger              | wa            | 2 3 4<br>ter<br>10/1/9<br>on dat<br>water | no resista<br>ranging to<br>refusal<br>8 water<br>e showi | level                    | N S N* S NC S V NC P BS E                     | standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) oressuremeter outlik sample environmental samp refusal | ered                                      | moistur<br>D dr<br>M m<br>W we | y<br>oist                          | i                             |                |         | St<br>VSt<br>H<br>Fb<br>VL<br>L<br>MD<br>D | stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE23

Principal: Date completed: **27.7.2009** 

| Bor                                                  | ehole         | e Lo                               | catio                                                                       | n: Ope                          | n Sį         | pace            | or F                                                     | Resid                 | ential A                                                              | reas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                                                                         |                       | Checke                        | ed by:                       | JH                                        |                                                                                                                        |
|------------------------------------------------------|---------------|------------------------------------|-----------------------------------------------------------------------------|---------------------------------|--------------|-----------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| drill                                                | mode          | el and                             | d mou                                                                       | ınting: l                       | Hand .       | Auger           |                                                          |                       | Easting:                                                              | 704559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | slope:                                        | -90°                                                                    |                       |                               | F                            | .L. Surface:                              |                                                                                                                        |
|                                                      | diam          |                                    |                                                                             | ation                           | 100 m        | m               | mot                                                      | orial a               | Northing ubstance                                                     | 6083134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | bearing                                       | ):<br>                                                                  |                       |                               | d                            | atum:                                     |                                                                                                                        |
| method                                               | 1 penetration | upport                             |                                                                             | notes<br>samples,<br>tests, etc | RL           | depth<br>metres | aphic log                                                | classification symbol | soil tvr                                                              | mate<br>be: plasticity or p<br>r, secondary and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | erial<br>article character<br>d minor compone | stics,                                                                  | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- |                                           | structure and<br>ditional observations                                                                                 |
| HA                                                   | 126           | 3                                  |                                                                             | RE23                            |              | _               |                                                          | GSC                   | Gravelly S                                                            | andy CLAYbrov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vn/red, low plasti<br>sand, fine to me        | city clay,                                                              | D                     |                               | 1 2                          |                                           |                                                                                                                        |
|                                                      |               |                                    |                                                                             |                                 |              |                 |                                                          |                       | Borehole R                                                            | EE23 terminated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at 0.3m                                       |                                                                         |                       |                               |                              |                                           |                                                                                                                        |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T | shown         | r<br>v<br>c<br>t<br>t<br>t<br>by s | oller/tr<br>vashbo<br>able to<br>and a<br>liatube<br>lank b<br>bit<br>C bit | ore<br>ool<br>uger              | M<br>C<br>pe | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                 | U <sub>63</sub> u<br>D d<br>N s<br>N* S<br>Nc S<br>V v<br>P p<br>Bs b | iples, tests Indisturbed sample Indisturbed sample Isturbed sample Isturbed sample Isturbed sample Isturbed sample recov IPT with solid cone IPT with solid cone IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT sample IPT | 63mm diameter<br>n test (SPT)<br>ered         | soil des<br>based o<br>system<br>moistur<br>D dr<br>M m<br>W w<br>Wp pl |                       | classifica                    |                              | consist VS S S F St VSt H Fb VL L MD D VD | stency/density index  very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

**RE24** 

Principal: Date completed: **24.7.2009** 

| Во                        | rehole        | e Lo                                                        | catio                                                                                | n: Ope                          | n Sį               | oace            | or F                                                   | Resid                    | ential A                                           | Areas                                                                                                                                                                                           |                                                |                                                               | C                     | Checke                        | ed by      | <b>/</b> :      | JH                                          |                                                                                                                   |
|---------------------------|---------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|--------------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|------------|-----------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                     | mode          | and                                                         | mou                                                                                  | nting: I                        | land A             | Auger           |                                                        |                          | Easting:                                           | 704829                                                                                                                                                                                          | slope:                                         | -90°                                                          |                       |                               |            | R.L.            | Surface:                                    |                                                                                                                   |
|                           | e diam        |                                                             | wa-                                                                                  |                                 | 100 m              | m               |                                                        | au!-!                    | Northing                                           |                                                                                                                                                                                                 | bearing                                        | j:                                                            |                       |                               |            | datur           | m:                                          |                                                                                                                   |
| ar                        | illing        | INTO                                                        | rma                                                                                  |                                 |                    |                 | mat                                                    |                          | ubstance                                           | •                                                                                                                                                                                               |                                                |                                                               |                       | . ~                           |            | ,               |                                             |                                                                                                                   |
| method                    | 5 penetration | support                                                     | water                                                                                | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                            | classification<br>symbol |                                                    | /pe: plasticity or<br>ur, secondary ar                                                                                                                                                          | particle character<br>d minor compone          |                                                               | moisture<br>condition | consistency/<br>density index | 100 pocket | %<br>000<br>004 | additio                                     | ructure and<br>nal observations                                                                                   |
| НА                        |               |                                                             |                                                                                      | RE24                            |                    | 0.5             |                                                        | SM                       | grained sa                                         | and                                                                                                                                                                                             | asticity clay, soft,                           |                                                               | D                     |                               |            |                 | Grass roots                                 | present                                                                                                           |
|                           |               |                                                             |                                                                                      | RE24                            |                    |                 |                                                        |                          | Borehole I                                         | RE24 terminated                                                                                                                                                                                 | l at 0.6m                                      |                                                               |                       |                               |            |                 |                                             |                                                                                                                   |
| AS AD RR W CT HA DT B V T | shown         | au<br>ro<br>wa<br>ca<br>ha<br>di<br>bla<br>V<br>TO<br>by su | liger of<br>ller/tri<br>ashbo<br>able to<br>and au<br>atube<br>ank b<br>bit<br>C bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1: | ter<br>10/1/9   | no resist<br>ranging t<br>refusal<br>8 water<br>e show | elevel                   | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample disturbed sample disturbed sample standard penetratic SPT - sample reco SPT with solid con vane shear (kPa) pressuremeter bulk sample environmental san refusal | e 63mm diameter<br>on test (SPT)<br>vered<br>e | soil des<br>based o<br>system  moistur  D di  M m  W w  Wp pl | y<br>oist             | classifica                    |            |                 | consistence VS S F St VSt H Fb VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE25

Principal: Date completed: **24.7.2009** 

| Bor                                         | ehole         | Loc                                                  | atior                                                                          | n: Ope                          | n Sp                       | oace            | or F                                                   | Resid                    | ential A                                           | Areas                                                                                                                                                                                               |                                           |                                                            | C                     | Checke                        | ed by:                                     | JH                                        |                                                                                                                   |
|---------------------------------------------|---------------|------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------|--------------------------------------------------------|--------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                       | model         | and i                                                | nour                                                                           | nting: H                        | land /                     | Auger           |                                                        |                          | Easting:                                           | 705050                                                                                                                                                                                              | slope:                                    | -90°                                                       |                       |                               | R.                                         | L. Surface:                               |                                                                                                                   |
|                                             | diame         |                                                      |                                                                                |                                 | 00 m                       | m               |                                                        | aule!                    | Northing                                           |                                                                                                                                                                                                     | bearing                                   | <b>g</b> :                                                 |                       |                               | da                                         | atum:                                     |                                                                                                                   |
| ar                                          | illing i      | пто                                                  | ına                                                                            |                                 |                            |                 | mat                                                    |                          | ubstance                                           | #                                                                                                                                                                                                   |                                           |                                                            |                       | . ×                           | 6                                          |                                           |                                                                                                                   |
| method                                      | . benetration | support                                              |                                                                                | notes<br>samples,<br>tests, etc | RL                         | depth<br>metres | graphic log                                            | classification<br>symbol |                                                    | mate<br>ype: plasticity or p<br>our, secondary and                                                                                                                                                  | article character<br>d minor compone      |                                                            | moisture<br>condition | consistency/<br>density index | 100 pocket 200 pocket 300 pocket 400 meter | P P                                       | tructure and<br>onal observations                                                                                 |
| НА                                          |               |                                                      |                                                                                | RE25                            |                            | 0.5             |                                                        | SM                       | Sandy SI coarse gra                                | LTbrown, low pla                                                                                                                                                                                    | sticity clay, soft,                       | fine to                                                    | M                     |                               |                                            | Grass roots                               | present                                                                                                           |
|                                             |               |                                                      |                                                                                | RE25                            |                            |                 |                                                        |                          | coarse gr                                          | RE25 terminated                                                                                                                                                                                     |                                           |                                                            |                       |                               |                                            |                                           | _                                                                                                                 |
| AS D RS SS SS SS SS SS SS SS SS SS SS SS SS | shown b       | auq<br>roll<br>wa<br>cat<br>hai<br>dia<br>bla<br>V t | ger dr<br>er/tric<br>shbor<br>ole too<br>nd aug<br>tube<br>nk bit<br>it<br>bit | re<br>ol<br>ger                 | M<br>C<br>per<br>1.2<br>wa | ter<br>10/1/9   | no resista<br>anging t<br>efusal<br>8 water<br>e shown | elevel                   | U <sub>50</sub><br>U <sub>63</sub><br>D<br>N<br>N* | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter<br>in test (SPT)<br>vered | soil des<br>based or<br>system  moistur D dr M m W w Wp pl | y<br>oist             | classifica                    |                                            | consisten VS S F St VSt H Fb VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 23.7.2009

Borehole No.

RE26

Principal: Date completed: 23.7.2009

| Bor                       | ehole         | Loc                                            | atio                                                                                  | n: <b>Ope</b>                   | n Sp                       | oace            | or F                                                      | Resid                    | ential A                                           | reas                                                                                                                                                       |                                                             |                                                           | C                     | Checke                        | ed by      | <b>/</b> :          | JH                                         |                                                                                                                   |
|---------------------------|---------------|------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------|-----------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|------------|---------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                     | model         | and                                            | mou                                                                                   | nting: H                        | land /                     | Auger           |                                                           |                          | Easting:                                           | 705158                                                                                                                                                     | slope:                                                      | -90°                                                      |                       |                               |            | R.L.                | Surface:                                   |                                                                                                                   |
|                           | diame         |                                                | ww                                                                                    |                                 | 100 m                      | m               |                                                           | aule!                    | Northing                                           | 6083108                                                                                                                                                    | bearin                                                      | g:                                                        |                       |                               |            | datuı               | m:                                         |                                                                                                                   |
| ar                        | illing        | mro                                            | rma                                                                                   |                                 |                            |                 | mat                                                       |                          | ubstance                                           |                                                                                                                                                            |                                                             |                                                           |                       | . ×                           |            | 5                   |                                            |                                                                                                                   |
| method                    | 2 penetration | support                                        | water                                                                                 | notes<br>samples,<br>tests, etc | RL                         | depth<br>metres | graphic log                                               | classification<br>symbol |                                                    | rpe: plasticity or<br>ur, secondary ar                                                                                                                     | particle characte                                           |                                                           | moisture<br>condition | consistency/<br>density index | 100 pocket | %<br>00<br>00<br>04 | additio                                    | tructure and<br>anal observations                                                                                 |
| НА                        |               |                                                |                                                                                       | RE26                            |                            | 0.5             |                                                           | SM                       | to medium                                          | grained sand                                                                                                                                               | ow plasticity clay<br>/brown, low plas<br>id sand, fine gra | ticity clay,                                              | M                     |                               |            |                     | Grass roots                                | present                                                                                                           |
|                           |               |                                                |                                                                                       | RE26                            |                            | 0. <u>9</u>     |                                                           |                          | Borehole F                                         | RE26 terminated                                                                                                                                            | l at 0.6m                                                   |                                                           |                       |                               |            |                     |                                            |                                                                                                                   |
| AS AD RR W CT HA DT B V T | hod           | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d<br>ler/tri<br>ashbo<br>ble to<br>and au<br>atube<br>ank bi<br>bit<br>bit<br>bit | re<br>ool<br>uger               | M<br>C<br>per<br>1.2<br>wa | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P BS E | mples, tests undisturbed sample disturbed sample standard penetrati SPT - sample reco vane shear (kPa) pressuremeter bulk sample environmental san refusal | e 63mm diameter<br>on test (SPT)<br>vered<br>e              | soil des<br>based o<br>system  moistur D di M m W w Wp pl |                       | classifica                    |            |                     | consistent VS S F St VSt H Fb VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

**RE27** 

Principal: Date completed: **27.7.2009** 

| Bor                                                  | rehole         | Loc                                            | atio                                                 | n: Ope                          | n Sį                    | oace            | or F                                                     | Resid                    | ential A                                           | Areas                                                                                                                                                                                                  |                                       |                                                                         | (                     | Checke                        | ed by:                       | J                                                                           | IH                                                                |                                                  |
|------------------------------------------------------|----------------|------------------------------------------------|------------------------------------------------------|---------------------------------|-------------------------|-----------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------|
| drill                                                | model          | and                                            | mou                                                  | nting: I                        | land.                   | Auger           |                                                          |                          | Easting:                                           | 704653                                                                                                                                                                                                 | slope:                                | -90°                                                                    |                       |                               | F                            | R.L. Surfa                                                                  | ce:                                                               |                                                  |
|                                                      | diame          |                                                |                                                      |                                 | 100 m                   | m               | ·                                                        | ! - !                    | Northing                                           |                                                                                                                                                                                                        | bearing                               | :                                                                       |                       |                               | c                            | latum:                                                                      |                                                                   |                                                  |
| ar                                                   | illing         | 11110                                          | rma                                                  |                                 |                         |                 | mate                                                     |                          | ubstance                                           | •                                                                                                                                                                                                      |                                       |                                                                         |                       |                               |                              | _                                                                           |                                                                   |                                                  |
| method                                               | 12 penetration | support                                        | water                                                | notes<br>samples,<br>tests, etc | RL                      | depth<br>metres | graphic log                                              | classification<br>symbol |                                                    | mater<br>/pe: plasticity or pa<br>ur, secondary and                                                                                                                                                    | nrticle characteri<br>minor compone   |                                                                         | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- | ı                                                                           | structur<br>additional ob                                         |                                                  |
| HA HA                                                | 123            |                                                |                                                      | RE27                            |                         |                 |                                                          | GS                       | dravelly to coarse                                 | RE27 terminated a                                                                                                                                                                                      | asticity clay, firr<br>to medium grav | n, fine                                                                 | M                     |                               | 200                          | 4                                                                           |                                                                   |                                                  |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T | shown t        | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d ler/tri shbo ble to nd au atube ank bi bit bit | ool<br>uger                     | M<br>C<br>pe<br>1<br>wa | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>test (SPT)<br>ered   | soil des<br>based o<br>system<br>moistur<br>D dr<br>M m<br>W w<br>Wp pl |                       | classifica                    |                              | COI<br>VS<br>S<br>F<br>St<br>VS<br>H<br>Fb<br>VL<br>L<br>L<br>MD<br>D<br>VD | sof<br>firm<br>stif<br>t ver<br>hai<br>fria<br>ver<br>loo<br>o me | y soft t n f y stiff d ble y loose se dium dense |



**Borehole** Sheet 1 of 1

Borehole No.

Office Job No.:

RE28

ENVICANB00233AA

Canberra Investment Corporation Pty Ltd 23.7.2009 Date started:

Principal: Date completed: 23.7.2009

Jumping Creek CL Project: Logged by:

| Во                       | rehole          | Loc                                              | atio                                                      | n: <b>Ope</b>                   | n Sį               | oace            | or F                                                      | Resid                    | ential A                                           | \reas                                                                                                                                                                                           |                                                                 |                                                           | C                     | Checke                        | ed by:                       | JH                                                                                                                                           |                  |
|--------------------------|-----------------|--------------------------------------------------|-----------------------------------------------------------|---------------------------------|--------------------|-----------------|-----------------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| drill                    | model           | and                                              | mou                                                       | nting: I                        | land               | Auger           |                                                           |                          | Easting:                                           | 705279                                                                                                                                                                                          | slope:                                                          | -90°                                                      |                       |                               | F                            | R.L. Surface:                                                                                                                                |                  |
|                          | e diame         |                                                  | ww- :-                                                    |                                 | 100 m              | m               |                                                           |                          | Northing                                           |                                                                                                                                                                                                 | bearing                                                         | g:                                                        |                       |                               | d                            | atum:                                                                                                                                        |                  |
| ar                       | illing<br>E     | IIITO                                            | rina                                                      |                                 |                    |                 | mat                                                       |                          | ubstance                                           | •                                                                                                                                                                                               |                                                                 |                                                           |                       | _ ×                           | _                            |                                                                                                                                              |                  |
| method                   | . 5 penetration | support                                          | water                                                     | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                               | classification<br>symbol |                                                    | /pe: plasticity or ր<br>ur, secondary an                                                                                                                                                        | erial<br>particle character<br>d minor compone                  |                                                           | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- | 400                                                                                                                                          |                  |
| НА                       |                 |                                                  |                                                           | RE28                            |                    | 0.5             |                                                           | GSM                      | fine to me                                         | dium grained sar                                                                                                                                                                                | n, no plasticity cl<br>nd, fine to mediur<br>nd, fine to mediur | n gravel                                                  | M                     |                               |                              | Grass roots present                                                                                                                          |                  |
|                          |                 |                                                  |                                                           | RE28                            |                    |                 | 0 0                                                       |                          | Borehole                                           | RE28 terminated                                                                                                                                                                                 | at 0.6m                                                         |                                                           |                       |                               |                              |                                                                                                                                              |                  |
| AS AD RR W CT HA T B V T | shown b         | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V I | ger d ler/trie shbo ble to nd au atube ank bi bit bit fix | re<br>ol<br>ıger                | M<br>C<br>pe<br>1: | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample disturbed sample disturbed sample standard penetratic SPT - sample reco SPT with solid con vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter<br>on test (SPT)<br>vered<br>e                  | soil des<br>based o<br>system  moistur D di M m W w Wp pl |                       | classifica                    |                              | consistency/density in VS very sof S soft F firm St stiff VSt very stiff H hard Fb friable VL very loo L loose MD medium D dense VD very der | f<br>se<br>dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE29

Principal: Date completed: **24.7.2009** 

| Bor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rehole          | Loca                                                      | ation: O                    | en S   | расе             | or F                                                     | Resid                    | ential A                                           | Areas                                                                                                                                                                                                        |                                     |                                                               | (                     | Checke                        | ed by:                                        | JH                                        |                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|-----------------------------|--------|------------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| drill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | model           | and n                                                     | nounting:                   | Hand   | Auger            |                                                          |                          | Easting:                                           | 705130                                                                                                                                                                                                       | slope:                              | -90°                                                          |                       |                               | R.                                            | L. Surface:                               |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | diame           |                                                           | 4!                          | 100 n  | nm               |                                                          |                          | Northing                                           |                                                                                                                                                                                                              | bearing                             | :                                                             |                       |                               | da                                            | atum:                                     |                                                                                                                    |
| ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | Intor                                                     | mation                      |        |                  | mat                                                      |                          | ubstance                                           | 9                                                                                                                                                                                                            |                                     |                                                               |                       |                               | 4                                             | 1                                         |                                                                                                                    |
| method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 penetration   | support                                                   | notes<br>sample<br>tests, e | s,     | depth<br>metres  | graphic log                                              | classification<br>symbol |                                                    | mater<br>ype: plasticity or pa<br>our, secondary and                                                                                                                                                         | rticle characteris<br>minor compone |                                                               | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 dy penetro-<br>300 do meter |                                           | structure and<br>onal observations                                                                                 |
| VH VH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                           | RE29                        |        | -<br>0. <u>5</u> |                                                          | SM                       | grained sa                                         | L <b>T</b> brown, low plast                                                                                                                                                                                  |                                     |                                                               | D                     |                               |                                               |                                           |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                           | RE29                        |        |                  |                                                          |                          | Borehole                                           | RE29 terminated a                                                                                                                                                                                            | t 0.6m                              |                                                               |                       |                               |                                               |                                           |                                                                                                                    |
| GEO 5.3 Issue 3 Rev.2 A B B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C T A B C | thod<br>shown t | aug<br>rolle<br>was<br>cab<br>han<br>diat<br>blar<br>V bi | nk bit<br>t<br>bit<br>x     | M C pr | ater<br>10/1/9   | no resista<br>ranging t<br>refusal<br>8 water<br>se show | level                    | U <sub>50</sub><br>U <sub>63</sub><br>D<br>N<br>N* | mples, tests undisturbed sample 5 undisturbed sample 6 disturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample refusal | 3mm diameter<br>test (SPT)<br>red   | soil des<br>based o<br>system  moistur  D di  M m  W w  Wp pl | y<br>oist             | classifica                    |                                               | consister VS S F St VSt H Fb VL L MD D VD | ncy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **RE30** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Principal: Date completed: **24.7.2009** 

| Borehole Location: Open Space                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e or Residential Areas                                                                                                        | Checked by: <b>JH</b>                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| drill model and mounting: Hand Auger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Easting: 705003 slope:                                                                                                        | -90° R.L. Surface:                                                                                                                                                                                                             |
| hole diameter: 100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Northing 6082898 bearing                                                                                                      | g: datum:                                                                                                                                                                                                                      |
| drilling information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | material substance                                                                                                            |                                                                                                                                                                                                                                |
| notes samples, tests, etc deptr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s ເປັນ ເປັນ colour, secondary and minor compone                                                                               | ents. E 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                  |
| 至   123 w     RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   RE30   R | GS Gravelly SANDred/brown, no plasticity clay fine to coarse grained sand, fine to medium  Borehole RE30 terminated at 0.2m   | y, firm, M IIII                                                                                                                                                                                                                |
| DT diatube water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on D disturbed sample  no resistance ranging to N SPT - sample recovered rerefusal Nc SPT with solid cone  V vane shear (kPa) | classification symbols and soil description based on unified classification system  moisture D dry M moist W wet  consistency/density index VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose |
| V V bit T TC bit *bit shown by suffix  ✓ on da  watei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98 water level P pressuremeter tet shown Bs bulk sample E environmental sample r outflow R refusal                            | Wp plastic limit L loose WL liquid limit MD medium dense D dense VD very dense                                                                                                                                                 |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE31

Principal: Date completed: **24.7.2009** 

| Bor                                                                  | ehole         | Loca                                                                       | tion: Ope                       | n S          | расе            | or F                                                     | Resid                    | ential A                                           | Areas                                                                                                                                                                                                |                                       |                                                      | (                     | Checke                        | ed by:                       | JH                                      |                                                                                                       |
|----------------------------------------------------------------------|---------------|----------------------------------------------------------------------------|---------------------------------|--------------|-----------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------|-----------------------|-------------------------------|------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|
| drill                                                                | model         | and m                                                                      | ounting:                        | Hand         | Auger           |                                                          |                          | Easting:                                           | 704901                                                                                                                                                                                               | slope:                                | -90°                                                 |                       |                               | F                            | R.L. Surface:                           |                                                                                                       |
|                                                                      | diame         |                                                                            |                                 | 100 m        | m               |                                                          |                          | Northing                                           |                                                                                                                                                                                                      | bearing                               | :                                                    |                       |                               | d                            | atum:                                   |                                                                                                       |
| Hari                                                                 |               | morr                                                                       | nation                          |              |                 | mate                                                     |                          | ubstance                                           | •                                                                                                                                                                                                    |                                       |                                                      |                       | _ ×                           | 6                            |                                         |                                                                                                       |
| method                                                               | 1 benetration | support                                                                    | notes<br>samples,<br>tests, etc | RL           | depth<br>metres | graphic log                                              | classification<br>symbol |                                                    | mate<br>/pe: plasticity or p<br>ur, secondary and                                                                                                                                                    | article characteri<br>I minor compone |                                                      | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- |                                         | structure and<br>Itional observations                                                                 |
| HA                                                                   |               |                                                                            | RE31                            |              |                 |                                                          | GS                       | Gravelly to medium                                 | <b>SAND</b> brown, no p<br>n grained sand, fir                                                                                                                                                       | olasticity clay, firr                 | n, fine                                              | М                     |                               |                              |                                         | _                                                                                                     |
|                                                                      |               |                                                                            |                                 |              | _               |                                                          |                          |                                                    |                                                                                                                                                                                                      |                                       |                                                      |                       |                               |                              |                                         |                                                                                                       |
|                                                                      |               |                                                                            |                                 |              |                 | 0 0                                                      |                          | Borehole                                           | RE31 terminated                                                                                                                                                                                      | at 0.3m                               |                                                      |                       |                               |                              |                                         | -                                                                                                     |
|                                                                      |               |                                                                            |                                 |              | 0.5             |                                                          |                          |                                                    |                                                                                                                                                                                                      |                                       |                                                      |                       |                               |                              |                                         | _                                                                                                     |
| Met<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit: | shown t       | auge<br>roller<br>wash<br>cable<br>hand<br>diatu<br>blank<br>V bit<br>TC b | e tool<br>auger<br>be<br>s bit  | M C pee 1 wa | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetration SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samprefusal | 63mm diameter<br>n test (SPT)<br>ered | soil des based of system  moistur D dr M m W w Wp pl | n unified             | classifica                    |                              | consist VS S F St VSt H Fb VL L MD D VD | very soft soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE32

Principal: Date completed: **24.7.2009** 

| Bor                                             | rehole                      | Loca                                                      | ation: Ope                      | n Sp                                                        | oace            | or R                                                    | Resid                    | ential A                                           | \reas                                                                                                                                                                                                 |                                       |                                                                         | (                     | Checke                        | ed by:                       | JH                                      |                                                                                                                     |
|-------------------------------------------------|-----------------------------|-----------------------------------------------------------|---------------------------------|-------------------------------------------------------------|-----------------|---------------------------------------------------------|--------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| drill                                           | model                       | and n                                                     | nounting:                       | Hand A                                                      | Auger           |                                                         |                          | Easting:                                           | 704835                                                                                                                                                                                                | slope:                                | -90°                                                                    |                       |                               | R                            | t.L. Surface:                           |                                                                                                                     |
|                                                 | e diame                     |                                                           |                                 | 100 mi                                                      | m               |                                                         |                          | Northing                                           |                                                                                                                                                                                                       | bearing                               | :                                                                       |                       |                               | d                            | atum:                                   |                                                                                                                     |
| ar                                              |                             | nior                                                      | mation                          |                                                             |                 | mate                                                    |                          | ubstance                                           | •                                                                                                                                                                                                     |                                       |                                                                         |                       | . ×                           | 6                            |                                         |                                                                                                                     |
| method                                          | . T<br>. Denetration<br>. S | support                                                   | notes<br>samples,<br>tests, etc | RL                                                          | depth<br>metres | graphic log                                             | classification<br>symbol |                                                    | mate<br>/pe: plasticity or pa<br>ur, secondary and                                                                                                                                                    | article characteri<br>minor compone   |                                                                         | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- |                                         | structure and<br>tional observations                                                                                |
| НА                                              |                             |                                                           | RE32                            |                                                             | _               |                                                         | GS                       | Gravelly since to coa                              | SANDbrown/red, arse grained sand,                                                                                                                                                                     | no plasticity clay<br>fine gravel     |                                                                         | M                     |                               |                              |                                         |                                                                                                                     |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V | shown b                     | aug<br>rolle<br>was<br>cab<br>han<br>diat<br>blar<br>V bi | ık bit<br>t<br>bit<br>x         | M<br>C<br>per<br>1 2<br>*********************************** | ter<br>10/1/98  | no resista<br>anging to<br>efusal<br>8 water<br>e shown | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratior SPT - sample recow SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based o<br>system<br>moistur<br>D di<br>M m<br>W w<br>Wp pl | y<br>oist             | classifica                    |                              | consist VS S F St VSt H Fb VL L MD D VD | ency/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE33

Principal: Date completed: **24.7.2009** 

| Boı                                             | rehole          | Loc                                            | atio                                                                                  | n: Ope                          | n Sį                    | oace            | or F                                                     | Resid                    | ential A                                           | Areas                                                                                                                                                                                                  |                                       |                                                                         | (                     | Checke                        | ed by:                   |          | JH                                            |                                                                                                                   |
|-------------------------------------------------|-----------------|------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------|----------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------|-----------------------|-------------------------------|--------------------------|----------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                           | model           | and                                            | mou                                                                                   | nting: I                        | land.                   | Auger           |                                                          |                          | Easting:                                           | 704994                                                                                                                                                                                                 | slope:                                | -90°                                                                    |                       |                               | ı                        | R.L. Sur | rface:                                        |                                                                                                                   |
|                                                 | diame           |                                                | ww                                                                                    |                                 | 100 m                   | m               |                                                          | !-!                      | Northing                                           |                                                                                                                                                                                                        | bearing                               | :                                                                       |                       |                               |                          | datum:   |                                               |                                                                                                                   |
|                                                 | illing          | INTO                                           | rma                                                                                   |                                 |                         |                 | mate                                                     |                          | ubstance                                           | )                                                                                                                                                                                                      |                                       |                                                                         |                       |                               |                          |          |                                               |                                                                                                                   |
| method                                          | 1 penetration   | support                                        | water                                                                                 | notes<br>samples,<br>tests, etc | RL                      | depth<br>metres | graphic log                                              | classification<br>symbol |                                                    | mate<br>/pe: plasticity or pa<br>ur, secondary and                                                                                                                                                     | article characteri<br>minor compone   |                                                                         | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 pocket | a        |                                               | ructure and<br>nal observations                                                                                   |
| HA                                              |                 |                                                |                                                                                       | RE33                            |                         |                 |                                                          | GS                       | dravelly to coarse                                 | SANDbrown, no p<br>grained sand, fine                                                                                                                                                                  | lasticity clay, firr                  | n, fine                                                                 | M                     |                               | 11                       |          |                                               |                                                                                                                   |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V | thod<br>shown t | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d<br>ler/tri<br>ashbo<br>ble to<br>and au<br>atube<br>ank bi<br>bit<br>bit<br>bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1<br>wa | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratior SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based o<br>system<br>moistur<br>D dr<br>M m<br>W w<br>Wp pl |                       | classifica                    |                          |          | consistence VS S F St VSt H Fb VVL L MD D VVD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



**Borehole** 

Borehole No. **RE34** 

Sheet 1 of 1

Office Job No.: **ENVICANB00233AA** 

Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Principal: Date completed: **27.7.2009** 

| Bor                                                  | ehole         | Loc                                     | atio                                                                                  | n: Ope                          | n Sį               | oace            | or F                                                      | Resid                    | ential A                                           | Areas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                            | (                     | Checke                        | ed by:                       | Jŀ                                                                 | 1                                                                                                |
|------------------------------------------------------|---------------|-----------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|--------------------|-----------------|-----------------------------------------------------------|--------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                                                | model         | and                                     | mou                                                                                   | nting: I                        | land i             | Auger           |                                                           |                          | Easting:                                           | 704479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | slope:                            | -90°                                                       |                       |                               | F                            | R.L. Surface                                                       | <b>2</b> :                                                                                       |
|                                                      | diame         |                                         |                                                                                       |                                 | 100 m              | m               | <u> </u>                                                  |                          | Northing                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bearing                           | :                                                          |                       |                               | d                            | atum:                                                              |                                                                                                  |
| L dri                                                | illing        | Inic                                    | rma                                                                                   |                                 |                    |                 | mate                                                      |                          | ubstance                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                            |                       | . ×                           | 6                            |                                                                    |                                                                                                  |
| method                                               | 1 Denetration | support                                 | water                                                                                 | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                               | classification<br>symbol |                                                    | materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions, materions,  | ticle characteri<br>ninor compone |                                                            | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro- |                                                                    | structure and<br>Iditional observations                                                          |
| VH                                                   |               |                                         |                                                                                       | RE34                            |                    | 0.5             |                                                           | GSC                      | firm, fine t                                       | Sandy CLAYred/brook occurrence of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same | nd, fine to me                    | dium                                                       | D                     |                               |                              |                                                                    | -                                                                                                |
|                                                      |               |                                         |                                                                                       | RE34                            |                    |                 |                                                           |                          | Borehole                                           | RE34 terminated at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6m                              |                                                            |                       |                               |                              |                                                                    |                                                                                                  |
| AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T | shown i       | ro<br>wa<br>ca<br>ha<br>dia<br>bla<br>V | ger d<br>ler/tri<br>ashbo<br>ble to<br>and au<br>atube<br>ank bi<br>bit<br>bit<br>bit | ool<br>uger                     | M<br>C<br>pe<br>1: | ter<br>10/1/9   | no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> U <sub>63</sub> D N N* Nc V P Bs E | mples, tests undisturbed sample 50 disturbed sample 60 disturbed sample standard penetration t SPT - sample recover SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample refusal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3mm diameter<br>est (SPT)<br>ed   | soil des<br>based of<br>system  moistur D dr M m W w Wp pl | e<br>y<br>oist        | classifica                    |                              | cons<br>VS<br>S<br>F<br>St<br>VSt<br>H<br>Fb<br>VL<br>L<br>MD<br>D | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE35

Principal: Date completed: **24.7.2009** 

| Borehole Location: (                                                                                                                                                        | Open Space                            | or Reside                                                      | ntial Are                                                                              | eas                                                                                                                                                                                                     |                                   |          | С                     | checke                        | d by:                                       | JH                                       |                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|-----------------------|-------------------------------|---------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|
| drill model and mounting:                                                                                                                                                   | Hand Auger                            |                                                                | Easting:                                                                               | 704727                                                                                                                                                                                                  | slope:                            | -90°     |                       |                               | R.I                                         | Surface:                                 |                                                                                                        |
| hole diameter:                                                                                                                                                              | 100 mm                                |                                                                | Northing                                                                               | 6082759                                                                                                                                                                                                 | bearing:                          |          |                       |                               | dat                                         | tum:                                     |                                                                                                        |
| drilling information                                                                                                                                                        |                                       | material sub                                                   | ostance                                                                                |                                                                                                                                                                                                         |                                   | <u> </u> | -                     |                               | ,                                           | +                                        |                                                                                                        |
| mothod no sam tests water water 123                                                                                                                                         | oles,                                 | graphic log<br>classification<br>symbol                        | soil type<br>colour,                                                                   | material  : plasticity or particle secondary and min                                                                                                                                                    | e characteristic                  | cs,      | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 d penetro-<br>300 w meter |                                          | ructure and<br>nal observations                                                                        |
| ¥ RE                                                                                                                                                                        | 35 -                                  | SMG S                                                          | Sandy SILTY                                                                            | GRAVELbrown, Idedium grained sand                                                                                                                                                                       | ow plasticity cla                 | ay,      | D                     |                               | -40                                         |                                          |                                                                                                        |
| method  AS auger screwin  AD auger drilling*  RR roller/tricone  W washbore  CT cable tool  HA hand auger  DT diatube  B blank bit  V V bit  T TC bit  *bit shown by suffix | C casing penetration 1 2 3 4 re water | N nil  n o resistance anging to effusal  8 water level e shown | notes, sampl U <sub>50</sub> und U <sub>63</sub> und N* SP' NC SP' V van P pre Bs bull | listurbed sample 50mr<br>listurbed sample 63mr<br>urbed sample<br>ndard penetration test<br>T - sample recovered<br>T with solid cone<br>le shear (kPa)<br>ssuremeter<br>k sample<br>vironmental sample | n diameter<br>n diameter<br>(SPT) |          | eription<br>unified o | classifica                    |                                             | consistence VS S F St VSt H Fb VL L MD D | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE36

Principal: Date completed: **27.7.2009** 

| Во                               | rehole        | e Lo                                          | catio                                                          | n: <b>Ope</b>                   | n Sį               | oace            | or F                                                            | Resid                    | ential A                                                 | Areas                                                                                                                                                                                                  |                                       |                                                            | (                     | Checke                        | ed by:                                 |   | JH                                               |                                                                                                                   |
|----------------------------------|---------------|-----------------------------------------------|----------------------------------------------------------------|---------------------------------|--------------------|-----------------|-----------------------------------------------------------------|--------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|-----------------------|-------------------------------|----------------------------------------|---|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                            | mode          | l and                                         | mou                                                            | nting: I                        | land A             | Auger           |                                                                 |                          | Easting:                                                 | 704303                                                                                                                                                                                                 | slope:                                | -90°                                                       | T.E. Ouridoo.         |                               |                                        |   |                                                  |                                                                                                                   |
|                                  | e diam        |                                               |                                                                |                                 | 100 m              | m               |                                                                 |                          | Northing                                                 |                                                                                                                                                                                                        | bearing                               | g:                                                         | datum:                |                               |                                        |   |                                                  |                                                                                                                   |
| ar                               | illing        | inte                                          | orma                                                           |                                 |                    |                 | mate                                                            |                          | ubstance                                                 | 9                                                                                                                                                                                                      |                                       |                                                            | - × o                 |                               |                                        |   |                                                  |                                                                                                                   |
| method                           | 1 Denetration | support                                       | water                                                          | notes<br>samples,<br>tests, etc | RL                 | depth<br>metres | graphic log                                                     | classification<br>symbol |                                                          | mate<br>ype: plasticity or pa<br>our, secondary and                                                                                                                                                    | article character<br>minor compone    |                                                            | moisture<br>condition | consistency/<br>density index | 100 pocket<br>200 pocket<br>300 pocket | a |                                                  | ructure and<br>nal observations                                                                                   |
| VΗ                               |               |                                               |                                                                | RE36                            |                    | _               |                                                                 | SM                       | Sandy Si<br>grained sa                                   | LT:dark brown, lov                                                                                                                                                                                     | v plasticity clay,<br>ium gravel      | soft, fine                                                 | М                     |                               |                                        |   |                                                  | _                                                                                                                 |
|                                  |               |                                               |                                                                |                                 |                    |                 |                                                                 |                          | Borehole                                                 | RE36 terminated a                                                                                                                                                                                      | at 0.3m                               |                                                            |                       |                               |                                        |   |                                                  |                                                                                                                   |
| AS AD R W CT A T A B V T A B V T | shown         | a<br>w<br>c<br>h<br>d<br>b<br>V<br>T<br>by su | uger d oller/tri eashbo able to and au iatube lank b bit C bit | ore<br>ool<br>uger              | M<br>C<br>pe<br>1: | ter<br>10/1/9   | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub><br>U <sub>63</sub><br>D<br>N<br>N*<br>Nc | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratior SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental samp refusal | 63mm diameter<br>n test (SPT)<br>ered | soil des<br>based or<br>system  moistur D dr M m W w Wp pl | n unified  re ry oist | classifica                    |                                        |   | consistence VS S F St VSt H F F b VVL L MD D VVD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE37

Principal: Date completed: **27.7.2009** 

| Во                                           | reho           | le L  | _oca                                                    | atio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n: <b>Ope</b>                   | n Sp                       | oace            | or F                                                     | Resid                    | lential A                                                                            | reas                                                                                                                                                         |                                                |                                                           | (                     | Checke                        | ed by        | <b>/</b> : | JH                                        |                                                                                                                   |
|----------------------------------------------|----------------|-------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------|----------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------|-----------------------|-------------------------------|--------------|------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| drill                                        | l mod          | lel a | nd n                                                    | nour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nting: H                        | land /                     | Auger           |                                                          |                          | Easting:                                                                             | 704410                                                                                                                                                       | slope:                                         | -90°                                                      | -90° R.L. Surface:    |                               |              |            |                                           |                                                                                                                   |
|                                              | e dia          |       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 100 m                      | m               |                                                          |                          | Northing                                                                             | 6082644                                                                                                                                                      | bearing                                        | j:                                                        | datum:                |                               |              |            |                                           |                                                                                                                   |
| ar                                           | _              | _     | ITO                                                     | ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion                            |                            |                 | mat                                                      |                          | ubstance                                                                             |                                                                                                                                                              |                                                |                                                           |                       |                               | ,            | ,          |                                           |                                                                                                                   |
| method                                       | 12 penetration |       | support                                                 | water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | notes<br>samples,<br>tests, etc | RL                         | depth<br>metres | graphic log                                              | classification<br>symbol |                                                                                      | pe: plasticity or բ<br>ur, secondary an                                                                                                                      | erial<br>particle character<br>d minor compone |                                                           | moisture<br>condition | consistency/<br>density index | 100 y pocket | Pa         |                                           | tructure and<br>onal observations                                                                                 |
| AH                                           |                |       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RE37                            |                            | _               |                                                          | SM                       | grained sa                                                                           | nd  AYred, medium                                                                                                                                            | plasticity clay, soft,                         |                                                           | М                     |                               |              |            |                                           | -                                                                                                                 |
|                                              |                |       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                            | 0. <u>5</u>     |                                                          |                          |                                                                                      |                                                                                                                                                              |                                                |                                                           |                       |                               |              |            |                                           | -                                                                                                                 |
|                                              |                |       |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RE37                            |                            |                 |                                                          |                          | Borehole F                                                                           | RE37 terminated                                                                                                                                              | at 0.6m                                        |                                                           |                       |                               |              |            |                                           |                                                                                                                   |
| GEO 5.3 Issue 3 Kev.z<br>T A B T D W B A D K | show           | 'n by | rolle<br>was<br>cab<br>han<br>diat<br>blar<br>V b<br>TC | er drentriceshboride tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de tool de t | ol<br>ger                       | M<br>C<br>per<br>1.2<br>wa | ter<br>10/1/9   | no resista<br>ranging t<br>refusal<br>8 water<br>se show | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>N S<br>NC S<br>V P<br>Bs E | nples, tests undisturbed sample disturbed sample standard penetratic SPT - sample recor sane shear (kPa) pressuremeter pulk sample environmental sam refusal | e 63mm diameter<br>on test (SPT)<br>vered<br>e | soil des<br>based o<br>system  moistur D di M m W w Wp pi |                       | classifica                    |              |            | consisten VS S F St VSt H Fb VL L MD D VD | cy/density index very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE38

Principal: Date completed: 27.7.2009

| Bor                                                                           | ehol          | e Lo                                 | catio                                                                            | on: <b>Ope</b>                  | n Sį          | oace            | or F                                                     | Resid                    | lential A                                                                          | reas                                                                                                                                                                                                |                                        |                                                                | (                     | Checke                        | d by       | :      | JH                                    |                                                                                                  |
|-------------------------------------------------------------------------------|---------------|--------------------------------------|----------------------------------------------------------------------------------|---------------------------------|---------------|-----------------|----------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|------------|--------|---------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                                                                         | mode          | el and                               | d mou                                                                            | ınting:                         | Hand A        | Auger           |                                                          |                          | Easting:                                                                           | 704488                                                                                                                                                                                              | slope:                                 | -90°                                                           | The surface.          |                               |            |        |                                       |                                                                                                  |
|                                                                               | diam          |                                      |                                                                                  |                                 | 100 m         | m               | ma = 4                                                   | ء اجاء                   | Northing                                                                           | 6082581                                                                                                                                                                                             | bearing                                | :                                                              |                       |                               |            | datum: |                                       |                                                                                                  |
| ari                                                                           | _             | _                                    | Jima                                                                             | ation                           |               |                 | mate                                                     |                          | ubstance                                                                           |                                                                                                                                                                                                     |                                        |                                                                |                       | . ×                           | d          | ,      |                                       |                                                                                                  |
| method                                                                        | 5 penetration | 15                                   | water                                                                            | notes<br>samples,<br>tests, etc | RL            | depth<br>metres | graphic log                                              | classification<br>symbol | colou                                                                              | mater<br>pe: plasticity or pa<br>ur, secondary and                                                                                                                                                  | article characteris<br>minor compone   | nts.                                                           | moisture<br>condition | consistency/<br>density index | 100 pocket | a      |                                       | tructure and<br>onal observations                                                                |
| VH.                                                                           |               |                                      |                                                                                  | RE38                            |               |                 |                                                          | GS                       | dravelly S<br>to coarse g                                                          | SAND brown, no pl<br>grained sand, fine                                                                                                                                                             | asticity clay, firm<br>to medium gravi | n, fine                                                        | M                     |                               |            | 2 4    |                                       |                                                                                                  |
| meti<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bits<br>e.g. | hod           | a<br>v<br>d<br>d<br>b<br>T<br>u by s | oller/tr<br>vashbo<br>able to<br>and a<br>liatube<br>lank b<br>b<br>bit<br>C bit | ore<br>ool<br>uger<br>e         | M<br>C<br>per | ter<br>10/1/9   | no resista<br>anging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> u<br>U <sub>63</sub> u<br>D d<br>N s<br>Nc S<br>V v<br>P p<br>Bs b | nples, tests undisturbed sample is undisturbed sample disturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample | 63mm diameter test (SPT)               | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | e<br>y<br>oist        | classifica                    |            |        | consister VS S F St VSt H F D MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE39

Principal: Date completed: 27.7.2009

| Bor                                                                             | ehole          | Loc                                                  | ation                                                                              | : Ope                           | n Sp          | oace            | or F                                                | Resid                    | ential A                                                                                      | reas                                                                                                                                                                                                |                                                  |                | C                                          | Checke                        | d by:      |       | JH                                          |                                                                                                  |
|---------------------------------------------------------------------------------|----------------|------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|---------------|-----------------|-----------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------|--------------------------------------------|-------------------------------|------------|-------|---------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill                                                                           | model          | and r                                                | moun                                                                               | ting: H                         | land A        | Auger           |                                                     |                          | Easting:                                                                                      | 704305                                                                                                                                                                                              | slope:                                           | -90°           | 1112. Gallago.                             |                               |            |       |                                             |                                                                                                  |
|                                                                                 | diame          |                                                      |                                                                                    |                                 | 100 mi        | m               |                                                     |                          | Northing                                                                                      | 6082555                                                                                                                                                                                             | bearing                                          |                |                                            |                               |            | datum | 1:                                          |                                                                                                  |
| dri                                                                             | lling<br>_     | info                                                 | rmat                                                                               | ion                             | 1             |                 | mat                                                 |                          | ubstance                                                                                      |                                                                                                                                                                                                     |                                                  |                |                                            |                               |            |       |                                             |                                                                                                  |
| method                                                                          | to penetration | support                                              |                                                                                    | notes<br>samples,<br>tests, etc | RL            | depth<br>metres | graphic log                                         | classification<br>symbol | soil ty<br>colou                                                                              | mate<br>pe: plasticity or p<br>ur, secondary and                                                                                                                                                    | erial<br>earticle characteris<br>d minor compone | stics,<br>nts. | moisture<br>condition                      | consistency/<br>density index | 100 pocket | а     |                                             | ructure and<br>nal observations                                                                  |
| H                                                                               |                |                                                      |                                                                                    | RE39                            |               | -               |                                                     | GS                       | Gravelly S<br>to coarse g                                                                     | SANDbrown, no pgrained sand, fine                                                                                                                                                                   | olasticity clay, firm                            | n, fine<br>el  | М                                          |                               |            |       | Shrub roots                                 | present                                                                                          |
|                                                                                 |                |                                                      |                                                                                    |                                 |               | _               | <i>2822</i>                                         |                          | Borehole F                                                                                    | RE39 terminated                                                                                                                                                                                     | at 0.3m                                          |                |                                            |                               |            |       |                                             |                                                                                                  |
| metil<br>AS<br>AD<br>RR<br>W<br>CT<br>HA<br>DT<br>B<br>V<br>T<br>*bit s<br>e.g. | hod            | auq<br>roll<br>wa<br>cab<br>har<br>dia<br>bla<br>V b | ger dri<br>er/trice<br>shbore<br>ble too<br>nd aug<br>tube<br>nk bit<br>bit<br>bit | one<br>e<br>ol<br>ger           | M<br>C<br>per | ter<br>10/1/9   | no resista<br>anging trefusal<br>8 water<br>e showi | level                    | U <sub>50</sub> U <sub>63</sub> U<br>U <sub>63</sub> U<br>D S<br>N * S<br>NC S<br>V P<br>Bs E | mples, tests undisturbed sample undisturbed sample disturbed sample standard penetratio SPT - sample recov SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sam refusal | e 63mm diameter  n test (SPT)  vered             | W we           | cription<br>n unified of<br>e<br>y<br>oist | classifica                    |            |       | consistence VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 27.7.2009

Borehole No.

RE40

Principal: Date completed: 27.7.2009

| Borel                                                      | hole          | Loc                                              | atio                                                 | n: <b>Ope</b>                   | n Sį          | oace            | or F                                                            | Resid                    | lential A                                                                          | reas                                                                                                                                                                             |                                       |                                                                | (                     | Checke                        | ed by      | :     | JH                                        |                                                                                                  |
|------------------------------------------------------------|---------------|--------------------------------------------------|------------------------------------------------------|---------------------------------|---------------|-----------------|-----------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------|-----------------------|-------------------------------|------------|-------|-------------------------------------------|--------------------------------------------------------------------------------------------------|
| drill m                                                    | odel          | and                                              | mou                                                  | nting: I                        | Hand A        | Auger           |                                                                 |                          | Easting:                                                                           | 704412                                                                                                                                                                           | slope:                                | -90°                                                           | R.L. Surface:         |                               |            |       |                                           |                                                                                                  |
| hole d                                                     |               |                                                  |                                                      |                                 | 100 m         | m               |                                                                 |                          | Northing                                                                           | 6082486                                                                                                                                                                          | bearing                               | :                                                              |                       |                               |            | datum | 1:                                        |                                                                                                  |
| drilli                                                     | _             | nto                                              | rma                                                  | ition                           | 1             |                 | mate                                                            |                          | ubstance                                                                           |                                                                                                                                                                                  |                                       |                                                                |                       |                               | ,          |       |                                           |                                                                                                  |
| Ĕ 1                                                        | s penetration | support                                          | water                                                | notes<br>samples,<br>tests, etc | RL            | depth<br>metres | graphic log                                                     | classification<br>symbol | colou                                                                              | mater<br>pe: plasticity or pa<br>ur, secondary and                                                                                                                               | article characteri<br>minor compone   | nts.                                                           | moisture<br>condition | consistency/<br>density index | 100 pocket | a     |                                           | structure and onal observations                                                                  |
| HA                                                         |               |                                                  |                                                      | RE40                            |               |                 |                                                                 | GS                       | dravelly S<br>to coarse g                                                          | SAND brown, no pl<br>grained sand, fine                                                                                                                                          | asticity clay, firm<br>to medium grav | n, fine                                                        | M                     |                               |            | 7     |                                           |                                                                                                  |
| metho<br>AS AD RR W<br>CT HA DT B<br>V T *bit shot<br>e.g. |               | au<br>rol<br>wa<br>ca<br>ha<br>dia<br>bla<br>V I | ger d ler/tri shbo ble to nd au atube ank bi bit bit | ore<br>ool<br>uger              | M<br>C<br>per | ter<br>10/1/9   | on<br>no resista<br>ranging to<br>refusal<br>8 water<br>e showr | level                    | U <sub>50</sub> u<br>U <sub>63</sub> u<br>D d<br>N s<br>Nc S<br>V v<br>P p<br>Bs b | nples, tests undisturbed sample sundisturbed sample standard penetration SPT - sample recove SPT with solid cone vane shear (kPa) pressuremeter bulk sample environmental sample | 63mm diameter<br>test (SPT) –<br>ered | soil des<br>based of<br>system  moistur  D dr  M m  W w  Wp pl | y<br>oist             | classifica                    |            |       | consister VS S F St VSt H Fb VL L MD D VD | very soft soft firm stiff very stiff hard friable very loose loose medium dense dense very dense |



Client: Canberra Investment Corporation Pty Ltd Date started: 24.7.2009

Borehole No.

RE41

Principal: Date completed: **24.7.2009** 



Job No:ENVICANB00233AA

Sheet: 1 of 5

| client:                    | Canberra Investment Corporation Pty Ltd            | office:           | Canberra    |
|----------------------------|----------------------------------------------------|-------------------|-------------|
| principal:                 |                                                    | date:             | 23-28/07/09 |
| project:                   | Jumping Creek                                      | by:               | CL          |
| location:                  | Open Space or Residential Areas                    | checked by:       | JH          |
| PID serial number:         | MINIRAE 2000                                       | lamp voltage:     | 10.6eV      |
| PID Calibration Re         | cord                                               |                   |             |
| Date / Time of Calibration | n: @08:00am Calibration gas:100 ppm ISOBUTYLENE    |                   |             |
| ☑ Zero Calibration (0.0    | Oppm) Actual Reading0.0ppm 🗹 Span Calibration (100 | _ppm) Actual Read | ding100ppm  |
| Calibrated by:C            | CL                                                 |                   |             |

| SAMPLE ID | DEPTH   | DURATION<br>(mins) | BACKGROUND<br>READING<br>(ppm) | MAXIMUM<br>READING<br>(ppm) | LAST READING<br>(ppm) | NOTES    |
|-----------|---------|--------------------|--------------------------------|-----------------------------|-----------------------|----------|
| OS01      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| OSO2      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 28/07/09 |
| OSO3      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS04      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS05      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| OS06      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS07      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| OS08      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| OS09      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| OS09      | 0.5-0.6 | 0.5                | 0.0                            | 0.3                         | 0.1                   | 27/07/09 |
| OS10      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| OS11      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| OS12      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| OS13      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS14      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS15      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS15      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |

BH ( ) = soil gas probe sample; (soil type - unified classification system in parentheses)

 $<sup>\</sup>label{eq:hspace} \mbox{HS ( ) = headspace sample (with soil type-unified classification system in parentheses)}$ 



Job No:ENVICANB00233AA

Sheet: 2 of 5

| client:                   | Canberra Investment Corporation Pty Ltd            | office:           | Canberra    |
|---------------------------|----------------------------------------------------|-------------------|-------------|
| principal:                |                                                    | date:             | 23-28/07/09 |
| project:                  | Jumping Creek                                      | by:               | CL          |
| location:                 | Open Space or Residential Areas                    | checked by:       | JH          |
| PID serial number:        | MINIRAE 2000                                       | lamp voltage:     | 10.6eV      |
| PID Calibration Re        | ecord                                              |                   |             |
| Date / Time of Calibratio | n: @08:00am Calibration gas:100 ppm ISOBUTYLENE    |                   |             |
| ☑ Zero Calibration (0.0   | Oppm) Actual Reading0.0ppm 🗹 Span Calibration (100 | O_ppm) Actual Rea | ding100ppm  |
| Calibrated by:C           | CL                                                 |                   |             |

| SAMPLE ID | DEPTH   | DURATION<br>(mins) | BACKGROUND<br>READING<br>(ppm) | MAXIMUM<br>READING<br>(ppm) | LAST READING<br>(ppm) | NOTES    |
|-----------|---------|--------------------|--------------------------------|-----------------------------|-----------------------|----------|
| OS16      | 0.0-0.2 | 0.5                | 0.0                            | 0.3                         | 0.0                   | 24/07/09 |
| OS16      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS17      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS17      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS18      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS19      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS20      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| OS20      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE01      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 28/07/09 |
| RE01      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 28/07/09 |
| RE02      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE03      | 0.0-0.2 | 0.5                | 0.0                            | 0.2                         | 0.0                   | 28/07/09 |
| RE03      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 28/07/09 |
| RE04      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 28/07/09 |
| RE05      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE06      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE07      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |

Fill in the test type as follows:-

Doc. No. QP15/1-E5.1(DSD) Page 2 16/06/2010

BH ( ) = soil gas probe sample; (soil type - unified classification system in parentheses)

HS ( ) = headspace sample (with soil type-unified classification system in parentheses)



Job No:ENVICANB00233AA

Sheet: 3 of 5

| client:                    | Canberra Investment Corporation Pty Ltd           | office:            | Canberra    |
|----------------------------|---------------------------------------------------|--------------------|-------------|
| principal:                 |                                                   | date:              | 23-28/07/09 |
| project:                   | Jumping Creek                                     | by:                | CL          |
| location:                  | Open Space or Residential Areas                   | checked by:        | JH          |
| PID serial number:         | MINIRAE 2000                                      | lamp voltage:      | 10.6eV      |
| PID Calibration Re         | cord                                              |                    |             |
| Date / Time of Calibration | n: @08:00am Calibration gas:100 ppm ISOBUTYLENE   |                    |             |
| ☑ Zero Calibration (0.0    | ppm) Actual Reading0.0ppm 🗹 Span Calibration (100 | O_ppm) Actual Read | ding100ppm  |
| Calibrated by:C            | CL                                                |                    |             |

| SAMPLE ID | DEPTH   | DURATION<br>(mins) | BACKGROUND<br>READING<br>(ppm) | MAXIMUM<br>READING<br>(ppm) | LAST READING<br>(ppm) | NOTES    |
|-----------|---------|--------------------|--------------------------------|-----------------------------|-----------------------|----------|
| RE07      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE08      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE08      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE09      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 28/07/09 |
| RE10      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE11      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE12      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE12      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE13      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE14      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE14      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE15      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE16      | 00.2    | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE16      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE17      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE18      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE18      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |

BH ( ) = soil gas probe sample; (soil type - unified classification system in parentheses)

 $<sup>\</sup>label{eq:hspace} \mbox{HS ( ) = headspace sample (with soil type-unified classification system in parentheses)}$ 



Job No:ENVICANB00233AA

Sheet: 4 of 5

| client:                    | Canberra Investment Corporation Pty Ltd           | office:            | Canberra    |
|----------------------------|---------------------------------------------------|--------------------|-------------|
| principal:                 |                                                   | date:              | 23-28/07/09 |
| project:                   | Jumping Creek                                     | by:                | CL          |
| location:                  | Open Space or Residential Areas                   | checked by:        | JH          |
| PID serial number:         | MINIRAE 2000                                      | lamp voltage:      | 10.6eV      |
| PID Calibration Re         | cord                                              |                    |             |
| Date / Time of Calibration | n: @08:00am Calibration gas:100 ppm ISOBUTYLENE   |                    |             |
| ☑ Zero Calibration (0.0    | ppm) Actual Reading0.0ppm 🗹 Span Calibration (100 | O_ppm) Actual Read | ding100ppm  |
| Calibrated by:C            | CL                                                |                    |             |

| SAMPLE ID | DEPTH   | DURATION<br>(mins) | BACKGROUND<br>READING<br>(ppm) | MAXIMUM<br>READING<br>(ppm) | LAST READING<br>(ppm) | NOTES    |
|-----------|---------|--------------------|--------------------------------|-----------------------------|-----------------------|----------|
| RE19      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE19      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE20      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE20      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE21      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE22      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE23      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE24      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE24      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE25      | 0.0-0.2 | 0.5                | 0.0                            | 0.2                         | 0.0                   | 24/07/09 |
| RE25      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE26      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE26      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE27      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE28      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE28      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 23/07/09 |
| RE29      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |

BH ( ) = soil gas probe sample; (soil type - unified classification system in parentheses)

 $<sup>\</sup>label{eq:hspace} \mbox{HS ( ) = headspace sample (with soil type-unified classification system in parentheses)}$ 



Job No:ENVICANB00233AA

Sheet: 5 of 5

| client:                    | Canberra Investment Corporation Pty Ltd           | office:            | Canberra    |
|----------------------------|---------------------------------------------------|--------------------|-------------|
| principal:                 |                                                   | date:              | 23-28/07/09 |
| project:                   | Jumping Creek                                     | by:                | CL          |
| location:                  | Open Space or Residential Areas                   | checked by:        | JH          |
| PID serial number:         | MINIRAE 2000                                      | lamp voltage:      | 10.6eV      |
| PID Calibration Re         | cord                                              |                    |             |
| Date / Time of Calibration | n: @08:00am Calibration gas:100 ppm ISOBUTYLENE   |                    |             |
| ☑ Zero Calibration (0.0    | ppm) Actual Reading0.0ppm 🗹 Span Calibration (100 | )_ppm) Actual Read | ding100ppm  |
| Calibrated by:C            | CL                                                |                    |             |

| SAMPLE ID | DEPTH   | DURATION<br>(mins) | BACKGROUND<br>READING<br>(ppm) | MAXIMUM<br>READING<br>(ppm) | LAST READING<br>(ppm) | NOTES    |
|-----------|---------|--------------------|--------------------------------|-----------------------------|-----------------------|----------|
| RE29      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE30      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE31      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE32      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE33      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE34      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE34      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE35      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE35      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
| RE36      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE37      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE37      | 0.5-0.6 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE38      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE39      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE40      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 27/07/09 |
| RE41      | 0.0-0.2 | 0.5                | 0.0                            | 0.0                         | 0.0                   | 24/07/09 |
|           |         |                    |                                |                             |                       |          |

BH ( ) = soil gas probe sample; (soil type - unified classification system in parentheses)

 $<sup>\</sup>label{eq:hspace} \mbox{HS ( ) = headspace sample (with soil type-unified classification system in parentheses)}$ 

# FINAL DRAFT

# Appendix D Photograph Log

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW



Photograph 1: Mine Site 1 looking South



Photograph 2: Mine Site 1 shaft



Photograph 3: Mine Site 1 looking North East





Photograph 5: Kiln structure





Photograph 7: Kiln looking North



Photograph 8: Mine Site 3 looking North



Photograph 9: Mine Site 3 looking North West



Photograph 10: Mine Site 3 looking East



Photograph 11: Mine Site 4 looking West



Photograph 12: Mine Site 4 stockpiled material



Photograph 13: Mine Site 4 stockpiled material and open cut area



Photograph 14: Mine Site 4 stockpiled material



Photograph 15: Mine Site 4 stockpiled material



Photograph 16: Mine Site 4 looking South



Photograph 17: Mine Site 4 stockpiled material



Photograph 18: Mine Site 4 below mine adit looking East



Photograph 19: Mine Site 4 – Shaft



Photograph 20: Mine Site 4 below mine adit looking West





Photograph 22: Minerals Processing Area – Trough structure and concrete slab



Photograph 23: Minerals Processing Area – Old AST and concrete slab



Photograph 24: Minerals Processing Area looking West



Photograph 25: Minerals processing Area – shallow concrete drain to sump structure



Photograph 26: Minerals processing Area – remaining infrastructure

# FINAL DRAFT

# Appendix E Well Survey Report

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW



#### Copyright © 4D Surveying

This plan and the information it contains are copyright and remain the property of 4D Surveying Pty Ltd. 4D Surveying Pty Ltd grants to the client named a licence to use the information hereon for the purpose for which we were engaged to perform the work.

which we were engaged to perform the work.
Use of the plan and information for any other purpose is not permitted unless prior written approval has been obtained from 4D Surveying Pty Ltd.

ABN 30 035 481 400

www.4Dsurveying.com.au

This notice must not be erased.

PO Box 528 Unit 1/30 Ross Road

Queanbeyan NSW 2620

Prior to any demolition, excavation or construction on the site, the relevant authority should be contacted for possible location of further underground services and detailed locations of all services. This note is an integral part of the plan.

Peter Williams

Registered Surveyor

SHEET No. 1

No. OF SHEETS:

DATE: 22.10.2009

PLAN No. 17021 Wells.dwg

SURVEYING
The Extra Dimension

T 02 6297 3518

F

02 6297 9748

| SCALE 1:5000 A3                       | AMENDMENTS | CLIENT: | COFFEY ENVIRONMENTS                         |
|---------------------------------------|------------|---------|---------------------------------------------|
| ORIGIN OF LEVELS<br>PM55022 RL654.022 |            | SU      | RVEY OF MONITORING WELLS<br>LOT 1 DP 711905 |
| DATUM: MGA & AHD71                    |            |         | JUMPING CREEK                               |

# FINAL DRAFT

# Appendix F Groundwater Field Parameters

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW



#### **FIELD REPORTING COVER SHEET**

| Project Name: <u>აა აა</u>                                                                                                | ping Creek                      |                            | Date: 8 10 09                         |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|---------------------------------------|--|
|                                                                                                                           | 233AA                           |                            | Arrival Time: 8.00                    |  |
| 1 · · ·                                                                                                                   | CL+ED                           |                            | Departure Time: 4.00                  |  |
| Project Manager (initials):                                                                                               | 141                             |                            |                                       |  |
| Purpose of Visit (Tick App                                                                                                | ropriate Box)                   |                            |                                       |  |
| Drilling                                                                                                                  | GW Sampli                       | ng 🗹                       | Soil Sampling                         |  |
| Gauging                                                                                                                   | Cable locati                    | ng 🔲                       | Other                                 |  |
| Site inspection                                                                                                           | Tank remov<br>and validati      |                            | Specify:                              |  |
| Equipment Used (Provide                                                                                                   | ID Number)                      |                            | : : : : : : : : : : : : : : : : : : : |  |
| FID:                                                                                                                      | LEL/O2/T                        | oxic Gas Meter:            |                                       |  |
| PID:                                                                                                                      | Water Qu                        | ality Meter : <u>90FLT</u> |                                       |  |
| IP:                                                                                                                       |                                 | er:                        |                                       |  |
| Equipment calibrated prior to use, and/or equipment calibration records checked :   Other Calibration Performed (if any): |                                 |                            |                                       |  |
| Sampling                                                                                                                  |                                 |                            |                                       |  |
| Sampling Conducted:                                                                                                       | Y D N D                         | Matrix:                    | Soil Water Other                      |  |
| COC Completed and Samples Sent: Y N COC No(s):                                                                            |                                 |                            |                                       |  |
| Primary Lab: SCS                                                                                                          |                                 | Secondary Lab              |                                       |  |
| - Tilliary 200.                                                                                                           |                                 |                            |                                       |  |
| Description of Activities (e                                                                                              | e.g., What did you do – drilled | 3 soil borings (i.e. SB1   | - SB7), installed 3 MWs, etc.         |  |
| Purgua - sa                                                                                                               | upling of                       | vella (MW1                 | puguel to (8WM -                      |  |
| Creek?                                                                                                                    | د.                              |                            |                                       |  |
|                                                                                                                           |                                 |                            |                                       |  |
|                                                                                                                           |                                 |                            |                                       |  |
| Attached Forms                                                                                                            |                                 |                            |                                       |  |
| Daily Field Summary:                                                                                                      | Y N                             |                            |                                       |  |
| Site Map / Sketch:                                                                                                        | $Y \sqcap N \sqcap \nearrow$    | Relevant Field Forms (lis  |                                       |  |
| Field Quality Control Log                                                                                                 | YOND                            | Others (Specify):          |                                       |  |
|                                                                                                                           |                                 |                            |                                       |  |

Form: Field Reporting Cover Sheet

Issue Date: 17/04/08



#### FIELD QUALITY CONTROL LOG

| Project No. | =000233AA |
|-------------|-----------|
| Date:       | 8/10/09   |
| Page (      | of \      |

| Project Name:                           | ug Creek            |                                       |                        | _        |
|-----------------------------------------|---------------------|---------------------------------------|------------------------|----------|
|                                         |                     | Wh                                    | at Matrix is Being Sar | npled?   |
| Field Personnel (Initials):             | CL + ED             | Soil                                  | Groundwater            |          |
| Project Manager (Initials):             | 14                  | Other                                 | Surface Water          |          |
| Field QC Sample ID                      | Sampling Date/ Time |                                       | Description            |          |
| (example) QC7                           | 8/04/2006; 0900     | Duplic                                | ate of SB1/4.0         |          |
| ac1/ac1A                                | 81009               | giet ged                              | swy to                 |          |
| : · · · · · · · · · · · · · · · · · · · |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         | ,                   |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     | · · · · · · · · · · · · · · · · · · · |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       | ·                      |          |
|                                         |                     |                                       | ·                      |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       | ·                      |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        | ·        |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        |          |
|                                         |                     |                                       |                        | <u> </u> |

| ı |                  |
|---|------------------|
| ı |                  |
| ı |                  |
| ı |                  |
| ı |                  |
| ı |                  |
| ı | <b>m</b>         |
| ı |                  |
| ı |                  |
| ı |                  |
| ı |                  |
| ı |                  |
| ı |                  |
| ı | <u> </u>         |
| ı | <b>□</b>         |
| ı | <                |
| ı | , <del>∑</del> . |
| ı | 0                |
| ı | <b>–</b>         |
| ı |                  |
| ı |                  |
| ı |                  |
| ı | <b>"</b>         |
| i | ıts              |
| 1 | S                |
| ı |                  |
| ı |                  |
| ı | ı                |

# Well Gauging Form

| ַ   |
|-----|
| AGE |
| -   |
| 유   |
| 1   |

| PRO                  | PROJECT NAME:     | مروسول           | a Creek                       | ek                            |                                                                                                                                    | PROJECT NUMBER:        |                               | EC00233AA                                                                               |
|----------------------|-------------------|------------------|-------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|-----------------------------------------------------------------------------------------|
| FIELD F              | FIELD PERSONNEL:  | C + + +          | ال                            |                               |                                                                                                                                    | ı                      | DATE: 8                       | 10 09                                                                                   |
| PROJECT              | PROJECT MANAGER:  | L'I              |                               |                               |                                                                                                                                    | ,                      |                               | •                                                                                       |
| FIELD EQUIPMENT:     | NT:               |                  |                               |                               |                                                                                                                                    |                        | REFER TO SC                   | SOPs WHEN GAUGING WELLS:                                                                |
| Equipment Used:      |                   |                  | IP                            | IP Serial Number:             |                                                                                                                                    |                        | SOP - Monitoring Well Gauging | Well Gauging and SOP – Decontamination of Sampling Equipment                            |
| Time of Day          | Well ID           | Well<br>Diameter | Total Well<br>Depth<br>note 1 | Depth to PSH<br>(NAPL)<br>[A] | Depth to<br>Groundwater<br>[B]                                                                                                     | PSH Thickness<br>[B-A] | Height of Well<br>Stick-Up    | COMMENTS (note 2)                                                                       |
|                      |                   | mm               | m                             | mBTOC                         | mBTOC                                                                                                                              | mm                     | m                             |                                                                                         |
| (0:30                | MUTI              | 50               | 24.025                        |                               | 16.300                                                                                                                             |                        | , 555                         | No odar                                                                                 |
| 1025                 | M62               | So               | *30.5                         |                               | 21.002                                                                                                                             |                        | - 663                         | No day                                                                                  |
| 10.00                | Mws               | 50               | 19.975                        |                               | 12.544                                                                                                                             |                        | .678                          | Lo ede cy                                                                               |
| 9.15                 | MW4               | 0.5              | 5.05.                         |                               | 16-907                                                                                                                             |                        | 519                           | Do odocy steer                                                                          |
| 9.05                 | Muss              | So               | 18.005                        |                               | 9.750                                                                                                                              |                        | .4SS                          | No other elect                                                                          |
| 8.50                 | Music             | 50               | +30.5                         |                               | 7.451                                                                                                                              |                        | HbS-                          | No odwer clear-                                                                         |
| 8.4C                 | Mw1               | S0               | 18.014                        |                               | 6.743                                                                                                                              |                        | 305                           | Do social checo                                                                         |
| 55. 5 <b>SECTION</b> | MW8               | 50               | 28-132                        |                               | 15.502                                                                                                                             | -                      | -724                          | No odour, clear                                                                         |
|                      |                   |                  |                               |                               |                                                                                                                                    |                        |                               |                                                                                         |
|                      |                   |                  |                               |                               |                                                                                                                                    |                        |                               |                                                                                         |
|                      |                   |                  |                               |                               |                                                                                                                                    |                        |                               |                                                                                         |
|                      |                   |                  |                               |                               |                                                                                                                                    |                        |                               |                                                                                         |
|                      |                   |                  |                               |                               |                                                                                                                                    |                        |                               |                                                                                         |
| Notes: 1 India       | ate in 'Comments' | column if me     | easured Total V               | Vell Depth differs fi         | Notes: 1 Indicate in 'Comments' column if measured Total Well Depth differs from log. 2 Do not attempt to sniff the monitoring wel | empt to sniff the ma   | onitoring well to             | l to detect any odours, only note any <u>apparent</u> odour when the well cap is opened |
|                      |                   |                  |                               |                               |                                                                                                                                    |                        |                               |                                                                                         |

|            | 8     |
|------------|-------|
|            | Ħ     |
|            | ey    |
|            | 7     |
| DECT NAME. | er    |
|            | _ ≦.  |
|            | ron   |
| ^          | ments |
| ,          | nts   |
|            |       |

| ey environments            | Groundwater Sampling Form (A) - General | PAGEOF |
|----------------------------|-----------------------------------------|--------|
| PROJECT NAME: Sympon Creak | PROJECT NUMBER: ECO23344                |        |
| HELD PERSONNEL:            | DATE: 8:10:09                           |        |
| OJECT MANAGER:             |                                         |        |

| WERE                                                                                 | ם<br>קטם              | STABIL<br>(3 reading                                        | · |       |   |        |               |      |           |       | 0                             |                                                                      | TIME OF<br>DAY                              |               |                                                                                                         | (TOTAL V                                                                                           | WELL G/                               | EQUIP           | WELL ID:          | <b>.</b>         |                  |                 |
|--------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------|---|-------|---|--------|---------------|------|-----------|-------|-------------------------------|----------------------------------------------------------------------|---------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-------------------|------------------|------------------|-----------------|
| WERE METALS FIELD FILTERED?                                                          | DUPLICATE COLLECTED:  | STABILISATION CRITERIA (3 readings within following ranges) |   |       |   |        |               |      | •         |       | NA                            |                                                                      | CYCLE/<br>PUMP<br>RATE<br>(ml/min)          |               | 3                                                                                                       | (TOTAL WELL DEPTH) — (DEPTH TO WATER) = (WATER COLUMN)                                             | GAUGING AND PURGE VOLUME CALCULATIONS | EQUIPMENT USED: | LID: MW           | PROJECT MANAGER: | FIELD PERSONNEL: | PROJE           |
| LD FILTERI                                                                           | LECTED:               | <b>ITERIA</b><br>19 ranges)                                 |   |       |   |        | 25            | 20   | 7         | اه    | G                             | - 35<br>- 33<br>- 33<br>- 33<br>- 33<br>- 34<br>- 34<br>- 34<br>- 34 | VOLUME                                      |               | .1                                                                                                      | -(DЕРТН ТО                                                                                         | PURGE V                               | D: BAILER       | -3                | ANAGER           | SONNEL           | PROJECT NAME:   |
| <b>*</b>                                                                             | ۲ [                   |                                                             |   | :     |   |        | ,             |      |           |       |                               |                                                                      | DEPTH TO WATER (m)                          |               | 16-300 =                                                                                                | WATER) = (\                                                                                        | DLUME CAL                             |                 |                   |                  |                  |                 |
| z                                                                                    | z                     | . I <del>I</del>                                            |   |       |   |        | <b>4</b> 3.67 | 79.8 | 3-61      | 3.69  | 3:30                          | READING                                                              |                                             |               |                                                                                                         | VATER COLU                                                                                         | CULATION                              | WATERRA         | METER ID:         | 1                | Ch. ED           | Stamping.       |
| UNFILTER                                                                             | DUPLICATE ID:         | 10%                                                         |   |       |   |        | 7             | 7    |           |       |                               | CHANGE                                                               | DISSOLVED<br>OXYGEN<br>(mg/l)               |               | 3                                                                                                       | JMN)                                                                                               | <b>15</b>                             |                 |                   |                  |                  | Creek           |
| RED SAMPLES                                                                          | 正 15:                 | H                                                           |   |       | , | ,<br>i | 517           | 521  | 514       | 594   | 760                           | READING                                                              | ELEC<br>COND<br>(mS c                       |               | to determin<br>well (enter                                                                              | Use water procedures                                                                               |                                       | OTHER           |                   |                  |                  |                 |
| MUST NOT E                                                                           |                       | 3%                                                          |   |       |   |        |               |      |           | -     | (1) (1)<br>(2) (2)<br>(3) (3) | CHANGE*                                                              | ELECTRICAL<br>CONDUCTIVITY<br>(mS or µS/cm) |               | this value in the                                                                                       | column calcul<br>in 'SOP- Gro                                                                      |                                       |                 |                   | -                |                  |                 |
| UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE., 'METALS' BOTTLE) |                       | E.S.                                                        |   |       |   |        | ۲.۲           | 7.32 | 7.32      | 7.34  | しい                            | READING                                                              | <u> </u>                                    |               | to determine the correct volume to be purged from the well (enter this value in the field to the right) | Use water column calculation together with the procedures in 'SOP- Groundwater Sampling - Bailers' |                                       |                 |                   |                  |                  |                 |
| A PRESERVE                                                                           |                       | 0.1 unit                                                    |   |       |   |        | N             | 2    | <br>      | E     |                               | G CHANGE                                                             | pH<br>(pH units)                            |               | purged from inght)                                                                                      | with the npling - Baile                                                                            |                                       | _               | 101               |                  |                  |                 |
| D CONTAINE                                                                           | TRIPLICAT             |                                                             |   |       |   |        | 210           | 215  | 214       | 212   | 266                           | SE* READING                                                          | 70                                          |               | e                                                                                                       |                                                                                                    |                                       | WELL DIAMETER:  | TOTAL WELL DEPTH: |                  |                  | <b> </b>        |
| R (IE. META                                                                          | TRIPLICATE COLLECTED: | ± 10mV                                                      |   |       |   |        | 0             | 101  |           | 7     | 6                             | C                                                                    | REDOX<br>POTENTIAL<br>(mV)                  | :             | ı                                                                                                       | LITRES PE                                                                                          |                                       | METER:          | 1                 |                  |                  | PROJECT NUMBER: |
| TS, BOLLTE                                                                           | TED:                  |                                                             |   |       |   |        | G.            | (V   | 156       | 15-7  | 15                            | HANGE* REA                                                           | i ii                                        | $\frac{1}{1}$ |                                                                                                         | PER 1 WELL VOLUME                                                                                  |                                       | \$0             | 24.025            |                  | DATE             | NUMBER          |
| 2                                                                                    | <b>~</b>              | ± 0.2°C                                                     |   | _     |   |        | 56            | 15.6 | 6         | 7     | 15.5                          | READING CHANGE                                                       | TEMPERATURE (°C)                            |               | Ή-                                                                                                      | VOLUME                                                                                             |                                       | İ               | 125               |                  |                  |                 |
|                                                                                      | z                     | 6.34<br>6.84 - 7.7                                          |   |       |   |        | <u> </u>      |      |           |       | \                             |                                                                      | ear                                         |               |                                                                                                         |                                                                                                    |                                       | WEL             | SCREEN INTERVAL:  |                  | 8-10-09          | EC00233AA       |
|                                                                                      | \<br>TRIP             |                                                             |   | <br>1 |   |        |               |      |           |       |                               | Slig                                                                 | phtly<br>oudy CLARIT                        |               | PPM:                                                                                                    | PID R                                                                                              | ¥E.                                   | WELL STICK-UP:  | INTE              |                  |                  | 34.4            |
|                                                                                      | TRIPLICATE ID:        |                                                             |   |       |   |        |               | \    | \         | `     |                               |                                                                      | ghtly pudy tick one ery pudy                |               | b                                                                                                       | PID READING                                                                                        | HEADSP                                | 1 /             | WAL:              |                  |                  |                 |
|                                                                                      |                       |                                                             |   |       |   |        |               |      |           |       |                               | -                                                                    | rbid                                        |               | Ó                                                                                                       |                                                                                                    | ACE PID                               | \\ \( \)        | 6                 |                  |                  |                 |
|                                                                                      |                       |                                                             |   |       |   |        | ż             | -    | 11        | -     | 8                             |                                                                      | ODOUR. C                                    |               |                                                                                                         |                                                                                                    | WELL HEADSPACE PID READING            |                 | 222               |                  |                  |                 |
|                                                                                      |                       |                                                             |   |       |   |        | (1            |      | ے<br>آ۔ ر | Jeff. | odoor                         | COLLECTED, etc                                                       | COMMENTS COLOUR SEDIMENTS PSH               |               |                                                                                                         |                                                                                                    |                                       |                 |                   |                  |                  |                 |

| <b>S</b>                    | <u>.</u>     | (3) <b>(5)</b>                                             |  |  |    |    | Γ  |    |    |     | TIM!<br>D.                            |   |        | (Тота              |          |            |             |                  | $\neg$        | 8            |
|-----------------------------|--------------|------------------------------------------------------------|--|--|----|----|----|----|----|-----|---------------------------------------|---|--------|--------------------|----------|------------|-------------|------------------|---------------|--------------|
| ERE METALS                  | DUPLICATE    | STABILISATION CRITERIA (3 readings within following ranges |  |  |    |    |    |    | NA |     | CYCLE/ TIME OF PUMP DAY RATE (ml/min) |   |        | (TOTAL WELL DEPTH) |          | WELL ID: _ | PROJECT     | FIELD            | PR            | offey        |
| WERE METALS FIELD FILTERED? | COLLECTED:   | -                                                          |  |  | 25 | 20 | is | 10 | Ŋ  |     | in) VOLUME                            |   | m - 2\ | – (Depth           | USED: BA | MWZ        | CT MANAGER: | FIELD PERSONNEL: | PROJECT NAME: | <b>✓</b> env |
| ÆD? Υ [                     | · <b>·</b> □ |                                                            |  |  |    |    |    |    |    |     | DEPTH TO<br>WATER<br>(m)              | : | 2007   | TO WATER) = (M     | :  느     | ]          |             |                  |               | environments |
| Z                           |              | 55-0-138-                                                  |  |  | Ž  | Ţ  | ب  | Σ  | ď  | REA |                                       |   |        | = (WATER (         | WATE     | METE       |             | 9                |               | nts          |

| PROJECT MAN PROJECT MAN PROJECT MAN WELL ID: MAN EQUIPMENT USED: | PROJECT NAME:  PROJECT NAME:  FIELD PERSONNEL:  PROJECT MANAGER:  LL ID: MIND METE  METE  PMENT USED: BAILER WAT |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| l 🖫                                                              |                                                                                                                  |
| AUGING AN                                                        | WELL GAUGING AND PURGE VOLUME CALCULATIONS (TOTAL WELL DEPTH) — (DEPTH TO WATER) = (WATER COLUMN)  m - 2いつと =    |
| IME OF PUMP DAY RATE (ml/min)                                    | DEPTH TO VOLUME WATER (L) (m)                                                                                    |
|                                                                  |                                                                                                                  |
| NA                                                               | Ŋ                                                                                                                |
|                                                                  | 0                                                                                                                |
|                                                                  | Ś                                                                                                                |
|                                                                  | 20                                                                                                               |
|                                                                  | 25                                                                                                               |
|                                                                  |                                                                                                                  |
|                                                                  |                                                                                                                  |
|                                                                  |                                                                                                                  |
|                                                                  |                                                                                                                  |
| STABILISATION CRITERIA (3 readings within following ranges)      | N CRITERIA<br>llowing ranges)                                                                                    |
| DUPLICATE COLLECTED:                                             | COLLECTED:                                                                                                       |
| RE METALS FIE                                                    | WERE METALS FIELD FILTERED?                                                                                      |

| WERE                        | DUP          | STABI<br>(3 readin                                          |   |  |      |      |      |       | 0   |         | TIME OF<br>DAY                     | ام        | (TOTAL                                                 | EQU             | WEL        |                  |                  | coffey       |   |
|-----------------------------|--------------|-------------------------------------------------------------|---|--|------|------|------|-------|-----|---------|------------------------------------|-----------|--------------------------------------------------------|-----------------|------------|------------------|------------------|--------------|---|
| WERE METALS FIELD FILTERED? | DUPLICATE CO | STABILISATION CRITERIA (3 readings within following ranges) |   |  |      |      |      |       | NA  |         | CYCLE/<br>PUMP<br>RATE<br>(ml/min) |           | (TOTAL WELL DEPTH) — (DEPTH TO WATER) = (WATER COLUMN) | EQUIPMENT USED: | WELL ID: N | PROJECT MANAGER: | FIELD PE         | fey          | • |
| LD FILTER                   | COLLECTED:   | NITERIA<br>ng ranges)                                       |   |  | 25   | 20   | ふ    | ĵo    | Ŋ   |         | VOLUME<br>(L)                      | m - 12:34 | – (DEPTH TO                                            | ED: BAILER      | (N         | MANAGER          | FIELD PERSONNEL: | envi         | • |
| <b>₽</b> , ≺                | <b>~</b>     |                                                             |   |  |      |      |      |       |     |         | DEPTH TO<br>WATER<br>(m)           | 34 ( =    | OLOME CAL                                              |                 | <u>_</u> _ |                  | 1 1 2 m          | environments |   |
| z                           | z            | *                                                           |   |  | 3.60 | 3.69 | 3.62 | 18.50 | 394 | READING | DISSOLVED<br>OXYGEN<br>(mg/l)      |           | = (WATER COLUM                                         | WATERRA         | METER ID:  |                  | 10               | nts<br>      |   |
| UNFILTER                    | DUPLICA      | 10%                                                         | - |  |      |      |      |       |     | CHANGE  | gen<br>Sen<br>Stred                | 3         | ₹ .                                                    |                 | 3 8        |                  |                  | 2            |   |

901 912 869

884 263

6

15.0

۶ \_

z 5

80) 

149

ELECTRICAL CONDUCTIVITY (mS of µS/cm)

pH (pH units)

REDOX POTENTIAL (mV)

TEMPERATURE (°C)

CLARITY - tick one

PPM: O.O PID READING WELL HEADSPACE PID READING

READING

CHANGE\*

READING

CHANGE\*

READING

CHANGE\*

READING

CHANGE

Clear

Slightly Cloudy

Cloudy Very Cloudy Turbid

ODOUR, COLOUR, SEDIMENTS, PSH COLLECTED, etc

COMMENTS

7.50 7.24 7-18 7-20 7.20

218

ぶら

No odowy

Vm049

5 Ĵ

۶

7

109

5.7

(S:0

Use water column calculation together with the procedures in 'SOP- Groundwater Sampling - Bailers' to determine the correct volume to be purged from the well (enter this value in the field to the right)

LITRES PER 1 WELL VOLUME

| PROJECT NAME: Sampung Cack FIELD PERSONNEL: (1 + E) PROJECT MANAGER: 114 | Groundwater Sampling Form (A) - General  PROJECT NUMBER: 〒たつらてマラスト DATE: 窓/いら | PAGE OF            |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|
| PROJECT NAME: Jung ung Cock                                              | PROJECT NUMBER: こ(007255 A                                                    | A                  |
| FIELD PERSONNEL: CL + EU                                                 | DATE 8 C                                                                      |                    |
| PROJECT MANAGER: UU                                                      |                                                                               |                    |
| WELL ID: NUS METER ID: 00 FLT                                            | TOTAL WELL DEPTH: (4.925 SCREEN                                               | SCREEN INTERVAL:   |
| EQUIPMENT USED: BAILER 🔼 WATERRA 🔲 OTHER                                 | WELL DIAMETER: SO WELL                                                        | WELL STICK-UP: 678 |

UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE. METALS' BOTTLE)

± 3%

± 0.1 unit

± 10mV

± 0.2°C

DUPLICATE ID:

TRIPLICATE COLLECTED:

\_ \_ \_ \_

TRIPLICATE ID:

| DUP                           | STABIL!                                                    |   |    |    |   |   | 0  |    | TIME OF<br>DAY           | \$.027        | (TOTAL V      | EQUI          | WELL  |          |            |          | coffe        |
|-------------------------------|------------------------------------------------------------|---|----|----|---|---|----|----|--------------------------|---------------|---------------|---------------|-------|----------|------------|----------|--------------|
| DUPLICATE CO                  | STABILISATION CRITERIA 3 readings within following ranges) |   |    |    |   |   | NA |    | CYCLE/<br>PUMP<br>RATE   |               | . WELL DEPTH) | EQUIPMENT USE | L ID: | PROJECT  | FIELD PE   | PROJECT  | iey •        |
| COLLECTED:<br>FIELD FILTERED? | RITERIA ving ranges)                                       |   | 25 | 20 | Ñ | Õ | N  |    | VOLUME                   | m - <u>(6</u> | – (ДЕРТН      | D: BA         | 4     | MANAGER: | PERSONNEL: | CT NAME: | envi         |
| Y [                           |                                                            |   |    |    |   |   |    |    | DEPTH TO<br>WATER<br>(m) | ,907 =        | 11 9          |               | ]     |          | . ()       | الم      | environments |
|                               |                                                            | + |    |    | ث | 3 | W  | 70 |                          | "             | (WATE         | CALCINE WAT   | MET   |          | 71         | ₽        | nts          |

| offev                          | 9                                                                                              | environments             | nts                           |               |                                                                                                         | Gro                 | Groundwater Sampling Form (A) | er Samp     | ling Fon                   | $\overline{}$            | <ul><li>General</li></ul> |           |                  |                       |            |                                                  | PAGE                                   | 유         |
|--------------------------------|------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|---------------|---------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|-------------|----------------------------|--------------------------|---------------------------|-----------|------------------|-----------------------|------------|--------------------------------------------------|----------------------------------------|-----------|
| PR                             | PROJECT NAME:                                                                                  | مدور کر                  | spand.                        | C 3 e e       | 8                                                                                                       |                     |                               |             | PRO.                       | PROJECT NUN              | NUMBER: EC                | EC00783AA | SAA              |                       |            |                                                  |                                        |           |
| FIELD                          | FIELD PERSONNEL:                                                                               | 0                        | 71-                           |               |                                                                                                         |                     |                               |             |                            | _                        | DATE: 8                   | 81000     |                  |                       |            |                                                  |                                        |           |
| PROJEC                         | PROJECT MANAGER:                                                                               | R: 17                    |                               |               |                                                                                                         |                     |                               |             |                            |                          |                           |           |                  |                       |            |                                                  |                                        | i         |
| WELL ID:                       | MWA                                                                                            | _                        | METER ID:                     | 90            | 113                                                                                                     |                     |                               | TOTAL \     | TOTAL WELL DEPTH:          | TH: +30.5                | ĺΫ                        | SCR       | SCREEN INTERVAL: | ITERV                 | <u>F.</u>  |                                                  |                                        |           |
| EQUIPMENT USED:                |                                                                                                | BAILER                   | WATERRA                       | <br>or        | OTHER                                                                                                   |                     |                               | WEL         | WELL DIAMETER:             | <b>ER:</b> 50            |                           | _         | WELL STICK-UP:   | тіск-                 | E          | ĺχ                                               | 519                                    |           |
| LL GAUGING                     | ELL GAUGING AND PURGE VOLUME CALCULATIONS OTAL WELL DEPTH) – (DEPTH TO WATER) = (WATER COLUMN) | VOLUME CAL               | CULATIONS VATER COLUMN        | -<br>         | Use water column calculation together with the                                                          | ımn calculatio      | n together with               | the         |                            | LITRES PER 1 WELL VOLUME | אברר אסרחו                | SE        |                  | WELL HEADSF           | EADSP      | ACEP                                             | WELL HEADSPACE PID READING PID READING |           |
| 5.021                          | _ m - (6                                                                                       | = <u>Loby 91</u>         |                               | 3             | to determine the correct volume to be purged from the well (enter this value in the field to the right) | ne correct volu     | eld to the right              | ed from the | <u> </u>                   |                          | ļ_                        |           |                  | PPM: 0-0              | 9          |                                                  |                                        |           |
| CYCLE/                         | E (L)                                                                                          | DEPTH TO<br>WATER<br>(m) | DISSOLVED<br>OXYGEN<br>(mġ/l) | ) iii v       | ELECTRICAL<br>CONDUCTIVITY<br>(mS o (µS/am)                                                             | Sam) THE            | pH<br>(pH units)              | rits)       | REDOX<br>POTENTIAL<br>(mV) | NTIAL<br>VOX             | TEMPERATURE (°C)          | ATURE     |                  | —   ∃                 | tick one   | <b>,</b>                                         |                                        | COMMENTS  |
| V.                             |                                                                                                |                          | READING                       | CHANGE        | READING                                                                                                 | CHANGE*             | READING                       | CHANGE      | READING                    | CHANGE*                  | READING                   | CHANGE    | Cle              | Sligi<br>Clou<br>Clou | Ve<br>Clou | Tur                                              | COLLECTED, etc                         | CTED, etc |
| NA                             | Ŋ                                                                                              |                          | 3.96                          |               | 961                                                                                                     |                     | 7-08                          |             | \$6                        |                          | 16-2                      |           | \                |                       |            |                                                  | No adour                               |           |
|                                | 0                                                                                              |                          | 3-29                          |               | 1002                                                                                                    |                     | 7.02                          |             | 69                         |                          | 6.7                       |           | 1                |                       |            |                                                  |                                        |           |
|                                | 15                                                                                             |                          | 2.98                          |               | 1021                                                                                                    |                     | 1.04                          | _           | 61                         |                          | 16.9                      |           | _                |                       |            | <del>                                     </del> | 7                                      | 2/2       |
|                                | 20                                                                                             |                          | 2.96                          |               | 1009                                                                                                    |                     | 7.00                          |             | 66                         |                          | 69                        |           |                  | \                     |            |                                                  | 3                                      | 3.        |
|                                | 25                                                                                             |                          | 1.9.1                         |               | 1014                                                                                                    |                     | 7.01                          |             | 64                         |                          | 7.0                       |           | _                | 17                    | $\vdash$   |                                                  | ;                                      | 5         |
|                                |                                                                                                |                          |                               |               |                                                                                                         |                     |                               |             |                            |                          |                           |           |                  | -                     |            |                                                  |                                        |           |
|                                |                                                                                                |                          |                               |               |                                                                                                         |                     |                               |             |                            |                          |                           |           |                  |                       |            |                                                  |                                        |           |
|                                |                                                                                                |                          |                               |               |                                                                                                         |                     |                               |             |                            |                          |                           |           | -                | -                     | +          | +                                                |                                        |           |
|                                |                                                                                                |                          |                               |               | ļ                                                                                                       |                     |                               |             |                            |                          |                           |           |                  |                       |            | 1                                                |                                        | ,         |
| ABILISÁTIO<br>≥adings within f | STABILISATION CRITERIA<br>readings within following ranges)                                    |                          | ±10%                          | )%            | ± 3%                                                                                                    | %                   | ± 0.1                         | 0.1 unit    | ± 10                       | 10mV                     | ± 0.2°C                   | °C        |                  |                       |            |                                                  |                                        |           |
| DUPLICATE                      | COLLECTED:                                                                                     | ~<br>~                   |                               | DUPLICATE ID: | ::<br> <br>                                                                                             |                     |                               | TRI         | TRIPLICATE C               | COLLECTED:               | <b>*</b>                  | z         | M                | TRIPLICATE ID:        | OI BLY:    | Ï                                                |                                        | ı         |
| ERE METALS                     | WERE METALS FIELD FILTERED?                                                                    | RED? Y                   | Z                             | UNFILTERE     | UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE. META                                 | <u>UST NOT BE F</u> | <u>UT INTO A PR</u>           | ESERVED CO  | ONTAINER (IE               | <u>, 'METALS' Bo</u>     | LS' BOTTLE)               |           |                  |                       |            |                                                  |                                        |           |

| Groundwater |
|-------------|
| r Sampling  |
| Form (      |
| A) – Gen    |
| eral        |

Issue Date: 25/08/09

| environments                            |
|-----------------------------------------|
| Groundwater Sampling Form (A) - General |
| PAGEOF                                  |
|                                         |

| WERE !                                                                 | DUPI                 | STABIL<br>(3 reading                                        |  |          |          |   |          |      |          |         | ٥          |                | TIME OF<br>DAY                              | 13005                                                                                                   | (TOTAL W                                                                                           | E C                        |                | WELL ID:          | <u> </u>         |                 |               |     |
|------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|--|----------|----------|---|----------|------|----------|---------|------------|----------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------|----------------|-------------------|------------------|-----------------|---------------|-----|
| WERE METALS FIELD FILTERED?                                            | DUPLICATE COLLECTED: | STABILISATION CRITERIA (3 readings within following ranges) |  |          |          |   |          |      |          |         | N N        |                | CYCLE/<br>PUMP<br>RATE<br>(ml/min)          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                   | (TOTAL WELL DEPTH) - (DEPTH TO WATER) = (WATER COLUMN)                                             | EQUIPMENT OSED:            |                | SOW IEL           | PROJECT MANAGER: | FIELD PERSONNEL | PROJE         | (   |
| LD FILTERE                                                             | LLECTED:             | UTERIA<br>ng ranges)                                        |  |          |          |   | 3        | 2C   | 15       | 10      | ሆ <u>ነ</u> |                | (L)                                         | 1-9750                                                                                                  | - (DEPTH TO)                                                                                       | D: BAIFER                  |                | ν<br>             | IANAGER:         | SONNEL:         | PROJECT NAME: |     |
| <b>-</b>                                                               | <b>*</b>             |                                                             |  |          |          |   |          |      |          |         |            |                | DEPTH TO<br>WATER<br>(m)                    | 50                                                                                                      | WATER) = (M                                                                                        | ב<br>ב                     | $\Box$         | _                 | 100              | 0               | <b>V</b>      | . · |
| z<br>[                                                                 | Z                    | I+                                                          |  |          |          |   | 3.61     | 3.59 | 362      | LL/S    | 358        | READING        | DISS(<br>OXY<br>(m                          |                                                                                                         | ATER COLUM                                                                                         | WAIEKKA                    | MATERRA        | METER ID:         | SH               | CL. EJ          | UNIDINA       |     |
| UNFILTER                                                               | DUPLICATE ID:        | ± 10%                                                       |  |          |          |   |          |      |          |         |            | CHANGE*        | DISSOLVED<br>OXYGEN<br>(mg/l)               | <br>3                                                                                                   | <u></u>                                                                                            |                            |                |                   |                  |                 | Creek         |     |
| UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE., 'M | ë<br>₽               |                                                             |  | ,        |          |   | aua      | 940  | 964      | 247     | 883        | READING        | ELEC<br>COND<br>(mS                         | to determir<br>well (enter                                                                              | Use water procedures                                                                               |                            |                |                   |                  |                 |               |     |
| S MUST NOT                                                             |                      | ±3%                                                         |  | -        |          |   |          |      |          |         |            | CHANGE         | ELECTRICAL<br>CONDUCTIVITY<br>(mS or µS/cm) | to determine the correct volume to be purged from the well (enter this value in the field to the right) | Use water column calculation together with the procedures in 'SOP- Groundwater Sampling - Bailers' |                            |                |                   |                  |                 |               |     |
| BE PUT INTO                                                            |                      |                                                             |  |          |          |   | 7.42     | 7.37 | 7.49     | 7.55    | 7.5        | E" READING     |                                             | t volume to be<br>the field to the                                                                      | ilation togeth                                                                                     |                            |                |                   |                  |                 |               |     |
| ) A PRESERV                                                            |                      | ±0.1 unit                                                   |  | <u> </u> |          | _ | 12       |      | ۵        | 0.1     | 3          |                | pH<br>(pH units)                            | e purged fron<br>e right)                                                                               | er with the<br>ampling - Bai                                                                       |                            |                | 10.               |                  |                 |               |     |
| ED CONTA                                                               | TRIPLICATE           | 38-50-5<br>38-50-5<br>38-50-5<br>38-50-5                    |  |          |          |   |          |      | -^       | ic      |            | CHANGE* RE     |                                             | n the                                                                                                   | lers'                                                                                              |                            | ¥<br>=<br>=    | TAL WEL           |                  |                 |               | - ا |
| NER (IE. M                                                             | CATE COLI            | ± 10m                                                       |  | <u> </u> |          |   | 87       | 8    | 89       | 105     | 97         | READING        | REDOX<br>POTENTIAL<br>(mV)                  |                                                                                                         | LITRES                                                                                             |                            | WELL DIAMETER: | TOTAL WELL DEPTH: |                  |                 | PROJE         | '   |
| ETALS' BOTTLE)                                                         | LECTED:              | <b>~</b>                                                    |  |          |          |   |          |      |          |         |            | CHANGE         | δĽ                                          |                                                                                                         | PER 1 W                                                                                            | 11                         | 0<br>0         | 8/                |                  | Đ               | CT NUMBER:    | ,   |
| II(E)                                                                  | <b>~</b>             | ± 0.2°C                                                     |  |          |          |   | 13.9     | 139  | 14.0     | 14.1    | 14.2       | READING        | TEMPERATURE<br>(°C)                         | _                                                                                                       | PER 1 WELL VOLUME                                                                                  |                            | U              | 800               |                  | DATE:           | 1             |     |
|                                                                        | z<br>\_              | Ĉ                                                           |  |          |          |   |          |      |          |         |            | CHANGE         | <u> </u>                                    |                                                                                                         | Ē                                                                                                  |                            | S              | SCRI              |                  | 8.5             | EC00733A+     |     |
|                                                                        |                      |                                                             |  |          | <u> </u> |   |          |      | -        | 1       | <u>\</u>   |                | ghtly CLAR                                  | <u></u>                                                                                                 | . פ                                                                                                | _                          | WELL STICK-UP: | SCREEN INTERVAL:  |                  | 10.09           | 3A.1          |     |
|                                                                        | TRIPLICATE ID:       |                                                             |  | <u> </u> |          |   | -        |      |          |         |            | -              | CLARITY – tick one                          | PPM:                                                                                                    | PID READING                                                                                        | <u> </u>                   | ICK-L          | TERVA             |                  | -2              |               |     |
|                                                                        | ¥ΤΕ ΙD: _            | 6.5                                                         |  |          |          |   |          | 1    | \        |         |            | Clo            | ery of one                                  | C                                                                                                       | OING                                                                                               | Anspar                     |                | <b>F</b><br>      |                  |                 |               |     |
|                                                                        |                      | 10 4 5 4 5 (C).<br>20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |          |          | - |          |      | <u> </u> |         |            | Tu             | rbid                                        | Ö                                                                                                       | į                                                                                                  |                            | ,<br>T         |                   |                  |                 |               |     |
|                                                                        |                      |                                                             |  |          |          |   | <u>-</u> | 1    | -        | no oder | no odas    | COLLECTED, etc | ODOUR, COI                                  |                                                                                                         | į                                                                                                  | WELL HEADSPACE DID BEADING | ev)            |                   | i                |                 |               |     |
|                                                                        |                      |                                                             |  |          |          |   | 5        | ٤    | durk     | gregish | i.         | )LLECTED, e    | COMMENTS                                    |                                                                                                         |                                                                                                    |                            |                |                   |                  | •               |               |     |
|                                                                        |                      |                                                             |  |          | b        |   |          |      | arcio    | ٢       |            | ਨ              | IENTS. PSH                                  |                                                                                                         |                                                                                                    |                            |                |                   |                  |                 |               |     |

| coffey           |
|------------------|
| •                |
| <br>environments |

Groundwater Sampling Form (A) - General

| PAGE |
|------|
|      |
| 유    |
|      |

| WERE N                                                                | DUPL                 | STABILI<br>(3 readings                                      |  |   |   |   |          |      |            |      | 0        |                  | TIME OF DAY                                 |                        | 5.8+                                              | (TOTAL W                                                                                                                                                 | WELL GA                                    | EQUIP           | WELL ID:          | PI               |                  |                 |   |
|-----------------------------------------------------------------------|----------------------|-------------------------------------------------------------|--|---|---|---|----------|------|------------|------|----------|------------------|---------------------------------------------|------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------|-------------------|------------------|------------------|-----------------|---|
| WERE METALS FIELD FILTERED?                                           | DUPLICATE COLLECTED: | STABILISATION CRITERIA (3 readings within following ranges) |  |   |   |   |          |      |            |      | NA       |                  | PUMP<br>RATE<br>(ml/min)                    | 2001                   | ]<br> <br>                                        | (TOTAL WELL DEPTH) $-$ (DEPTH TO WATER) $=$ (WATER COLUMN)                                                                                               | WELL GAUGING AND PURGE VOLUME CALCULATIONS | EQUIPMENT USED: |                   | PROJECT MANAGER: | FIELD PERSONNEL: | PROJE(          |   |
| LD FILTERE                                                            | LECTED:              | ITERIA<br>ng ranges)                                        |  |   |   |   | 28       | 20   | 15         | 10   | 5        |                  | VOLUME<br>(L)                               |                        | 1-14                                              | - (ДЕРТН ТО                                                                                                                                              | PURGE VO                                   | D: BAILER       | MUG.              | ANAGER:          | SONNEL:          | PROJECT NAME:   |   |
|                                                                       | <b>~</b>             |                                                             |  |   |   |   |          |      |            |      |          |                  | DEPTH TO<br>WATER<br>(m)                    |                        |                                                   | MATER) = (M                                                                                                                                              | LUME CAL                                   |                 |                   | JH.              | 6                | Mech            |   |
| z                                                                     | L<br>Z               | 1                                                           |  |   |   |   | 208      | 2.02 | 2.10       | 1.93 | 175      | READING          | DISS(<br>OX)<br>(m                          |                        |                                                   | ATER COLUN                                                                                                                                               | CULATIONS                                  | WATERRA         | METER ID:         |                  | + 60             | sympere (       | ļ |
| UNFILTER                                                              | DUPLICATE ID:        | ±10%                                                        |  | 1 |   |   |          |      |            |      |          | CHANGE*          | DISSOLVED<br>OXYGEN<br>(mg/l)               |                        | 3                                                 | Ž)                                                                                                                                                       | _"                                         |                 |                   |                  |                  | Creck           |   |
| UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE. 'M | <br> -               | H                                                           |  |   |   |   | HILL     | 801) | 1125       | 720  | 8 III    | READING          | COND<br>(mS                                 |                        | well (enter                                       | Use water procedures                                                                                                                                     |                                            | OTHER           |                   | }                |                  |                 |   |
| S MUST NOT                                                            |                      | ± 3%                                                        |  |   |   |   |          |      |            |      |          | CHANGE*          | ELECTRICAL<br>CONDUCTIVITY<br>(mS or µS/cm) |                        | well (enter this value in the field to the right) | Use water column calculation together with the procedures in 'SOP- Groundwater Sampling - Bailers' to determine the correct volume to be nurged from the |                                            | ļ               |                   |                  |                  |                 |   |
| BE PUT INTO                                                           |                      |                                                             |  |   |   | _ | 7.00     | 7.70 | 7.19       | 7-11 | 6.9      | E* READING       |                                             |                        | the field to th                                   | ulation togeth<br>oundwater S                                                                                                                            |                                            |                 |                   |                  |                  |                 |   |
| O A PRESER                                                            |                      | # 0,1 unit                                                  |  |   | · |   | 0        | c    | الام       |      | 16       |                  | pH<br>(pH units)                            |                        | e right)                                          | er with the<br>ampling - Ba                                                                                                                              | <u> </u>                                   |                 | 70                |                  |                  |                 |   |
| VED CONTA                                                             | TRIPLIC              | # 152   11<br># 152   11                                    |  |   |   |   | 0        | _    | 6          | ~    | 1        | CHANGE* RE       |                                             | $\left  \cdot \right $ | ć                                                 | illers'                                                                                                                                                  | $\rfloor  $                                | WELL DI         | TAL WEL           |                  |                  |                 |   |
| NER (IE. ME                                                           | TRIPLICATE COLL      | ± 10m\                                                      |  |   | ٠ |   | 75<br>24 | 42   | <u>५</u> ० | 88   | 103      | READING C        | REDOX<br>POTENTIAL<br>(mV)                  |                        |                                                   | LITRES                                                                                                                                                   |                                            | WELL DIAMETER:  | TOTAL WELL DEPTH: |                  |                  | PROJEC          |   |
| ETALS' BOTTLE)                                                        | LECTED:              | <                                                           |  |   |   |   | _        | _    | 7          | ٠,   |          | CHANGE*          |                                             | $\frac{1}{2}$          |                                                   | PER 1 WE                                                                                                                                                 |                                            | o<br>No         |                   |                  | DA               | PROJECT NUMBER: |   |
| <br> -<br>                                                            | <u> </u>             | ± 0.2°C                                                     |  |   |   |   | 0.17     | 14.G | 14.0       | 13-9 | 13.4     | READING          | TEMPERATURE<br>(°C)                         |                        | Ļ                                                 | LITRES PER 1 WELL VOLUME                                                                                                                                 |                                            |                 |                   |                  | DATE: 3          | F               |   |
|                                                                       |                      | C                                                           |  |   |   |   |          | ,    |            |      |          | CHANGE           | ear                                         | -                      |                                                   | m                                                                                                                                                        |                                            | ¥               | SCRE              |                  | 3/10/05          | ECO233AA        |   |
|                                                                       |                      |                                                             |  |   |   | - | ١        | ١    | \          | `    |          | Slig             |                                             |                        | PPM:                                              | PIDR                                                                                                                                                     | WELL                                       | WELL STICK-UP:  | SCREEN INTERVAL:  |                  |                  | 圣               |   |
|                                                                       | TRIPLICATE ID: .     |                                                             |  |   |   |   |          |      |            |      |          | Clo<br>Ve<br>Clo | \ 💆                                         |                        | 000                                               | PID READING                                                                                                                                              | WELL HEADSPACE PID READING                 | 1               | RVAL:             |                  |                  |                 |   |
|                                                                       |                      |                                                             |  |   |   |   |          |      | _          |      | 7        |                  | bid                                         | -                      |                                                   |                                                                                                                                                          | CE PID R                                   | h. 18.0         |                   |                  |                  |                 |   |
|                                                                       |                      |                                                             |  |   |   |   |          |      |            | 11   | No odeen | COLLECTED, etc   | COMMENTS                                    |                        |                                                   |                                                                                                                                                          | READING                                    |                 |                   |                  |                  |                 |   |
|                                                                       |                      |                                                             |  |   |   |   |          |      |            |      |          | <u>.</u>         | <i>d</i><br>D<br>D                          |                        |                                                   |                                                                                                                                                          |                                            |                 |                   |                  |                  |                 |   |

| WERE         | - QUP         | STABI<br>(3 readin                                          |  |  | - |          |    |    |    |   | 0       |     | TIME OF<br>DAY                     | -  | Ž.       | (TOTAL)              | EQUI         | WELL  |                  |            |               | coffey       |
|--------------|---------------|-------------------------------------------------------------|--|--|---|----------|----|----|----|---|---------|-----|------------------------------------|----|----------|----------------------|--------------|-------|------------------|------------|---------------|--------------|
| METALS FIELD | DUPLICATE COI | STABILISATION CRITERIA (3 readings within following ranges) |  |  |   |          |    |    |    |   | NA<br>A |     | CYCLE/<br>PUMP<br>RATE<br>(ml/min) |    | 014      | (TOTAL WELL DEPTH) – | EQUIPMENT US | T 10: | PROJECT MANAGER: | FIELD PE   | PROJECT       | fey          |
| LD FILTERED? | COLLECTED:    | RITERIA<br>ng ranges)                                       |  |  |   | B        | 25 | 20 | 15 | õ | N       |     | VOLUME                             | `i | ار<br>ا  | – (DEPTH TO WATER)   | USED: BAILER | ٦     | MANAGER          | PERSONNEL: | CT NAME:      | envi         |
| ED? Y        | <b>~</b>      |                                                             |  |  |   |          |    |    |    |   |         |     | DEPTH TO<br>WATER:<br>(m)          |    | 1å≥<br>= | ĬI g                 |              | ]     | 1                | <u>C</u>   | <u>ا</u><br>س | environments |
| Z            | Z             | 3423-030<br>334-035                                         |  |  |   | <b>P</b> | P  | φ. | \$ | 6 | Ńί      | REA |                                    |    |          | = (WATER O           |              | METE  |                  | 7          | 77            | stn          |

| сопеу                | ey•                                                         | envi                        | environments              | nts                                                                          |               |                                                 | ଦ୍ର                                   | Groundwater Sampling Form                                                                                                                                  | er Samp                      | ling Forr                  |                | (A) - General            |        |                  |                            |                      |          |     |      |              | PAGE OF                               |
|----------------------|-------------------------------------------------------------|-----------------------------|---------------------------|------------------------------------------------------------------------------|---------------|-------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|----------------|--------------------------|--------|------------------|----------------------------|----------------------|----------|-----|------|--------------|---------------------------------------|
|                      | PROJE                                                       | PROJECT NAME:               | 1                         | bw.d                                                                         | 3006          |                                                 |                                       |                                                                                                                                                            |                              | PROJE                      | ECT NUMBER:    | t I                      | EC002- | N                | P                          |                      |          |     |      |              |                                       |
|                      | FIELD PERSONNEL:                                            | RSONNEL                     | CC                        | 171                                                                          |               |                                                 |                                       |                                                                                                                                                            | c                            |                            | -              | DATE: S                  | loco   | هر               |                            |                      |          |     |      |              |                                       |
|                      | PROJECT MANAGER:                                            | MANAGER                     | 111                       |                                                                              |               |                                                 |                                       |                                                                                                                                                            |                              | ·                          |                |                          |        |                  |                            |                      |          |     |      |              |                                       |
| WEL                  | WELL ID: 🗥                                                  | Y)WH                        |                           | METER ID:                                                                    | Q()           | FLX                                             |                                       |                                                                                                                                                            | TOTAL                        | TOTAL WELL DEPTH           | , <del>"</del> | 18.014                   | SCR    | SCREEN INTERVAL: | TER!                       | <u>P</u>             |          |     |      |              |                                       |
| EQUI                 | EQUIPMENT USED:                                             | ED: BAILER                  |                           | WATERRA                                                                      | <br>약         | OTHER_                                          |                                       |                                                                                                                                                            | WEL                          | WELL DIAMETER              | * SO           | }                        | <      | WELL STICK-UP:   | T CK                       | Ë                    | À        | 0   | Ø    |              |                                       |
| WELL G               | AUGING AN                                                   | D PURGE V                   | OLUME CAL                 | WELL GAUGING AND PURGE VOLUME CALCULATIONS                                   | _             | lee water coli                                  | ımın malnılləti                       | on together with                                                                                                                                           | , <del>†</del>               |                            | i              |                          |        |                  | WELL HEADSPACE PID READING | IEADS                | PACE     | 물   | READ | NG<br>G      |                                       |
| (TOTAL)              | WELL DEPTH)                                                 | m - G-1                     | ОWATER)=(М                | (TOTAL WELL DEPTH) – (DEPTH TO WATER) = (WATER COLLMM) $(8.0) 4 m - 6.743 =$ | 3             | procedures in to determine the well (enter this | SOP- Grounne correct vo               | procedures in SOP- Groundwater Sampling - Bailers' to determine the correct volume to be purged from the well (enter this value in the field to the right) | ng - Bailers'<br>ed from the |                            | S PER 1 v      | LITRES PER 1 WELL VOLUME | Î      | יד נד            | PID READING                | ADING<br>O · O       |          |     |      |              |                                       |
|                      |                                                             |                             |                           | ,                                                                            |               |                                                 |                                       |                                                                                                                                                            |                              |                            |                |                          |        |                  |                            |                      |          |     |      |              |                                       |
| TIME OF<br>DAY       | CYCLE/<br>PUMP<br>RATE<br>(ml/min)                          | VOLUME<br>(L)               | DEPTH TO<br>WATER:<br>(m) | DISSOLVED<br>OXYGEN<br>(mg/l)                                                | SEN<br>(VED   | ELECTRICAL CONDUCTIVITY (mS or (S/cm))          | ICAL<br>Som                           | pH<br>(pH units)                                                                                                                                           | nits)                        | REDOX<br>POTENTIAL<br>(mV) | ) TAL          | TEMPERATURE (°C)         |        |                  | ₹                          |                      |          |     |      | 5            | COMMENTS                              |
|                      |                                                             |                             |                           | READING                                                                      | CHANGE        | READING                                         | CHANGE*                               | READING                                                                                                                                                    | CHANGE                       | READING                    | CHANGE*        | READING                  | CHANGE | Slig<br>Clo      |                            | Ve<br>Clo            | Clor     | - " |      | ر<br>د<br>ک  | COLLECTED, etc                        |
| 0                    | NA                                                          | N                           |                           | 18.5                                                                         |               | 1101                                            | 1<br>120<br>121 101 211<br>1515-04 55 | 8.40                                                                                                                                                       |                              | 22                         |                | 72.4                     |        |                  |                            |                      |          | 7   | ٥    | 2            | <b>ч</b>                              |
|                      |                                                             | õ                           |                           | 470                                                                          |               | 782                                             | -                                     | 8.30                                                                                                                                                       |                              | 76                         |                | 12.9                     |        | -                | \                          |                      |          |     | ",   | ٤.           | pale gray                             |
|                      |                                                             | īs                          |                           | 4.61                                                                         |               | 918                                             |                                       | 8.19                                                                                                                                                       |                              | ବେ                         |                | 13.5                     |        |                  | \                          | <u> </u>             |          | 7   | _    | î            | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|                      |                                                             | 20                          |                           | 4-31                                                                         |               | 901                                             |                                       | 32.8                                                                                                                                                       |                              | 74                         |                | (¾.a                     |        |                  |                            |                      | $\vdash$ | 7   | ľ    | 7            | , 920-1                               |
|                      |                                                             | 255                         |                           | 4.38                                                                         |               | 970                                             |                                       | 15.8                                                                                                                                                       |                              | 18                         |                | 13:8                     |        |                  |                            | ļ.                   |          | 7   |      | ٦            | 1                                     |
|                      |                                                             | B                           |                           | 4-21                                                                         |               | 150                                             |                                       | 12.8                                                                                                                                                       |                              | 76                         |                | 13.9                     |        |                  |                            |                      |          | Á   |      | ۶            | s                                     |
|                      |                                                             |                             |                           |                                                                              |               |                                                 |                                       |                                                                                                                                                            |                              |                            |                |                          |        |                  |                            |                      |          |     |      |              |                                       |
|                      |                                                             |                             |                           |                                                                              |               |                                                 |                                       |                                                                                                                                                            |                              |                            |                |                          |        |                  | -                          | -                    |          |     |      |              |                                       |
|                      |                                                             |                             |                           |                                                                              |               |                                                 |                                       |                                                                                                                                                            |                              |                            |                |                          |        |                  |                            |                      |          |     |      |              |                                       |
| STABII<br>(3 reading | STABILISATION CRITERIA (3 readings within following ranges) | <b>NTERIA</b><br>ng ranges) |                           | ±10                                                                          | 10%           | ± 3%                                            | 6                                     | ± 0.7 unit                                                                                                                                                 | unit                         | ± 10m\                     | N              | ± 0.2°C                  | Ĉ      |                  | 102.2                      | 1. 351 (8)<br>34 (8) |          |     |      | 2000<br>2000 |                                       |
| DUP                  | DUPLICATE COI                                               | COLLECTED:                  | <b>~</b>                  | z                                                                            | DUPLICATE ID: | ; <del>;</del>                                  |                                       |                                                                                                                                                            | TR.                          | TRIPLICATE CO              | COLLECTED:     | <b>*</b>                 | Z<br>Z | ·                | TRIPLICATE ID:             | CATE                 | <u>,</u> |     |      |              |                                       |
| WERE                 | WERE METALS FIELD FILTERED?                                 | LD FILTERI                  | _                         | z                                                                            | UNFILTERE     | D SAMPLES ML                                    | JST NOT BE                            | UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE. 'METALS' BOTTLE)                                                                        | ESERVED CO                   | NTAINER (IE.               | METALS' BO     | <u>ше</u> )              |        |                  |                            |                      |          |     |      |              |                                       |
|                      |                                                             |                             |                           |                                                                              |               |                                                 |                                       |                                                                                                                                                            |                              |                            |                |                          |        |                  |                            | I                    | I        | ı   |      |              |                                       |

|   | CO   |
|---|------|
|   | ffe) |
|   | 17   |
|   | envi |
| 7 | ronm |
|   | ents |
|   |      |

# Groundwater Sampling Form (A) - General

| PAGE       |
|------------|
|            |
| 유<br> <br> |

| WERE                                                                                | DUP                  | STABII<br>(3 reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      |     |   |        |   |      |          |             |          | 0                          |                      | TIME OF<br>DAY                             | 28                                                | (TOTAL)                                                                                                                                                    | WEILG                                         | EQUI            | WEL               |                  |                  | -             |  |
|-------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|-----|---|--------|---|------|----------|-------------|----------|----------------------------|----------------------|--------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------|-------------------|------------------|------------------|---------------|--|
| METALS FIE                                                                          | DUPLICATE COLLECTED: | STABILISATION CRITERIA (3 readings within following ranges)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *** . | ***. | **- |   | ~      |   |      |          |             |          | N<br>A                     |                      | CYCLE/<br>PUMP<br>RATE<br>(ml/min)         | 28.182                                            | WELL DEPTH)                                                                                                                                                | ALIGING AN                                    | EQUIPMENT USED: | WELL ID: 🙀        | PROJECT          | FIELD PE         | PROJ          |  |
| WERE METALS FIELD FILTERED?                                                         | LLECTED:             | RITERIA<br>ing ranges)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |     |   |        |   | 25   | 20       | 5           | õ        | n                          |                      | VOLUME<br>(L)                              | m - (\$-                                          | (TOTAL WELL DEPTH) — (DEPTH TO WATER) = (WATER COLUMN)                                                                                                     | WELL GALIGING AND BURGE VOLLIME CALCILLATIONS | ED: BAILER      | Mw8               | PROJECT MANAGER: | FIELD PERSONNEL: | PROJECT NAME: |  |
|                                                                                     | <b>*</b>             | Altorius del<br>Significación<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Colocia<br>Col |       |      |     |   |        |   |      |          |             |          |                            | EU-DRO               | DEPTH TO<br>WATER<br>(m)                   | 15.807 =                                          | WATER) = (V                                                                                                                                                | OI LIME CAL                                   | Q               |                   |                  |                  | 2             |  |
|                                                                                     | Z                    | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |   |        |   | 285  | 2.60     | 252         | 258      | 2-74                       | READING              |                                            |                                                   | VATER COLU                                                                                                                                                 | CIII ATION                                    | WATERRA         | METER ID:         |                  |                  | مع کدم        |  |
| UNFILTER                                                                            | DUPLICATE ID:        | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |     |   |        | - |      |          |             |          | 65 P =                     | CHANGE               | DISSOLVED<br>OXYGEN<br>(mg/l)              | 3                                                 | NN)                                                                                                                                                        | "                                             |                 |                   | -                |                  | 7 2           |  |
| UNFILTERED SAMPLES MUST NOT BE PUT INTO A PRESERVED CONTAINER (IE. 'METALS' BOTTLE) | TE ID:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   | 1769 | 1263     | 1289        | 1.201    | 1,888                      | READING              | ELEI<br>COND<br>(mS)                       | well (enter                                       | Use water                                                                                                                                                  |                                               | OTHER           |                   |                  |                  | R.            |  |
| MUST NOT                                                                            | 17.                  | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |      |     |   |        |   |      |          |             |          |                            | CHANGE               | ELECTRICAL<br>CONDUCTIVITY<br>(mS oruS/cm) | this value in t                                   | column calcus in 'SOP- Gr                                                                                                                                  |                                               |                 |                   |                  |                  |               |  |
| SE PUT INTO                                                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   | !<br>! |   | ころに  | ンドト      | 7.49        | 7.48     | 7.46                       | READING              |                                            | well (enter this value in the field to the right) | Use water column calculation together with the procedures in 'SOP- Groundwater Sampling - Bailers' to determine the corport volume to be purposed from the |                                               |                 |                   |                  |                  |               |  |
| A PRESERVE                                                                          |                      | 0.1 unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |      |     |   |        |   |      |          |             |          |                            | NG CHANGE            | pH<br>(pH units)                           | right)                                            | r with the impling - Baild                                                                                                                                 |                                               |                 | 707               |                  |                  |               |  |
| D CONTAINE                                                                          | TRIPLICATE COI       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   | 77   | 76       | 74          | 9.8°     | 134                        | GE* READING          | F                                          |                                                   | ੈ<br>ਭੂਲ<br>                                                                                                                                               |                                               | WELL DIAMETE    | TOTAL WELL DEPTH: |                  |                  | _             |  |
| R (IE. 'METAL                                                                       | E COLLECTED:         | ± 10mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | r     |      |     |   |        |   |      |          |             |          |                            | ING CHANGE*          | REDOX<br>POTENTIAL<br>(mV)                 | ı                                                 | LITRES PEI                                                                                                                                                 |                                               | 77              |                   |                  |                  | PROJECT       |  |
| S' BOTTLE)                                                                          | TED:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   | 12.9 | 17.8     | 12.8        | 17.6     | 12.2                       | GE* READING          | TEM                                        |                                                   | LITRES PER 1 WELL VOLUME                                                                                                                                   |                                               | 50mm            | 78.132            |                  | DATE:            | ECT NUMBER:   |  |
|                                                                                     | <b>Z</b>             | ± 0.2°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1     |      |     |   |        |   |      |          |             |          | er dei<br>er dei<br>er dei | NG CHANGE            | TEMPERATURE (°C)                           |                                                   | OLUME                                                                                                                                                      |                                               |                 | ľ                 |                  | 8/10             | TA 2 2 20033  |  |
|                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   |      |          | ,           | \        | 1                          | Cle                  |                                            |                                                   |                                                                                                                                                            |                                               | WELL            | CREEN I           |                  | 05               | 225           |  |
|                                                                                     | TRIPLICATE ID:       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |     |   |        |   |      |          |             |          |                            | Slig<br>Clor<br>Clor | udy - tic                                  | PPM: G·O                                          | PID READING                                                                                                                                                |                                               | WELL STICK-UP:  | SCREEN INTERVAL:  |                  |                  | ΔÄ            |  |
|                                                                                     | i                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   |      |          |             |          |                            | Ve<br>Clor<br>Tur    |                                            |                                                   | io stace                                                                                                                                                   | SEACE DI                                      | 0.724           |                   |                  |                  |               |  |
|                                                                                     | ac1A                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     | , |        |   | 7    | <i>;</i> | 2/2/        | 9 -      | No oo                      | ט ט ט                | 5                                          |                                                   | ם אנים אנים                                                                                                                                                |                                               | 24              |                   |                  |                  |               |  |
|                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   | ;    | ,        | ب<br>م<br>د | <i>}</i> | \ a < 3                    | COLLECTE             | COMMENTS                                   |                                                   | •                                                                                                                                                          |                                               |                 |                   | •                |                  |               |  |
|                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   |      |          |             |          |                            | COLLECTED, etc       | TIS STV                                    |                                                   |                                                                                                                                                            |                                               |                 |                   |                  |                  |               |  |
|                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |      |     |   |        |   |      |          |             |          |                            | , di                 | 2                                          |                                                   |                                                                                                                                                            |                                               |                 |                   |                  |                  |               |  |

# FINAL DRAFT

# Appendix G 95% UCL Outputs

Stage 3 Contamination Assessment, Jumping Creek Queanbeyan, NSW

### Sheet 1 Arsenic, Mineral Processing Area

|                                |          | Variable: arsenic                        |          |
|--------------------------------|----------|------------------------------------------|----------|
| Raw Statistics                 |          | Normal Distribution Test                 |          |
| Number of Valid Samples        | 32       | Shapiro-Wilk Test Statisitic             | 0.92794  |
| Number of Unique Samples       | 20       | Shapiro-Wilk 5% Critical Value           | 0.93     |
| Minimum                        | 7        | Data not normal at 5% significance level |          |
| Maximum                        | 45       |                                          |          |
| Mean                           | 21.25    | 95% UCL (Assuming Normal Distrib         | ution)   |
| Median                         | 20       | Student's-t UCL                          | 24.39358 |
| Standard Deviation             | 10.48809 |                                          |          |
| Variance                       | 110      | Gamma Distribution Test                  |          |
| Coefficient of Variation       | 0.493557 | A-D Test Statistic                       | 0.381276 |
| Skewness                       | 0.661395 | A-D 5% Critical Value                    | 0.750103 |
|                                |          | K-S Test Statistic                       | 0.102836 |
| Gamma Statistics               |          | K-S 5% Critical Value                    | 0.156086 |
| k hat                          | 4.220552 | Data follow gamma distribution           | ·        |
| k star (bias corrected)        | 3.845709 | at 5% significance level                 |          |
| Theta hat                      | 5.034886 |                                          |          |
| Theta star                     | 5.525639 | 95% UCLs (Assuming Gamma Distribut       |          |
| nu hat                         | 270.1154 | Approxi                                  | 24.81147 |
| nu star                        | 246.1254 | Adjusted Gamma UCL                       | 25.0188  |
| Approx.Chi Square Value (.05)  | 210.7962 |                                          |          |
| Adjusted Level of Significance | 0.0416   | Lognormal Distribution Test              |          |
| Adjusted Chi Square Value      | 209.0493 | Shapiro-Wilk Test Statisitic             | 0.956994 |
|                                |          | Shapiro-Wilk 5% Critical Value           | 0.93     |
| Log-transformed Statistics     | 4.04504  | Data are lognormal at 5% significance le | vel      |
| Minimum of log data            | 1.94591  | 050/ 1101 //                             |          |
| Maximum of log data            | 3.806662 | 95% UCLs (Assuming Lognormal Dist        |          |
| Mean of log data               | 2.933236 | 95% H-UCL                                | 25.68423 |
| Standard Deviation of log data | 0.515923 | 95% Chebyshev (MVUE) UCL                 | 30.26102 |
| Variance of log data           | 0.266177 | 97.5% Chebyshev (MVUE) UCL               | 34.11115 |
|                                |          | 99% Chebyshev (MVUE) UCL                 | 41.67397 |
|                                |          | 95% Non-parametric UCLs                  |          |
|                                |          | CLT UCL                                  | 24.29964 |
|                                |          | Adj-CLT UCL (Adjusted for skewness)      | 24.53127 |
|                                |          | Mod-t UCL (Adjusted for skewness)        | 24.4297  |
|                                |          | Jackknife UCL                            | 24.39358 |
|                                |          | Standard Bootstrap UCL                   | 24.25205 |
|                                |          | Bootstrap-t UCL                          | 24.62412 |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                     | 24.43784 |
| Data follow gamma distribution | (0.05)   | Percentile Bootstrap UCL                 | 24.28125 |
|                                |          | BCA Bootstrap UCL                        | 24.34375 |
| Use Ap                         |          | 95% Chebyshev (Mean, Sd) UCL             | 29.33161 |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL           | 32.82854 |
|                                |          | 99% Chebyshev (Mean, Sd) UCL             | 39.69756 |
|                                |          |                                          |          |

### Sheet 2 Lead - Mineral Processing Area

|                                |          | Variable: lead                            |          |
|--------------------------------|----------|-------------------------------------------|----------|
| Raw Statistics                 |          | Normal Distribution Test                  |          |
| Number of Valid Samples        | 32       | Shapiro-Wilk Test Statisitic              | 0.888673 |
| Number of Unique Samples       | 25       | Shapiro-Wilk 5% Critical Value            | 0.93     |
| Minimum                        | 39       | Data not normal at 5% significance level  | 0.00     |
| Maximum                        | 400      | Data not normal at 676 significance level |          |
| Mean                           | 174.0938 | 95% UCL (Assuming Normal Distribu         | ıtion)   |
| Median                         | 140      | Student's-t UCL                           | 203.1099 |
| Standard Deviation             | 96.80821 |                                           |          |
| Variance                       | 9371.83  | Gamma Distribution Test                   |          |
| Coefficient of Variation       | 0.556069 | A-D Test Statistic                        | 0.69673  |
| Skewness                       | 0.862225 | A-D 5% Critical Value                     | 0.751954 |
|                                | 0.002220 | K-S Test Statistic                        | 0.119059 |
| Gamma Statistics               |          | K-S 5% Critical Value                     | 0.156378 |
| k hat                          | 3.4506   | Data follow gamma distribution            | 0000.0   |
| k star (bias corrected)        | 3.147939 | at 5% significance level                  |          |
| Theta hat                      | 50.45318 |                                           |          |
| Theta star                     | 55.30403 | 95% UCLs (Assuming Gamma Distribut        | ion)     |
| nu hat                         | 220.8384 | Approxi                                   | 206.7823 |
| nu star                        | 201.4681 | Adjusted Gamma UCL                        | 208.7041 |
| Approx.Chi Square Value (.05)  | 169.6196 | ,                                         |          |
| Adjusted Level of Significance | 0.0416   | Lognormal Distribution Test               |          |
| Adjusted Chi Square Value      | 168.0578 | Shapiro-Wilk Test Statisitic              | 0.944139 |
| ,                              |          | Shapiro-Wilk 5% Critical Value            | 0.93     |
| Log-transformed Statistics     |          | Data are lognormal at 5% significance lev | vel      |
| Minimum of log data            | 3.663562 |                                           |          |
| Maximum of log data            | 5.991465 | 95% UCLs (Assuming Lognormal Distr        | ibution) |
| Mean of log data               | 5.007749 | 95% H-UCL                                 | 216.642  |
| Standard Deviation of log data | 0.575131 | 95% Chebyshev (MVUE) UCL                  | 257.7052 |
| Variance of log data           | 0.330775 | 97.5% Chebyshev (MVUE) UCL                | 293.3088 |
|                                |          | 99% Chebyshev (MVUE) UCL                  | 363.2451 |
|                                |          | 95% Non-parametric UCLs                   |          |
|                                |          | CLT UCL                                   | 202.2428 |
|                                |          | Adj-CLT UCL (Adjusted for skewness)       | 205.03   |
|                                |          | Mod-t UCL (Adjusted for skewness)         | 203.5446 |
|                                |          | Jackknife UCL                             | 203.1099 |
|                                |          | Standard Bootstrap UCL                    | 202.034  |
|                                |          | Bootstrap-t UCL                           | 205.204  |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                      | 204.5304 |
| Data follow gamma distribution | (0.05)   | Percentile Bootstrap UCL                  | 201.3438 |
|                                |          | BCA Bootstrap UCL                         | 204.1563 |
| Use Ap                         |          | 95% Chebyshev (Mean, Sd) UCL              | 248.6895 |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL            | 280.9671 |
|                                |          | 99% Chebyshev (Mean, Sd) UCL              | 344.3703 |
|                                |          |                                           |          |

# Sheet 3 Zinc - Mineral Processing Area

|                                |          | Variable: zinc                           |          |
|--------------------------------|----------|------------------------------------------|----------|
|                                |          | Validato. Zillo                          |          |
| Raw Statistics                 |          | Normal Distribution Test                 |          |
| Number of Valid Samples        | 32       | Shapiro-Wilk Test Statisitic             | 0.897819 |
| Number of Unique Samples       | 26       | Shapiro-Wilk 5% Critical Value           | 0.93     |
| Minimum                        | 70       | Data not normal at 5% significance level |          |
| Maximum                        | 720      |                                          |          |
| Mean                           | 303.75   | 95% UCL (Assuming Normal Distrib         | ution)   |
| Median                         | 245      | Student's-t UCL                          | 354.4486 |
| Standard Deviation             | 169.1487 |                                          |          |
| Variance                       | 28611.29 | Gamma Distribution Test                  |          |
| Coefficient of Variation       | 0.556868 | A-D Test Statistic                       | 0.408481 |
| Skewness                       | 1.016127 | A-D 5% Critical Value                    | 0.751843 |
|                                |          | K-S Test Statistic                       | 0.103262 |
| Gamma Statistics               |          | K-S 5% Critical Value                    | 0.156358 |
| k hat                          | 3.501957 | Data follow gamma distribution           |          |
| k star (bias corrected)        | 3.194482 | at 5% significance level                 |          |
| Theta hat                      | 86.73722 |                                          |          |
| Theta star                     | 95.08585 | 95% UCLs (Assuming Gamma Distribut       |          |
| nu hat                         | 224.1252 | Approxi                                  | 360.3075 |
| nu star                        | 204.4468 | Adjusted Gamma UCL                       | 363.6299 |
| Approx.Chi Square Value (.05)  | 172.3548 |                                          |          |
| Adjusted Level of Significance | 0.0416   | Lognormal Distribution Test              | T        |
| Adjusted Chi Square Value      | 170.78   | Shapiro-Wilk Test Statisitic             | 0.967053 |
|                                |          | Shapiro-Wilk 5% Critical Value           | 0.93     |
| Log-transformed Statistics     |          | Data are lognormal at 5% significance le | vel      |
| Minimum of log data            | 4.248495 |                                          |          |
| Maximum of log data            | 6.579251 | 95% UCLs (Assuming Lognormal Distr       |          |
| Mean of log data               | 5.566686 | 95% H-UCL                                | 376.9414 |
| Standard Deviation of log data | 0.570112 | 95% Chebyshev (MVUE) UCL                 | 448.0584 |
| Variance of log data           | 0.325028 | 97.5% Chebyshev (MVUE) UCL               | 509.5545 |
|                                |          | 99% Chebyshev (MVUE) UCL                 | 630.3515 |
|                                |          | 95% Non-parametric UCLs                  |          |
|                                |          | CLT UCL                                  | 352.9337 |
|                                |          | Adj-CLT UCL (Adjusted for skewness)      | 358.6728 |
|                                |          | Mod-t UCL (Adjusted for skewness)        | 355.3438 |
|                                |          | Jackknife UCL                            | 354.4486 |
|                                |          | Standard Bootstrap UCL                   | 351.9343 |
|                                |          | Bootstrap-t UCL                          | 366.2587 |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                     | 361.5572 |
| Data follow gamma distribution | (0.05)   | Percentile Bootstrap UCL                 | 355.3125 |
|                                |          | BCA Bootstrap UCL                        | 358.125  |
| Use Ap                         |          | 95% Chebyshev (Mean, Sd) UCL             | 434.0878 |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL           | 490.4851 |
|                                |          | 99% Chebyshev (Mean, Sd) UCL             | 601.2667 |
|                                |          |                                          |          |

# Sheet 4 Arsenic - Open Space and Residential

|                                |          |            | Variable:    | Arsenic                   |              |          |
|--------------------------------|----------|------------|--------------|---------------------------|--------------|----------|
|                                |          |            |              |                           |              |          |
| Raw Statistics                 |          |            | Normal D     | Distribution <sup>-</sup> | Test         |          |
| Number of Valid Samples        | 74       | Lilliefors | Test Stati   | sitic                     |              | 0.362539 |
| Number of Unique Samples       | 16       |            | 5% Critica   |                           |              | 0.102995 |
| Minimum                        | 0        |            |              | 5% signific               | ance level   | <br>     |
| Maximum                        | 130      |            |              |                           |              |          |
| Mean                           | 8.608108 | 959        | 6 UCL (Ass   | suming Norr               | nal Distribu | tion)    |
| Median                         | 5        | Student    |              |                           |              | 12.33832 |
| Standard Deviation             | 19.26087 |            |              |                           |              |          |
| Variance                       | 370.9813 |            |              |                           |              |          |
| Coefficient of Variation       | 2.237527 |            |              |                           |              |          |
| Skewness                       | 5.562757 |            |              |                           |              |          |
|                                |          |            |              |                           |              |          |
| Gamma Statistics Not Availab   | le       |            |              |                           |              |          |
|                                | ·        |            |              |                           |              |          |
|                                |          |            |              |                           |              |          |
| Lognormal Statistics Not Avail | able     |            |              |                           |              |          |
|                                |          |            |              |                           |              |          |
|                                |          |            |              | arametric L               | JCLs         |          |
|                                |          | CLT UC     |              |                           |              | 12.29099 |
|                                |          |            |              | usted for ske             |              | 13.83807 |
|                                |          |            |              | ed for skew               | ness)        | 12.57964 |
|                                |          | Jackkni    |              |                           |              | 12.33832 |
|                                |          |            | d Bootstrap  | UCL                       |              | 12.21919 |
|                                |          |            | ap-t UCL     |                           |              | 23.7493  |
| RECOMMENDATION                 |          |            | ootstrap U0  |                           |              | 32.93977 |
| Data are Non-parametric (0.0   | 5)       |            | ile Bootstra | •                         |              | 12.7973  |
|                                |          |            | otstrap UC   | L                         |              | 14.16216 |
| Use 95 <sup>c</sup>            |          | 95% Ch     |              |                           |              | 18.36782 |
|                                |          |            |              | (Mean, Sd)                |              | 22.59085 |
|                                |          | 99% Ch     | ebyshev (N   | /lean, Sd) U              | ICL          | 30.88619 |
|                                |          |            |              |                           |              |          |

# Sheet 5 Cadmium - Open Space and Residential

|                                    |                          |                                     | Variable:    | Cadmium      |              |          |
|------------------------------------|--------------------------|-------------------------------------|--------------|--------------|--------------|----------|
|                                    | l l                      |                                     |              |              | <u>I</u>     |          |
| Raw Statistics                     | Normal Distribution Test |                                     |              | Гest         |              |          |
| Number of Valid Samples            | 74                       | Lilliefors                          | s Test Stati | sitic        |              | 0.396294 |
| Number of Unique Samples           | 9                        | Lilliefors                          | s 5% Critica | al Value     |              | 0.102995 |
| Minimum                            | 0                        |                                     |              | 5% signific  | ance level   |          |
| Maximum                            | 2.1                      |                                     |              |              |              |          |
| Mean                               | 0.167703                 | 959                                 | % UCL (Ass   | suming Norr  | nal Distribu | tion)    |
| Median                             | 0                        |                                     | 's-t UCL     |              |              | 0.231883 |
| Standard Deviation                 | 0.331392                 |                                     |              |              |              |          |
| Variance                           | 0.109821                 |                                     |              |              |              |          |
| Coefficient of Variation           | 1.976069                 |                                     |              |              |              |          |
| Skewness                           | 3.238833                 |                                     |              |              |              |          |
|                                    |                          |                                     |              |              |              |          |
| Gamma Statistics Not Availab       | le                       |                                     |              |              |              |          |
|                                    |                          |                                     |              |              |              |          |
|                                    |                          |                                     |              |              |              |          |
| Lognormal Statistics Not Available |                          |                                     |              |              |              |          |
|                                    |                          |                                     |              |              |              |          |
|                                    |                          |                                     | 95% Non-p    | arametric U  | JCLs         |          |
|                                    |                          | CLT UC                              | :L           |              |              | 0.231068 |
|                                    |                          | Adj-CLT UCL (Adjusted for skewness) |              | 0.246566     |              |          |
|                                    |                          |                                     |              | ed for skew  | ness)        | 0.2343   |
|                                    |                          | Jackkni                             | fe UCL       |              |              | 0.231883 |
|                                    |                          | Standard Bootstrap UCL              |              |              | 0.231923     |          |
|                                    |                          | Bootstrap-t UCL 0.3                 |              |              | 0.259945     |          |
| RECOMMENDATION                     |                          | Hall's Bootstrap UCL                |              | 0.281695     |              |          |
| Data are Non-parametric (0.05)     |                          | Percentile Bootstrap UCL            |              |              | 0.233919     |          |
|                                    |                          | •                                   |              | 0.243378     |              |          |
| Use 95 <sup>¢</sup>                |                          | 95% Ch                              |              |              |              | 0.335623 |
|                                    |                          | 97.5% (                             | Chebyshev    | (Mean, Sd)   | UCL          | 0.408282 |
|                                    |                          | 99% Ch                              | ebyshev (N   | /lean, Sd) U | ICL          | 0.551007 |
|                                    |                          |                                     |              |              |              |          |

### Sheet 6 Chromium - Open Space and Residential

|                                                  |          | Variable: Chromium (III+VI)               |          |
|--------------------------------------------------|----------|-------------------------------------------|----------|
| , ,                                              |          |                                           |          |
| Raw Statistics                                   |          | Normal Distribution Test                  |          |
| Number of Valid Samples                          | 74       | Lilliefors Test Statisitic                | 0.148827 |
| Number of Unique Samples                         | 18       | Lilliefors 5% Critical Value              | 0.102995 |
| Minimum                                          | 9.6      | Data not normal at 5% significance level  |          |
| Maximum                                          | 37       |                                           |          |
| Mean                                             | 18.44054 | 95% UCL (Assuming Normal Distribu         |          |
| Median                                           | 18       | Student                                   | 19.2404  |
| Standard Deviation                               | 4.130074 |                                           |          |
| Variance                                         | 17.05751 | Gamma Distribution Test                   |          |
| Coefficient of Variation                         | 0.223967 | A-D Test Statistic                        | 1.092914 |
| Skewness                                         | 1.554886 | A-D 5% Critical Value                     | 0.749714 |
|                                                  |          | K-S Test Statistic                        | 0.118417 |
| Gamma Statistics                                 |          | K-S 5% Critical Value                     | 0.103454 |
| k hat                                            | 22.63713 | Data do not follow gamma distribution     |          |
| k star (bias corrected)                          | 21.72842 | at 5% significance level                  |          |
| Theta hat                                        | 0.814615 |                                           |          |
| Theta star                                       | 0.848683 | 95% UCLs (Assuming Gamma Distributi       |          |
| nu hat                                           | 3350.295 | Approximate Gamma UCL                     | 19.22236 |
| nu star                                          | 3215.806 | Adjusted Gamma UCL                        | 19.23807 |
| Approx.Chi Square Value (.05)                    | 3085.012 |                                           |          |
| Adjusted Level of Significance                   | 0.046757 | Lognormal Distribution Test               |          |
| Adjusted Chi Square Value                        | 3082.493 | 3 Lilliefors Test Statisitic 0.104        |          |
|                                                  |          | Lilliefors 5% Critical Value              | 0.102995 |
| Log-transformed Statistics                       |          | Data not lognormal at 5% significance lev | /el      |
| Minimum of log data                              | 2.261763 |                                           |          |
| Maximum of log data                              | 3.610918 | 95% UCLs (Assuming Lognormal Distr        | ibution) |
| Mean of log data                                 | 2.892301 | 95% H-UCL                                 | 19.22066 |
| Standard Deviation of log data                   | 0.209141 | 95% Chebyshev (MVUE) UCL                  | 20.39981 |
| Variance of log data                             | 0.04374  | 97.5% Chebyshev (MVUE) UCL                | 21.25302 |
|                                                  |          | 99% Chebyshev (MVUE) UCL                  | 22.929   |
|                                                  |          | 95% Non-parametric UCLs                   |          |
|                                                  |          | CLT UCL                                   | 19.23025 |
|                                                  |          | Adj-CLT UCL (Adjusted for skewness)       | 19.32298 |
|                                                  |          | Mod-t U                                   | 19.25487 |
|                                                  |          | Jackknife UCL                             | 19.2404  |
|                                                  |          | Standard Bootstrap UCL                    | 19.23008 |
|                                                  |          | Bootstrap-t UCL                           | 19.35333 |
| RECOMMENDATION                                   | 1        | Hall's Bootstrap UCL                      | 19.34541 |
| Data are Non-parametric (0.                      | 05)      | Percentile Bootstrap UCL                  | 19.29189 |
|                                                  | ,        | BCA Bootstrap UCL                         | 19.2973  |
| Use Student's-t UCL                              | +        | 95% Chebyshev (Mean, Sd) UCL              | 20.5333  |
| or Modified-t UCL 97.5% Chebyshev (Mean, Sd) UCL |          | 21.43884                                  |          |
|                                                  |          | 99% Chebyshev (Mean, Sd) UCL              | 23.21759 |
|                                                  |          |                                           |          |

# Sheet 7 Copper - Open Space and Residential

|                                |          | Variable: Copper                          |                    |
|--------------------------------|----------|-------------------------------------------|--------------------|
|                                |          | уапаме. Ооррег                            |                    |
| Raw Statistics                 |          | Normal Distribution Test                  |                    |
| Number of Valid Samples 74     |          | Lilliefors Test Statisitic                | 0.153724           |
| Number of Unique Samples       | 42       | Lilliefors 5% Critical Value              | 0.102995           |
| Minimum                        | 1        | Data not normal at 5% significance level  |                    |
| Maximum                        | 40       | <u> </u>                                  |                    |
| Mean                           | 13.37162 | 95% UCL (Assuming Normal Distribu         | ıtion)             |
| Median                         | 11.5     | Student's-t UCL                           | 14.82235           |
| Standard Deviation             | 7.490808 |                                           |                    |
| Variance                       | 56.1122  | Gamma Distribution Test                   |                    |
| Coefficient of Variation       | 0.560202 | A-D Test Statistic                        | 0.508183           |
| Skewness                       | 1.539885 | A-D 5% Critical Value                     | 0.756869           |
|                                |          | K-S Test Statistic                        | 0.089352           |
| Gamma Statistics               |          | K-S 5% Critical Value                     | 0.104322           |
| k hat                          | 3.547802 | Data follow gamma distribution            |                    |
| k star (bias corrected)        | 3.412981 | at 5% significance level                  |                    |
| Theta hat                      | 3.768988 |                                           |                    |
| Theta star                     | 3.917872 | 95% UCLs (Assuming Gamma Distribut        |                    |
| nu hat                         | 525.0747 | Approxi                                   | 14.87757           |
| nu star                        | 505.1212 | Adjusted Gamma UCL                        | 14.90894           |
| Approx.Chi Square Value (.05)  | 453.9915 |                                           |                    |
| Adjusted Level of Significance | 0.046757 | Lognormal Distribution Test               |                    |
| Adjusted Chi Square Value      | 453.0361 | Lilliefors Test Statisitic                | 0.075033           |
|                                |          | Lilliefors 5% Critical Value              | 0.102995           |
| Log-transformed Statistics     |          | Data are lognormal at 5% significance lev | /el                |
| Minimum of log data            | 0        |                                           |                    |
| Maximum of log data            | 3.688879 | 95% UCLs (Assuming Lognormal Distr        | 1                  |
| Mean of log data               | 2.445632 | 95% H-UCL                                 | 15.4661            |
| Standard Deviation of log data | 0.575124 | 95% Chebyshev (MVUE) UCL                  | 17.81117<br>19.643 |
| Variance of log data           | 0.330768 | ,                                         |                    |
|                                |          | 99% Chebyshev (MVUE) UCL                  | 23.24128           |
|                                |          | 95% Non-parametric UCLs                   |                    |
|                                |          | CLT UCL                                   | 14.80394           |
|                                |          | Adj-CLT UCL (Adjusted for skewness)       | 14.9705            |
|                                |          | Mod-t UCL (Adjusted for skewness)         | 14.84833           |
|                                |          | Jackknife UCL                             | 14.82235           |
|                                |          | Standard Bootstrap UCL                    | 14.78501           |
|                                |          | Bootstrap-t UCL                           | 15.09087           |
| RECOMMENDATION                 |          | Hall's Bootstrap UCL                      | 15.08804           |
| Data follow gamma distribution | n (0.05) | Percentile Bootstrap UCL 14               |                    |
|                                |          | BCA Bootstrap UCL                         |                    |
| Use Ap                         |          | 95% Chebyshev (Mean, Sd) UCL              |                    |
|                                |          | 97.5% Chebyshev (Mean, Sd) UCL 1          |                    |
|                                |          | 99% Chebyshev (Mean, Sd) UCL              | 22.03586           |
|                                |          |                                           |                    |

### Sheet 8 Lead - Open Space and Residential

|                                |                                                         | Variable: Lead                            |           |
|--------------------------------|---------------------------------------------------------|-------------------------------------------|-----------|
|                                |                                                         | Valiable. Lead                            |           |
| Raw Statistics                 |                                                         | Normal Distribution Test                  |           |
| Number of Valid Samples        | 74                                                      | Lilliefors Test Statisitic                | 0.298953  |
| Number of Unique Samples       | 36                                                      | Lilliefors 5% Critical Value              | 0.102995  |
| Minimum                        | 3                                                       | Data not normal at 5% significance level  | 0.102000  |
| Maximum                        | 280                                                     | Data not normal at 0 % significance level |           |
| Mean                           | 26.16351                                                | 95% UCL (Assuming Normal Distrib          | ution)    |
| Median                         | 13                                                      | Student's-t UCL                           | 33.79417  |
| Standard Deviation             | 39.40069                                                | Cladolito ( COL                           | 00.70117  |
| Variance                       | 1552.414                                                | Gamma Distribution Test                   |           |
| Coefficient of Variation       | 1.50594                                                 | A-D Test Statistic                        | 4.011211  |
| Skewness                       | 4.261328                                                | A-D 5% Critical Value                     | 0.779716  |
|                                | 201020                                                  | K-S Test Statistic                        | 0.200157  |
| Gamma Statistics               |                                                         | K-S 5% Critical Value                     | 0.106664  |
| k hat                          | 1.058274                                                | Data do not follow gamma distribution     |           |
| k star (bias corrected)        | 1.02438                                                 | at 5% significance level                  |           |
| Theta hat                      | 24.72281                                                |                                           |           |
| Theta star                     | 25.54082                                                | 95% UCLs (Assuming Gamma Distribut        | tion)     |
| nu hat                         | 156.6246                                                | Approximate Gamma UCL                     | 31.95215  |
| nu star                        | 151.6083                                                | Adjusted Gamma UCL                        | 32.07911  |
| Approx.Chi Square Value (.05)  | 124.1421                                                |                                           |           |
| Adjusted Level of Significance | 0.046757                                                | Lognormal Distribution Test               |           |
| Adjusted Chi Square Value      | 123.6508                                                | Lilliefors Test Statisitic 0.1            |           |
| ·                              |                                                         | Lilliefors 5% Critical Value              | 0.102995  |
| Log-transformed Statistics     | Data not lognormal at 5% significance level             |                                           | vel       |
| Minimum of log data            | 1.098612                                                | Ţ Ţ                                       |           |
| Maximum of log data            | 5.63479                                                 | 95% UCLs (Assuming Lognormal Dist         | ribution) |
| Mean of log data               | 2.722489                                                | 95% H-UCL                                 | 30.22804  |
| Standard Deviation of log data | 0.942839                                                | 95% Chebyshev (MVUE) UCL                  | 36.71513  |
| Variance of log data           | 0.888946                                                | 97.5% Chebyshev (MVUE) UCL                | 42.41877  |
|                                |                                                         | 99% Chebyshev (MVUE) UCL                  | 53.62248  |
|                                |                                                         |                                           |           |
|                                |                                                         | 95% Non-parametric UCLs                   |           |
|                                |                                                         | CLT UCL                                   | 33.69733  |
|                                |                                                         | Adj-CLT UCL (Adjusted for skewness)       | 36.12169  |
|                                |                                                         | Mod-t UCL (Adjusted for skewness)         | 34.17232  |
|                                |                                                         | Jackknife UCL                             | 33.79417  |
|                                |                                                         | Standard Bootstrap UCL 33.86              |           |
|                                |                                                         | Bootstrap-t UCL                           | 38.37111  |
| RECOMMENDATION                 |                                                         | Hall's Bootstrap UCL                      | 62.24422  |
| Data are Non-parametric (0.    | Data are Non-parametric (0.05) Percentile Bootstrap UCL |                                           | 34.23784  |
|                                |                                                         | BCA Bootstrap UCL                         | 36.82568  |
| Use 95 <sup>c</sup>            |                                                         | 95% Ch                                    | 46.1283   |
|                                |                                                         | 97.5% Chebyshev (Mean, Sd) UCL            | 54.76708  |
|                                |                                                         | 99% Chebyshev (Mean, Sd) UCL              | 71.73629  |
|                                |                                                         |                                           |           |

### Sheet 9 Nickle - Open Space and Residential

|                                       |          | Variable: Nickel                         |                      |
|---------------------------------------|----------|------------------------------------------|----------------------|
|                                       |          | valiable. Nickel                         |                      |
| Raw Statistics                        |          | Normal Distribution Test                 |                      |
| Number of Valid Samples 74            |          | Lilliefors Test Statisitic               | 0.109986             |
| Number of Unique Samples              | 25       | Lilliefors 5% Critical Value             | 0.102995             |
| Minimum                               | 4.3      | Data not normal at 5% significance level | 0.102000             |
| Maximum                               | 32       | Bata not normal at 676 digimicanos lovel |                      |
| Mean                                  | 17.88784 | 95% UCL (Assuming Normal Distribu        | ution)               |
| Median                                | 18       | Student's-t UCL                          | 19.03003             |
| Standard Deviation                    | 5.897688 |                                          |                      |
| Variance                              | 34.78273 | Gamma Distribution Test                  |                      |
| Coefficient of Variation              | 0.329704 | A-D Test Statistic                       | 0.453862             |
| Skewness                              | 0.332456 | A-D 5% Critical Value                    | 0.751523             |
| - Chemicos                            | 0.002.00 | K-S Test Statistic                       | 0.084456             |
| Gamma Statistics                      |          | K-S 5% Critical Value                    | 0.103769             |
| k hat                                 | 8.756404 | Data follow gamma distribution           | 0.100100             |
| k star (bias corrected)               | 8.410424 | at 5% significance level                 |                      |
| Theta hat                             | 2.042829 | at 0 % org.imicarios 10 tol              |                      |
| Theta star                            | 2.126865 | 95% UCLs (Assuming Gamma Distribut       | ion)                 |
| nu hat                                | 1295.948 | Approxi                                  | 19.1318              |
| nu star                               | 1244.743 | Adjusted Gamma UCL                       | 19.15716             |
| Approx.Chi Square Value (.05)         | 1163.809 | rajustou Camma CCL                       | 10.10110             |
| Adjusted Level of Significance        | 0.046757 | Lognormal Distribution Test              |                      |
| Adjusted Chi Square Value 1162.268    |          | Lilliefors Test Statisitic               | 0.08524              |
|                                       |          | Lilliefors 5% Critical Value             | 0.102995             |
| Log-transformed Statistics            |          | Data are lognormal at 5% significance le |                      |
| Minimum of log data                   | 1.458615 |                                          |                      |
| Maximum of log data                   | 3.465736 | 95% UCLs (Assuming Lognormal Distr       | ibution)             |
| Mean of log data                      | 2.825935 | 95% H-UCL                                | 19.36161             |
| Standard Deviation of log data        | 0.356455 | 95% Chebyshev (MVUE) UCL                 | 21.30274             |
| Variance of log data                  | 0.12706  | 97.5% Chebyshev (MVUE) UCL               | 22.74599             |
| 3                                     |          | 99% Chebyshev (MVUE) UCL 25.5            |                      |
|                                       |          |                                          |                      |
|                                       |          | 95% Non-parametric UCLs                  |                      |
|                                       |          | CLT UCL                                  | 19.01554             |
|                                       |          | Adj-CLT UCL (Adjusted for skewness)      | 19.04385             |
|                                       |          | Mod-t UCL (Adjusted for skewness)        | 19.03445             |
|                                       |          | Jackknife UCL                            | 19.03003             |
|                                       |          | Standard Bootstrap UCL                   | 19.02987             |
| DECOMMENDATION                        |          | Bootstrap-t UCL                          | 19.13127             |
| RECOMMENDATION                        |          | Hall's Bootstrap UCL                     | 19.09223             |
| Data follow gamma distribution (0.05) |          | Percentile Bootstrap UCL                 | 19.03649             |
|                                       |          | BCA Bootstrap UCL                        | 19.00946<br>20.87627 |
| Use Ap                                |          |                                          |                      |
|                                       |          | 97.5% Chebyshev (Mean, Sd) UCL           | 22.16936             |
|                                       |          | 99% Chebyshev (Mean, Sd) UCL             | 24.7094              |
|                                       |          |                                          |                      |

# Sheet 10 Zinc - Open Space and Residential

|                                          |                     | Variable: Zinc                                             |           |
|------------------------------------------|---------------------|------------------------------------------------------------|-----------|
|                                          |                     | Variable. Zille                                            |           |
| Raw Statistics                           |                     | Normal Distribution Test                                   |           |
| Number of Valid Samples                  | 74                  |                                                            |           |
| Number of Unique Samples                 | 50                  | Lilliefors 5% Critical Value                               | 0.102995  |
| Minimum                                  | 17                  | Data not normal at 5% significance level                   |           |
| Maximum                                  | 1100                |                                                            |           |
| Mean                                     | 82                  | 95% UCL (Assuming Normal Distrib                           |           |
| Median                                   | 49.5                | Student's-t UCL                                            | 109.6587  |
| Standard Deviation                       | 142.8151            |                                                            |           |
| Variance                                 | 20396.16            | Gamma Distribution Test                                    |           |
| Coefficient of Variation                 | 1.741648            | A-D Test Statistic                                         | 5.340801  |
| Skewness                                 | 5.60261             | A-D 5% Critical Value                                      | 0.776129  |
|                                          |                     | K-S Test Statistic                                         | 0.268704  |
| Gamma Statistics                         | 4.040000            | K-S 5% Critical Value                                      | 0.106319  |
| k hat                                    | 1.212823            | Data do not follow gamma distribution                      |           |
| k star (bias corrected)                  | 1.172663            | at 5% significance level                                   |           |
| Theta hat                                | 67.61087<br>69.9263 | OFO/ LICL a /A accompliant Company Diatribut               | 4: a.a.\  |
| Theta star<br>nu hat                     | 179.4978            | 95% UCLs (Assuming Gamma Distribu<br>Approximate Gamma UCL | 98.77343  |
|                                          | 179.4978            | Adjusted Gamma UCL                                         | 98.77343  |
| nu star<br>Approx.Chi Square Value (.05) | 144.0817            | Adjusted Gamma OCL                                         | 99.13034  |
| Adjusted Level of Significance           | 0.046757            | Lognormal Distribution Test                                |           |
| Adjusted Chi Square Value                | 143.551             | Lilliefors Test Statisitic                                 | 0.175083  |
| Adjusted Offi Square Value 143.331       |                     | Lilliefors 5% Critical Value                               | 0.102995  |
| Log-transformed Statistics               |                     | Data not lognormal at 5% significance level                |           |
| Minimum of log data                      | 2.833213            | · · ·                                                      |           |
| Maximum of log data                      | 7.003065            | 95% UCLs (Assuming Lognormal Dist                          | ribution) |
| Mean of log data                         | 3.94086             | 95% H-UCL                                                  | 86.25113  |
| Standard Deviation of log data           | 0.802654            | 95% Chebyshev (MVUE) UCL                                   | 103.0633  |
| Variance of log data                     | 0.644253            | 97.5% Chebyshev (MVUE) UCL                                 | 117.1019  |
| _                                        |                     | 99% Chebyshev (MVUE) UCL                                   | 144.678   |
|                                          |                     |                                                            |           |
|                                          |                     | 95% Non-parametric UCLs                                    |           |
|                                          |                     | CLT UCL                                                    | 109.3077  |
|                                          |                     | Adj-CLT UCL (Adjusted for skewness)                        | 120.8612  |
|                                          |                     | Mod-t UCL (Adjusted for skewness)                          | 111.4608  |
|                                          |                     | Jackknife UCL 109.                                         |           |
|                                          |                     | Standard Bootstrap UCL 109                                 |           |
|                                          |                     | Bootstrap-t UCL                                            | 144.3111  |
| RECOMMENDATION                           |                     | Hall's Bootstrap UCL                                       | 204.4197  |
| Data are Non-parametric (0.              | 05)                 | Percentile Bootstrap UCL                                   | 110.9595  |
|                                          |                     | BCA Bootstrap UCL                                          | 125.7703  |
| Use 95 <sup>c</sup>                      |                     | 95% CH                                                     | 154.3661  |
|                                          |                     | 97.5% Chebyshev (Mean, Sd) UCL                             | 185.679   |
| l I                                      |                     | 99% Chebyshev (Mean, Sd) UCL                               | 247.187   |

# Appendix D

Historical Aerial Photographs



CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

LE: Aerial Photograph 1961
Updated Contamination Assessment
Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D1       |
| REVISION:   | 0        |



CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

LE: Aerial Photograph 1968

Updated Contamination Assessment

Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D2       |
| REVISION:   | 0        |



CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

E: Aerial Photograph 1973

Updated Contamination Assessment

Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D3       |
| REVISION:   | 0        |



CLIENT: Peet Limited

OFFICE: Canberra DRAWN BY: SDG

SCALE: NTS DATE: 13.08.2020

TITLE: Aerial Photograph 1978

Updated Contamination Assessment

Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D4       |
| REVISION:   | 0        |





CLIENT: Peet Limited

OFFICE: Canberra DRAWN BY: SDG

SCALE: NTS DATE: 13.08.2020

E: Aerial Photograph 1987

Updated Contamination Assessment

Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D6       |
| REVISION:   | 0        |



CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

LE: Aerial Photograph 1995
Updated Contamination Assessment
Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D7       |
| REVISION:   | 0        |



CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

TITLE: Aerial Photograph 1998
Updated Contamination Assessment
Jumping Creek Estate, Ellerton Drive, Queanbeyan



| THE RESERVE AND ADDRESS. | B 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|--------------------------|-----------------------------------------|
| PROJECT No:              | 88224.06                                |
| PLATE No:                | D8                                      |
| REVISION:                | 0                                       |



CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

E: Aerial Photograph 2004

Updated Contamination Assessment

Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D9       |
| REVISION:   | 0        |





CLIENT: Peet Limited

OFFICE: Canberra

DRAWN BY: SDG

SCALE: NTS

DATE: 13.08.2020

TITLE: Aerial Photograph 2018
Updated Contamination Assessment
Jumping Creek Estate, Ellerton Drive, Queanbeyan



| PROJECT No: | 88224.06 |
|-------------|----------|
| PLATE No:   | D10      |
| REVISION:   | 0        |

# Appendix E

Site Photographs



Photo 1: View of the site from the east looking north-west over northern part of development



Photo 2: View of the site from Mine Site 4 looking towards the North



| Site Photographs             |                | PROJECT: | 88224.06  |
|------------------------------|----------------|----------|-----------|
| Jumping                      | g Creek Estate | Plate    | 1         |
| Creek, Lot 1 DP 1249543, NSW |                | REV:     | Α         |
| Client                       | PEET Limited   | DATE:    | 19-Aug-20 |



Photo 3: View of the site from the west looking north-east over northern part ofdevelopment



Photo 4: View of the site from the east looking south over eastern part of development



| Site Photographs             |              | PROJECT: | 88224.06  |
|------------------------------|--------------|----------|-----------|
| Jumping Creek Estate         |              | Plate    | 2         |
| Creek, Lot 1 DP 1249543, NSW |              | REV:     | Α         |
| Client                       | PEET Limited | DATE:    | 19-Aug-20 |



Photo 5: View of the sheep dip area looking north



Photo 6: View of sheep dip area, showing waste material, looking south



| Site Pho                     | otographs      | PROJECT: | 88224.06  |
|------------------------------|----------------|----------|-----------|
| Jumping                      | g Creek Estate | Plate    | 3         |
| Creek, Lot 1 DP 1249543, NSW |                | REV:     | Α         |
| Client                       | PEET Limited   | DATE:    | 19-Aug-20 |



Photo 7: View of shaft at Mine site 1, looking to the south



Photo 8: View of shaft and stockpiled spoil at Mine Site 1, looking west



| Site Photographs             |                | PROJECT: | 88224.06  |
|------------------------------|----------------|----------|-----------|
| Jumping                      | g Creek Estate | Plate    | 4         |
| Creek, Lot 1 DP 1249543, NSW |                | REV:     | Α         |
| Client                       | PEET Limited   | DATE:    | 19-Aug-20 |



Photo 9: View of typical waste material encountered during inspection



Photo 10: View of limestone quarry in the south-east of the site, looking south



| Site Photographs             |              | PROJECT: | 88224.06  |
|------------------------------|--------------|----------|-----------|
| Jumping Creek Estate         |              | Plate    | 5         |
| Creek, Lot 1 DP 1249543, NSW |              | REV:     | Α         |
| Client                       | PEET Limited | DATE:    | 19-Aug-20 |



Photo 11: View of the site to the north-west, from the limestone quarry



Photo 12: View of stockpiled spoil to the north-west of the limestone quarry



| Site Photographs             |              | PROJECT: | 88224.06  |
|------------------------------|--------------|----------|-----------|
| Jumping Creek Estate         |              | Plate    | 6         |
| Creek, Lot 1 DP 1249543, NSW |              | REV:     | Α         |
| Client                       | PEET Limited | DATE:    | 19-Aug-20 |



Photo 13: View of the kiln area looking to the north-east



Photo 14: View of Mine Site 4 looking to the north, open pits in the foreground



| Site Photographs             |              | PROJECT: | 88224.06  |
|------------------------------|--------------|----------|-----------|
| Jumping Creek Estate         |              | Plate    | 7         |
| Creek, Lot 1 DP 1249543, NSW |              | REV:     | Α         |
| Client                       | PEET Limited | DATE:    | 19-Aug-20 |



Photo 15: View of Mine Site 4, open trench excavation



Photo 16: View of Mine Site 4, stockpiled spoil



| Site Photographs             |              | PROJECT: | 88224.06  |
|------------------------------|--------------|----------|-----------|
| Jumping Creek Estate         |              | Plate    | 8         |
| Creek, Lot 1 DP 1249543, NSW |              | REV:     | Α         |
| Client                       | PEET Limited | DATE:    | 19-Aug-20 |



Photo 17: View of Mine Site 4, stockpiled spoil



Photo 18: View of Mine Site 4, stockpiled spoil



| Site Photographs             |                | PROJECT: | 88224.06  |
|------------------------------|----------------|----------|-----------|
| Jumping                      | g Creek Estate | Plate    | 9         |
| Creek, Lot 1 DP 1249543, NSW |                | REV:     | Α         |
| Client                       | PEET Limited   | DATE:    | 19-Aug-20 |



Photo 19: View of Mine Site 4, open trench excavation, above adit entrance



Photo 20: View of Mine Site 4, adit entrance, looking to the west



| Site Photographs             |              | PROJECT: | 88224.06  |
|------------------------------|--------------|----------|-----------|
| Jumping Creek Estate         |              | Plate    | 10        |
| Creek, Lot 1 DP 1249543, NSW |              | REV:     | Α         |
| Client                       | PEET Limited | DATE:    | 19-Aug-20 |



Photo 21: View of Mine Site 4, open cut excavation area



Photo 22: View of Mineral Processing area, scattered building rubble



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumping  | g Creek Estate        | Plate    | 11        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 23: View of Mineral Processing area, scattered building rubble



Photo 24: View of Mineral Processing area, example of concrete troughs



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumping  | g Creek Estate        | Plate    | 12        |
| Lot 1 DF | 2 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 25: View of Mineral Processing area, remnant buildings



Photo 26: View of Mine Site 3 open shaft, looking to the south



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumping  | g Creek Estate        | Plate    | 13        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 27: View of Mine Site 3, open shaft, looking to the north-west



Photo 28: View of additional mine shaft in north-west of the site, in north-west of the development



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumpin   | g Creek Estate        | Plate    | 14        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 29: View of additional mine shaft in north-west of the site, in north-west of the development



Photo 30: View of quarry area to south-east of additional mine shaft



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumping  | g Creek Estate        | Plate    | 15        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 31: View of quarry area to south-east of additional mine shaft



Photo 32: View of the site from north-west looking to the east over development area



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumping  | g Creek Estate        | Plate    | 16        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 33: View of Valley Creek bed



Photo 34: View of Valley Creek bed

|     | Davidos Davinous                                         |
|-----|----------------------------------------------------------|
| an  | Douglas Partners Geotechnics   Environment   Groundwater |
| N/P | Geotechnics   Environment   Groundwater                  |

| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumpin   | g Creek Estate        | Plate    | 17        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |



Photo 35: View of example car bodies scattered across the site



Photo 36: View of small stockpile in east of the site containing asbestos material



| Site Pho | otographs             | PROJECT: | 88224.06  |
|----------|-----------------------|----------|-----------|
| Jumping  | g Creek Estate        | Plate    | 18        |
| Lot 1 DF | P 1249543, Greenleigh | REV:     | Α         |
| Client   | PEET Limited          | DATE:    | 19-Aug-20 |

# Appendix F

Queanbeyan Palerang Regional Council Correspondence



Application No: 109-2019

16 June 2019

Spacelab 5/97 Northbourne Ave Turner ACT 2612

#### Additional Information Required Before Determining Application

Dear Sir/Madam

# Development Application No. 109-2019 For land at LOT 5 DP 1199045, 28 LONERGAN DRIVE GREENLEIGH NSW 2620

I refer to the Development Application for the subject premises and advise that assessment of the proposed development reveals that inadequate details or information has been submitted.

Therefore, pursuant to clause 54 of the Environmental Planning and Assessment Regulation 2000, the following information is required to enable further consideration.

#### 1. Contamination Assessment

While it is noted that numerous studies have previously been undertaken in relation to contamination upon the site, the documentation accompanying the subject application identifies a number of sources of potential contamination that have not been identified within previous studies including the additional mine site found in the north-western part of the site as identified within the Douglas Partners Report and JCH 5, JCH 6 and JCH 13 identified within the Cultural Heritage Assessment Prepared by Navin Officer.

To resolve this issue please provide a single Detailed Site Investigation for the entirety site including a site specific health risk assessment and intrusive assessment of the additional mine site found in the north-western part of the site as identified within the Douglas Partners Report and JCH 5, JCH 6 and JCH 13 identified within the Cultural Heritage Assessment Prepared by Navin Officer. Such a report should also provide comment on the suitability of the site for the proposed residential and recreational uses of the site in recognition of the known contamination upon the site.

Further, given the scope of contamination upon the site, concerns are also held in relation to the lack of certainty regarding the extent of works required and necessary ongoing management commitments involved in achieving the required

level of site remediation and there compatibility with the proposed works. As such it is consider necessary that this matter is addressed prior to the determination of the subject application. Accordingly, please provide a single consolidated Remediation Action Plan outlining the necessary actions to remediate and or manage all areas of potential contamination identified within the Detailed Site Investigation. To avoid confusion it should be noted that the Remediation Action Plan submitted to date captures only a small portion of the site and as such is not sufficient for the purposes of the subject application.

It should also be noted that Council will require the applicant to engage the services of an accredited Site Auditor to prepare a Site Audit Report and Site Audit Statement for the development. NSW EPA accredited site auditors are engaged independently to review work of contaminated land consultants, to ensure work has been undertaken in accordance with regulations and guidelines, and to provide validation with a site audit statement on completion. It is recommended this action be undertaken as a priority as the Site Auditor may require additional matters to be considered as part of the detailed contaminated site assessment and any subsequent Remedial Action Plan.

https://www.epa.nsw.gov.au/your-environment/contaminated-land/site-auditor-scheme/accredited-site-auditors

#### 2. Fire Trail/ Access Track

Council's Service Manager Urban Landscapes has advised that in recognition of the unnecessary management burden Council is not willing to except the dedication of the proposed fire trail / access track linking the cul-de-sac of Road 4 to Road 1. As such, please provide amending plans deleting this track. This should be taken into consideration in requesting the request for additional information from the NSW Rural Fire Service.

#### 3. European Heritage

Council's Heritage Advisor has reviewed the Cultural Heritage Assessment Prepared by Navin Officer and has advised that JCH 5 and 6 consisting of a lime quarry and kiln are of sufficient heritage value as to warrant retention. Given the location of these site's within the proposed open space area, retention is consider to be appropriate. To resolve this issue please provide amended landscape plans demonstrating the retention of JCH 5 and 6.

Council's Heritage Advisor has also raised concern in relation to the proximity of Road 12 and the associated earthworks upon the local listed heritage item A2 – Marchiori's Lime Kiln and Quarry specifically the Lime Kiln. He has further noted that sufficient curtilage should be retained surrounding the kiln as to allow for the interpretation of the operation of the kiln which involved material being dropped off from above the kiln and the resultant material being collected from below. As such, it is requested that a detail be provided demonstrating the proximity of proposed road 12 and associated retaining/ earthworks to the kiln structure.

#### 4. Local Planning Agreement

As advised throughout previous conversations, the proposed Local Planning Agreement is required to be in place prior to the determination of the subject development application. Please continue to liaise with Council's Land Use Planning team regarding the requirements to complete this process.

#### 5. Flora and Fauna (Biodiversity & Conservation Division)

Following on from previous conversations regarding the adequacy of the Biodiversity Development Assessment Report and vegetation disturbance calculations Council has received advice from BCD in relation to the discrepancy in area calculations. It appears the BCD has included the residue land and the area outside of building envelopes on the large lots as "land impacted through future uses". Council acknowledges your comments regarding the future management of the residue lot by Council. Nonetheless, consideration does need to be given to potential impacts of ancillary uses outside of the proposed building envelopes upon the proposed the large lots.

#### 6. <u>Bushfire – (NSW Rural Fire Service)</u>

The NSW Rural Fire Service request for additional information dated 24 March 2020 (attached) remains outstanding.

As matters raised within Council's previous correspondence remain outstanding the subject application remains on Stop the Clock until such time that all information is received and matters are addressed.

Should you have any questions please contact Luke Perkins of Council's Environment, Planning and Development Section on 1300 735 025.

Yours faithfully

M J Thompson

General Manager Natural Built Character

Per: Luke Perkins

# Appendix G

Laboratory Certificates of Analysis and Chain of Custody Documentation

# **CHAIN OF CUSTODY DESPATCH SHEET**

| Project<br>Project<br>DP Con<br>Prior St                                                                                                             | No:<br>tact Perso | 33.7<br>n:                | E2.       | GG XX                                             | DP                    | Order No:       |                  |                       | · · · · · · · · · · · · · · · · · · · | To<br>Att        | 12<br>C<br>Pl | 2 Ashley<br>HATSW<br>h: (02) 9 | Street<br>OOD N<br>910 62 | <br>ISW 20      | 67                   |           |                       |       |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|-----------|---------------------------------------------------|-----------------------|-----------------|------------------|-----------------------|---------------------------------------|------------------|---------------|--------------------------------|---------------------------|-----------------|----------------------|-----------|-----------------------|-------|--------|
|                                                                                                                                                      |                   | Sample                    | T -       |                                                   |                       |                 |                  |                       |                                       | Analytes         |               |                                |                           |                 |                      |           |                       |       | $\neg$ |
| Sample<br>ID                                                                                                                                         | Date<br>Sampled   | Type<br>S-soil<br>W-water | Lab<br>ID | рН                                                | CEC                   | Clay<br>Content | 1467             | 'ALS                  |                                       |                  |               | ·                              |                           |                 |                      |           | TCLP                  | Notes |        |
| 16341                                                                                                                                                | 217               | 2                         | ţ.        |                                                   |                       | -               | ×                |                       |                                       |                  |               |                                |                           |                 |                      |           |                       |       |        |
| 2 me                                                                                                                                                 | 1                 | 1                         | 2         |                                                   |                       |                 | 1.               |                       | 1                                     |                  |               |                                |                           |                 |                      |           |                       |       |        |
| Em2                                                                                                                                                  |                   |                           | 3         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           |                 |                      |           |                       |       |        |
| fure                                                                                                                                                 |                   |                           | 4         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           | Envir           | OLAB                 | 12        | Services<br>Ashley St |       |        |
| 741S-1                                                                                                                                               |                   |                           | 5         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           |                 |                      | atswood . | NSW 2067              |       |        |
| CHE 2                                                                                                                                                |                   |                           | 6         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           | Job f           | 7                    | 75        | 24                    |       |        |
| CH(3-1                                                                                                                                               |                   |                           | 2         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                | -                         | inne i          | eceived:<br>eceived: | 1ブス       | .20                   |       |        |
| 4113-2                                                                                                                                               |                   |                           | 8         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           | Receiv<br>Temp: | ed By: //            | O ent     |                       |       |        |
| CH13-3                                                                                                                                               |                   |                           | q         |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           | Cooling         | : Ice/icepa          | nk.       | -                     |       |        |
| <del>4</del> 113-4                                                                                                                                   |                   |                           | (0        |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           |                 |                      | OKEII/NO  | ne                    |       |        |
| C-ASM                                                                                                                                                | _ )               |                           | 1         |                                                   |                       |                 | ♦                |                       |                                       |                  |               |                                | -                         |                 |                      |           |                       |       |        |
| C-ASM<br>C-J4                                                                                                                                        | 47                | Ψ.                        | 12        |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           |                 |                      |           |                       |       |        |
| PQL (S)                                                                                                                                              |                   | mg/kg                     |           |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           |                 |                      |           |                       | :     |        |
| PQL (W)                                                                                                                                              |                   | mg/L                      |           |                                                   |                       |                 |                  |                       |                                       |                  |               |                                |                           |                 |                      |           |                       |       |        |
| # - Metals to Analyse (Please circle): (As Cd Cr Cu Pb Zn Hg Ni Mn Fe reconstruction of samples in container: 12.1.12.1.12.1.12.1.12.1.12.1.12.1.12. |                   |                           |           | Pleas<br>recei                                    | e sign a<br>ot of san |                 | to acl<br>d retu | knowledg<br>rn by fax |                                       | Dougla<br>Addres | X 1487        | ers Pty                        |                           |                 |                      |           |                       |       |        |
| Results required by: Standard 72 hr 48hr 24hr                                                                                                        |                   |                           |           | Date: 22-7-20 Lab Ref: 247524 Fax: (02) 6260 1147 |                       |                 |                  |                       | Fax: (0                               |                  |               |                                |                           |                 |                      |           |                       |       |        |



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

# **SAMPLE RECEIPT ADVICE**

| Client Details |                           |
|----------------|---------------------------|
| Client         | Douglas Partners Canberra |
| Attention      | Peter Storey              |

| Sample Login Details                 |                         |
|--------------------------------------|-------------------------|
| Your reference                       | 88224.06, Jumping Creek |
| Envirolab Reference                  | 247524                  |
| Date Sample Received                 | 22/07/2020              |
| Date Instructions Received           | 22/07/2020              |
| Date Results Expected to be Reported | 29/07/2020              |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 12 SOIL  |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 8.4      |
| Cooling Method                                         | Ice      |
| Sampling Date Provided                                 | YES      |

| Comments |  |
|----------|--|
| Nil      |  |

# Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

| Sample ID | Acid Extractable metalsin soil |
|-----------|--------------------------------|
| ASM1      | ✓                              |
| ASM2      | ✓                              |
| ASM3      | ✓                              |
| ASM4      | ✓                              |
| JCH5-1    | ✓                              |
| JCH5-2    | ✓                              |
| JCH13-1   | ✓                              |
| JCH13-2   | ✓                              |
| JCH13-3   | ✓                              |
| JCH13-4   | ✓                              |
| QC-ASM    | ✓                              |
| QC-JCH    | ✓                              |

The '\sqrt{'} indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.



Envirolab Services Pty Ltd
ABN 37 112 535 645

12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 247524**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | Douglas Partners Canberra        |
| Attention      | Peter Storey                     |
| Address        | PO Box 1487, Fyshwick, ACT, 2609 |

| Sample Details                       |                         |
|--------------------------------------|-------------------------|
| Your Reference                       | 88224.06, Jumping Creek |
| Number of Samples                    | 12 SOIL                 |
| Date samples received                | 22/07/2020              |
| Date completed instructions received | 22/07/2020              |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                        |                                                                  |
|---------------------------------------|------------------------------------------------------------------|
| Date results requested by             | 29/07/2020                                                       |
| Date of Issue                         | 28/07/2020                                                       |
| NATA Accreditation Number 2901. The   | nis document shall not be reproduced except in full.             |
| Accredited for compliance with ISO/IE | EC 17025 - Testing. Tests not covered by NATA are denoted with * |

**Results Approved By** 

Hannah Nguyen, Senior Chemist

**Authorised By** 

Nancy Zhang, Laboratory Manager



| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                   |       | 247524-1   | 247524-2   | 247524-3   | 247524-4   | 247524-5   |
| Your Reference                  | UNITS | ASM1       | ASM2       | ASM3       | ASM4       | JCH5-1     |
| Date Sampled                    |       | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 |
| Type of sample                  |       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
| Date prepared                   | -     | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 |
| Date analysed                   | -     | 27/07/2020 | 27/07/2020 | 27/07/2020 | 27/07/2020 | 27/07/2020 |
| Arsenic                         | mg/kg | 78         | <4         | <4         | 9          | 17         |
| Cadmium                         | mg/kg | 38         | 2          | 2          | 0.5        | 0.6        |
| Chromium                        | mg/kg | 14         | 8          | 11         | 23         | <1         |
| Copper                          | mg/kg | 85         | 9          | 8          | 14         | <1         |
| Lead                            | mg/kg | 3,300      | 65         | 140        | 48         | 17         |
| Mercury                         | mg/kg | 1          | <0.1       | 0.1        | <0.1       | <0.1       |
| Nickel                          | mg/kg | 51         | 9          | 12         | 19         | 2          |
| Zinc                            | mg/kg | 9,000      | 830        | 1,100      | 360        | 84         |

| Acid Extractable metals in soil |       |            |            |            |            |            |
|---------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                   |       | 247524-6   | 247524-7   | 247524-8   | 247524-9   | 247524-10  |
| Your Reference                  | UNITS | JCH5-2     | JCH13-1    | JCH13-2    | JCH13-3    | JCH13-4    |
| Date Sampled                    |       | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 |
| Type of sample                  |       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
| Date prepared                   | -     | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 |
| Date analysed                   | -     | 27/07/2020 | 27/07/2020 | 27/07/2020 | 27/07/2020 | 27/07/2020 |
| Arsenic                         | mg/kg | 15         | 10         | 10         | 12         | 10         |
| Cadmium                         | mg/kg | 2          | <0.4       | <0.4       | <0.4       | 0.5        |
| Chromium                        | mg/kg | 27         | 40         | 34         | 41         | 26         |
| Copper                          | mg/kg | 27         | 7          | 3          | 7          | 3          |
| Lead                            | mg/kg | 510        | 12         | 3          | 9          | 4          |
| Mercury                         | mg/kg | <0.1       | <0.1       | <0.1       | <0.1       | <0.1       |
| Nickel                          | mg/kg | 29         | 21         | 17         | 20         | 15         |
| Zinc                            | mg/kg | 1,600      | 51         | 41         | 34         | 57         |

| Acid Extractable metals in soil |       |            |            |                        |                          |
|---------------------------------|-------|------------|------------|------------------------|--------------------------|
| Our Reference                   |       | 247524-11  | 247524-12  | 247524-13              | 247524-14                |
| Your Reference                  | UNITS | QC-ASM     | QC-JCH     | ASM1 -<br>[TRIPLICATE] | QC-ASM -<br>[TRIPLICATE] |
| Date Sampled                    |       | 21/07/2020 | 21/07/2020 | 21/07/2020             | 21/07/2020               |
| Type of sample                  |       | SOIL       | SOIL       | SOIL                   | SOIL                     |
| Date prepared                   | -     | 24/07/2020 | 24/07/2020 | 24/07/2020             | 24/07/2020               |
| Date analysed                   | -     | 27/07/2020 | 27/07/2020 | 27/07/2020             | 27/07/2020               |
| Arsenic                         | mg/kg | <4         | 9          | 27                     | 5                        |
| Cadmium                         | mg/kg | 2          | <0.4       | 8.2                    | 4.3                      |
| Chromium                        | mg/kg | 4          | 45         | 17                     | 11                       |
| Copper                          | mg/kg | 5          | 7          | 30                     | 13                       |
| Lead                            | mg/kg | 19         | 8          | 1,300                  | 180                      |
| Mercury                         | mg/kg | <0.1       | <0.1       | 0.6                    | <0.1                     |
| Nickel                          | mg/kg | 4          | 21         | 36                     | 15                       |
| Zinc                            | mg/kg | 530        | 53         | 6,100                  | 1,600                    |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 247524-1   | 247524-2   | 247524-3   | 247524-4   | 247524-5   |
| Your Reference | UNITS | ASM1       | ASM2       | ASM3       | ASM4       | JCH5-1     |
| Date Sampled   |       | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 |
| Type of sample |       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
| Date prepared  | -     | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 |
| Date analysed  | -     | 25/07/2020 | 25/07/2020 | 25/07/2020 | 25/07/2020 | 25/07/2020 |
| Moisture       | %     | 9.8        | 4.1        | 6.8        | 8.7        | 0.2        |

| Moisture       |       |            |            |            |            |            |
|----------------|-------|------------|------------|------------|------------|------------|
| Our Reference  |       | 247524-6   | 247524-7   | 247524-8   | 247524-9   | 247524-10  |
| Your Reference | UNITS | JCH5-2     | JCH13-1    | JCH13-2    | JCH13-3    | JCH13-4    |
| Date Sampled   |       | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 | 21/07/2020 |
| Type of sample |       | SOIL       | SOIL       | SOIL       | SOIL       | SOIL       |
| Date prepared  | -     | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 | 24/07/2020 |
| Date analysed  | -     | 25/07/2020 | 25/07/2020 | 25/07/2020 | 25/07/2020 | 25/07/2020 |
| Moisture       | %     | 14         | 15         | 7.9        | 15         | 13         |

| Moisture       |       |            |            |
|----------------|-------|------------|------------|
| Our Reference  |       | 247524-11  | 247524-12  |
| Your Reference | UNITS | QC-ASM     | QC-JCH     |
| Date Sampled   |       | 21/07/2020 | 21/07/2020 |
| Type of sample |       | SOIL       | SOIL       |
| Date prepared  | -     | 24/07/2020 | 24/07/2020 |
| Date analysed  | -     | 25/07/2020 | 25/07/2020 |
| Moisture       | %     | 3.9        | 14         |

| Method ID     | Methodology Summary                                                             |
|---------------|---------------------------------------------------------------------------------|
| Inorg-008     | Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours. |
|               |                                                                                 |
| Metals-020    | Determination of various metals by ICP-AES.                                     |
| Metals-021    | Determination of Mercury by Cold Vapour AAS.                                    |
| ivicials-02 i | Determination of Microscy by Cold Vapour And.                                   |

Envirolab Reference: 247524 Page | 5 of 9

| QUALITY CONTROL: Acid Extractable metals in soil |       |     |            |            | Duplicate |            |            |     | Spike Recovery % |            |  |
|--------------------------------------------------|-------|-----|------------|------------|-----------|------------|------------|-----|------------------|------------|--|
| Test Description                                 | Units | PQL | Method     | Blank      | #         | Base       | Dup.       | RPD | LCS-8            | 247524-2   |  |
| Date prepared                                    | -     |     |            | 24/07/2020 | 1         | 24/07/2020 | 24/07/2020 |     | 24/07/2020       | 24/07/2020 |  |
| Date analysed                                    | -     |     |            | 27/07/2020 | 1         | 27/07/2020 | 27/07/2020 |     | 27/07/2020       | 27/07/2020 |  |
| Arsenic                                          | mg/kg | 4   | Metals-020 | <4         | 1         | 78         | 7          | 167 | 95               | 93         |  |
| Cadmium                                          | mg/kg | 0.4 | Metals-020 | <0.4       | 1         | 38         | 4.3        | 159 | 103              | 96         |  |
| Chromium                                         | mg/kg | 1   | Metals-020 | <1         | 1         | 14         | 11         | 24  | 100              | 98         |  |
| Copper                                           | mg/kg | 1   | Metals-020 | <1         | 1         | 85         | 15         | 140 | 102              | 85         |  |
| Lead                                             | mg/kg | 1   | Metals-020 | <1         | 1         | 3300       | 600        | 138 | 119              | #          |  |
| Mercury                                          | mg/kg | 0.1 | Metals-021 | <0.1       | 1         | 1          | 0.4        | 86  | 114              | 103        |  |
| Nickel                                           | mg/kg | 1   | Metals-020 | <1         | 1         | 51         | 18         | 96  | 106              | 89         |  |
| Zinc                                             | mg/kg | 1   | Metals-020 | <1         | 1         | 9000       | 2900       | 103 | 104              | ##         |  |

| QUALITY CONTROL: Acid Extractable metals in soil |       |     |            |       | Duplicate |            |            |     | Spike Recovery % |      |
|--------------------------------------------------|-------|-----|------------|-------|-----------|------------|------------|-----|------------------|------|
| Test Description                                 | Units | PQL | Method     | Blank | #         | Base       | Dup.       | RPD | [NT]             | [NT] |
| Date prepared                                    | -     |     |            | [NT]  | 11        | 24/07/2020 | 24/07/2020 |     |                  | [NT] |
| Date analysed                                    | -     |     |            | [NT]  | 11        | 27/07/2020 | 27/07/2020 |     |                  | [NT] |
| Arsenic                                          | mg/kg | 4   | Metals-020 | [NT]  | 11        | <4         | <4         | 0   |                  | [NT] |
| Cadmium                                          | mg/kg | 0.4 | Metals-020 | [NT]  | 11        | 2          | 4          | 67  |                  | [NT] |
| Chromium                                         | mg/kg | 1   | Metals-020 | [NT]  | 11        | 4          | 10         | 86  |                  | [NT] |
| Copper                                           | mg/kg | 1   | Metals-020 | [NT]  | 11        | 5          | 10         | 67  |                  | [NT] |
| Lead                                             | mg/kg | 1   | Metals-020 | [NT]  | 11        | 19         | 59         | 103 |                  | [NT] |
| Mercury                                          | mg/kg | 0.1 | Metals-021 | [NT]  | 11        | <0.1       | <0.1       | 0   |                  | [NT] |
| Nickel                                           | mg/kg | 1   | Metals-020 | [NT]  | 11        | 4          | 11         | 93  |                  | [NT] |
| Zinc                                             | mg/kg | 1   | Metals-020 | [NT]  | 11        | 530        | 1100       | 70  |                  | [NT] |

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

| <b>Quality Contro</b>              | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

#### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 247524 Page | 8 of 9

Revision No:

R00

# **Report Comments**

Acid Extractable Metals in Soil:

- -The laboratory RPD acceptance criteria has been exceeded for 247524-1 for As,Cd,Cu,Pb,Hg,Ni,Zn. Therefore a triplicate result has been issued as laboratory sample number 247524-13.
- -The laboratory RPD acceptance criteria has been exceeded for 247524-11 for Cd,Cr,Cu,Pb,Ni,Zn. Therefore a triplicate result has been issued as laboratory sample number 247524-14.
- -# Percent recovery is not possible to report due to the inhomogeneous nature of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.
- -## Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 247524 Page | 9 of 9

# **Andrew (Fitzy) Fitzsimons**

From:

Ken Nguyen

Sent:

Friday, 31 July 2020 1:59 PM

To:

Andrew (Fitzy) Fitzsimons

Subject:

FW: Results for Registration 247524 88224.06, Jumping Creek

Follow Up Flag:

Follow up

Flag Status:

Flagged

A job

247524-A Due: 7/8/20

Kind Regards,

Ken Nguyen | Customer Service / Chemist | Envirolab Services Pty Ltd (Monday to Friday 10am to 6pm)
Celebrating 15 years of Great Science. Great Service.

12 Ashley Street Chatswood NSW 2067

12 Ashley Street Chatswood NSW 2067 T 612 9910 6200 F 612 9910 6201

E knguyen@envirolab.com.au | W www.envirolab.com.au

View reduced sampling bottle provision for PFAS in water | COVID-19 Update

Please note that all samples submitted to the Envirolab Group laboratories will be analysed under the Envirolab Group Terms and Conditions. The Terms and Conditions are accessible by clicking this link

From: Peter Storey <Peter.Storey@douglaspartners.com.au>

Sent: Friday, 31 July 2020 11:12 AM

To: Ken Nguyen < KNguyen@envirolab.com.au>

Subject: RE: Results for Registration 247524 88224.06, Jumping Creek

**CAUTION:** This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Hi Ken,

For this batch I need a couple of samples submitted for additional analysis.

Can yup ease schedule samples ASM1 (247524-1) and JCH5-2 (247524-6) for CEC, pH and clay content and sample JCH13-3 (247524-9) for pH and CEC.

Best regards,

pete



Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

# **SAMPLE RECEIPT ADVICE**

| Client Details |                           |
|----------------|---------------------------|
| Client         | Douglas Partners Canberra |
| Attention      | Peter Storey              |

| Sample Login Details                 |                         |
|--------------------------------------|-------------------------|
| Your reference                       | 88224.06, Jumping Creek |
| Envirolab Reference                  | 247524-A                |
| Date Sample Received                 | 22/07/2020              |
| Date Instructions Received           | 31/07/2020              |
| Date Results Expected to be Reported | 07/08/2020              |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 12 SOIL  |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 8.4      |
| Cooling Method                                         | Ice      |
| Sampling Date Provided                                 | YES      |

| Comments |  |
|----------|--|
| Nil      |  |

### Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |  |  |  |  |
|------------------------------|--------------------------------|--|--|--|--|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |  |  |  |  |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |  |  |  |  |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |  |  |  |  |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID             | Misc Inorg - Soil | Clay 50-120g | CEC | On Hold |
|-----------------------|-------------------|--------------|-----|---------|
| ASM1                  | ✓                 | ✓            | ✓   |         |
| ASM2                  |                   |              |     | ✓       |
| ASM3                  |                   |              |     | ✓       |
| ASM4                  |                   |              |     | ✓       |
| JCH5-1                |                   |              |     | ✓       |
| JCH5-2                | ✓                 | ✓            | ✓   |         |
| JCH13-1               |                   |              |     | ✓       |
| JCH13-2               |                   |              |     | ✓       |
| JCH13-3               | ✓                 |              | ✓   |         |
| JCH13-4               |                   |              |     | ✓       |
| QC-ASM                |                   |              |     | ✓       |
| QC-JCH                |                   |              |     | ✓       |
| ASM1 - [TRIPLICATE]   |                   |              |     | ✓       |
| QC-ASM - [TRIPLICATE] |                   |              |     | ✓       |

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

# **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.



Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 247524-A**

| Client Details |                                  |
|----------------|----------------------------------|
| Client         | Douglas Partners Canberra        |
| Attention      | Peter Storey                     |
| Address        | PO Box 1487, Fyshwick, ACT, 2609 |

| Sample Details                       |                         |
|--------------------------------------|-------------------------|
| Your Reference                       | 88224.06, Jumping Creek |
| Number of Samples                    | 12 SOIL                 |
| Date samples received                | 22/07/2020              |
| Date completed instructions received | 31/07/2020              |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                        |                                                                 |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Date results requested by                                                             | 07/08/2020                                                      |  |  |  |
| Date of Issue                                                                         | 06/08/2020                                                      |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full. |                                                                 |  |  |  |
| Accredited for compliance with ISO/IE                                                 | C 17025 - Testing. Tests not covered by NATA are denoted with * |  |  |  |

#### **Results Approved By**

Diego Bigolin, Team Leader, Inorganics Jaimie Loa-Kum-Cheung, Metals Supervisor Priya Samarawickrama, Senior Chemist **Authorised By** 

Nancy Zhang, Laboratory Manager



| Misc Inorg - Soil |          |            |            |            |
|-------------------|----------|------------|------------|------------|
| Our Reference     |          | 247524-A-1 | 247524-A-6 | 247524-A-9 |
| Your Reference    | UNITS    | ASM1       | JCH5-2     | JCH13-3    |
| Date Sampled      |          | 21/07/2020 | 21/07/2020 | 21/07/2020 |
| Type of sample    |          | SOIL       | SOIL       | SOIL       |
| Date prepared     | -        | 04/08/2020 | 04/08/2020 | 04/08/2020 |
| Date analysed     | -        | 04/08/2020 | 04/08/2020 | 04/08/2020 |
| pH 1:5 soil:water | pH Units | 8.6        | 7.8        | 8.4        |

| Clay 50-120g       |         |            |            |
|--------------------|---------|------------|------------|
| Our Reference      |         | 247524-A-1 | 247524-A-6 |
| Your Reference     | UNITS   | ASM1       | JCH5-2     |
| Date Sampled       |         | 21/07/2020 | 21/07/2020 |
| Type of sample     |         | SOIL       | SOIL       |
| Date prepared      | -       | 04/08/2020 | 04/08/2020 |
| Date analysed      | -       | 05/08/2020 | 05/08/2020 |
| Clay in soils <2µm | % (w/w) | 7          | 29         |

Envirolab Reference: 247524-A

| CEC                      |          |            |            |            |
|--------------------------|----------|------------|------------|------------|
| Our Reference            |          | 247524-A-1 | 247524-A-6 | 247524-A-9 |
| Your Reference           | UNITS    | ASM1       | JCH5-2     | JCH13-3    |
| Date Sampled             |          | 21/07/2020 | 21/07/2020 | 21/07/2020 |
| Type of sample           |          | SOIL       | SOIL       | SOIL       |
| Date prepared            | -        | 05/08/2020 | 05/08/2020 | 05/08/2020 |
| Date analysed            | -        | 05/08/2020 | 05/08/2020 | 05/08/2020 |
| Exchangeable Ca          | meq/100g | 18         | 9.5        | 41         |
| Exchangeable K           | meq/100g | 0.1        | 0.9        | 0.2        |
| Exchangeable Mg          | meq/100g | 0.33       | 1.5        | 0.86       |
| Exchangeable Na          | meq/100g | <0.1       | <0.1       | <0.1       |
| Cation Exchange Capacity | meq/100g | 18         | 12         | 42         |

Envirolab Reference: 247524-A

| Method ID    | Methodology Summary                                                                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AS1289.3.6.3 | Determination Particle Size Analysis using AS1289.3.6.3 and AS1289.3.6.1 and in house method INORG-107. Clay fraction at <2µm reported.                                                                         |
| Inorg-001    | pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times. |
| Metals-020   | Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.                                                                  |

Envirolab Reference: 247524-A Page | 5 of 10

| QUALITY CONTROL: Misc Inorg - Soil |          |     |           |            | Duplicate |      |      | Spike Recovery % |            |      |
|------------------------------------|----------|-----|-----------|------------|-----------|------|------|------------------|------------|------|
| Test Description                   | Units    | PQL | Method    | Blank      | #         | Base | Dup. | RPD              | LCS-1      | [NT] |
| Date prepared                      | -        |     |           | 04/08/2020 | [NT]      |      | [NT] | [NT]             | 04/08/2020 |      |
| Date analysed                      | -        |     |           | 04/08/2020 | [NT]      |      | [NT] | [NT]             | 04/08/2020 |      |
| pH 1:5 soil:water                  | pH Units |     | Inorg-001 | [NT]       | [NT]      |      | [NT] | [NT]             | 101        |      |

Envirolab Reference: 247524-A

| QU               | QUALITY CONTROL: CEC |     |            |            |      | Duplicate |      |      | Spike Recovery % |      |
|------------------|----------------------|-----|------------|------------|------|-----------|------|------|------------------|------|
| Test Description | Units                | PQL | Method     | Blank      | #    | Base      | Dup. | RPD  | LCS-1            | [NT] |
| Date prepared    | -                    |     |            | 05/08/2020 | [NT] | [NT]      | [NT] | [NT] | 05/08/2020       |      |
| Date analysed    | -                    |     |            | 05/08/2020 | [NT] | [NT]      | [NT] | [NT] | 05/08/2020       |      |
| Exchangeable Ca  | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] | [NT]      | [NT] | [NT] | 104              |      |
| Exchangeable K   | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] | [NT]      | [NT] | [NT] | 109              |      |
| Exchangeable Mg  | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] | [NT]      | [NT] | [NT] | 101              |      |
| Exchangeable Na  | meq/100g             | 0.1 | Metals-020 | <0.1       | [NT] | [NT]      | [NT] | [NT] | 107              | [NT] |

Envirolab Reference: 247524-A

| Result Definiti | ons                                       |
|-----------------|-------------------------------------------|
| NT              | Not tested                                |
| NA              | Test not required                         |
| INS             | Insufficient sample for this test         |
| PQL             | Practical Quantitation Limit              |
| <               | Less than                                 |
| >               | Greater than                              |
| RPD             | Relative Percent Difference               |
| LCS             | Laboratory Control Sample                 |
| NS              | Not specified                             |
| NEPM            | National Environmental Protection Measure |
| NR              | Not Reported                              |

Envirolab Reference: 247524-A

| <b>Quality Control</b>             | ol Definitions                                                                                                                                                                                                                   |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blank                              | This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.           |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                 |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                          |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

### **Laboratory Acceptance Criteria**

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 247524-A Page | 9 of 10

Revision No: R00

### Client Reference: 88224.06, Jumping Creek

## **Report Comments**

pH Samples were out of the recommended holding time for this analysis.

Envirolab Reference: 247524-A Page | 10 of 10 R00

Revision No:

# Appendix H

Data Quality Assessment



### DATA QUALITY ASSESSMENT

### Q1. Data Quality Objectives

The Updated Contamination Assessment was prepared with reference to the seven step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of the *National Environment Protection (Assessment of Site Contamination) Measure* 1999 as amended 2013 (NEPC, 2013). The DQO process is outlined as follows:

- Stating the Problem;
- Identifying the Decision;
- Identifying Inputs to the Decision;
- Defining the Boundary of the Assessment;
- Developing a Decision Rule;
- Specifying Acceptable Limits on Decision Errors; and
- Optimising the Design for Obtaining Data.

The DQOs have been addressed within the report as shown in Table Q1.

**Table Q1: Data Quality Objectives** 

| Data Quality Objective                       | Report Section where Addressed                         |  |  |
|----------------------------------------------|--------------------------------------------------------|--|--|
| State the Problem                            | S1 Introduction                                        |  |  |
| Identify the Decision                        | S17 Conclusions and Recommendations                    |  |  |
| Identify Inputs to the Decision              | S1 Introduction                                        |  |  |
|                                              | S2 Scope of Work                                       |  |  |
|                                              | S3 Site Identification and Description                 |  |  |
|                                              | S4 Proposed Development                                |  |  |
|                                              | S5 Soil Landscape, Regional Geology and Hydrogeology   |  |  |
|                                              | S6 Previous Environmental Works                        |  |  |
|                                              | S7 Site History Review                                 |  |  |
|                                              | S10 Potential for Contamination and Areas of           |  |  |
|                                              | Environmental Concern                                  |  |  |
|                                              | S1 Conceptual Site Model                               |  |  |
|                                              | S11 Site Assessment Criteria                           |  |  |
|                                              | S10 Results of the Investigation                       |  |  |
|                                              | S16 Revised Conceptual Site Model                      |  |  |
| Define the Boundary of the Assessment        | S3 Site Identification and Description                 |  |  |
|                                              | Drawing 1 – Appendix B                                 |  |  |
| Develop a Decision Rule                      | S13 Site Assessment Criteria                           |  |  |
| Specify Acceptable Limits on Decision Errors | S6 Previous Environmental Work                         |  |  |
|                                              | S12 Field Work, Analysis and Quality Assurance/Quality |  |  |



|                                        | Control                                                |  |
|----------------------------------------|--------------------------------------------------------|--|
|                                        | S13 Site Assessment Criteria                           |  |
|                                        | Appendix C                                             |  |
|                                        | QA/QC Procedures and Results – Sections Q2, Q3         |  |
| Optimise the Design for Obtaining Data | S2 Scope of Work                                       |  |
|                                        | S11 Conceptual Site Model                              |  |
|                                        | S12 Field Work, Analysis and Quality Assurance/Quality |  |
|                                        | Control                                                |  |
|                                        | QA/QC Procedures and Results – Sections Q2, Q3         |  |

### Q2. FIELD AND LABORATORY QUALITY CONTROL

The field and laboratory quality control (QC) procedures and results are summarised in Tables Q2 and Q3. Reference should be made to the fieldwork and analysis procedures in Section 12, the Coffey Stage 3 Contamination Assessment (presented in Appendix C) and the laboratory results certificates in Appendix G for further details.

Table Q2: Field QC

| Item                        | Frequency          | Acceptance Criteria                   | Achievement      |
|-----------------------------|--------------------|---------------------------------------|------------------|
| Intra-laboratory replicates | 5% primary samples | RPD <30% inorganics), <50% (organics) | yes <sup>1</sup> |

NOTES: 1 qualitative assessment of RPD results overall; refer Section Q2.1

### Table Q3: Laboratory QC

| Item                         | Frequency           | Acceptance Criteria                                                                            | Achievement |
|------------------------------|---------------------|------------------------------------------------------------------------------------------------|-------------|
| Analytical laboratories used |                     | NATA accreditation                                                                             | yes         |
| Holding times                |                     | In accordance with NEPC (2013) which references various Australian and international standards | yes         |
| Laboratory / Reagant Blanks  | 1 per lab batch     | <pql< td=""><td>yes</td></pql<>                                                                | yes         |
| Laboratory duplicates        | 10% primary samples | Laboratory specific <sup>1</sup>                                                               |             |
| Matrix Spikes                | 1 per lab batch     | 70-130% recovery (inorganics);                                                                 | yes         |
|                              |                     | 60-140% (organics);                                                                            |             |
|                              |                     | 10-140% (SVOC, speciated phenols)                                                              |             |
| Surrogate Spikes             | organics by GC      | 70-130% recovery (inorganics);                                                                 | yes         |
|                              |                     | 60-140% (organics);                                                                            |             |
|                              |                     | 10-140% (SVOC, speciated phenols)                                                              |             |
| Control Samples              | 1 per lab batch     | 70-130% recovery (inorganics);                                                                 | yes         |
|                              |                     | 60-140% (organics);                                                                            |             |
|                              |                     | 10-140% (SVOC, speciated phenols)                                                              |             |

NOTES: 1 ELS: <5xPQL - any RPD; >5xPQL - 0-50%RPD

Mgt: <10xPQL - any RPD; 10-20xPQL - 0-50%RDP; >20xPQL - 0-30%RPD



In summary, the QC data is considered to be of sufficient quality to be acceptable for the assessment.

### **Q2.1 Intra-Laboratory Replicates**

Intra-laboratory replicates were analysed as an internal check of the reproducibility within the primary laboratory Envirolab and as a measure of consistency of sampling techniques. The comparative results of analysis between original and intra-laboratory replicate samples are summarised in Table Q4.

Note that, where both samples are below LOR/PQL the difference and RPD has been given as zero. Where one sample is reported below LOR/PQL, but a concentration is reported for the other, the LOR/PQL value has been used for calculation of the RPD for the less than LOR/PQL sample.



Table Q4: Relative Percentage Difference Results – Intra-laboratory Replicates

|           |                     |                 |         |       |     | Metals |    |    |     |       |    |     |    |    |
|-----------|---------------------|-----------------|---------|-------|-----|--------|----|----|-----|-------|----|-----|----|----|
| Lab       | Sample ID           | Date<br>Sampled | Media   | Units | As  | Cd     | Cr | Cu | Pb  | Hg    | Ni | Zn  | Fe | Mn |
| Envirolab | QC-ASM              | 21/07/2020      | filling | mg/kg | < 4 | 2      | 4  | 5  | 19  | < 0.1 | 4  | 530 | -  | -  |
| Envirolab | ASM20.1-<br>0.2     | 21/07/2020      | filling | mg/kg | < 4 | 2      | 8  | 9  | 65  | <0.1  | 9  | 830 | -  | -  |
|           | Difference          |                 |         | mg/kg | 0   | 0      | 4  | 4  | 46  | 0     | 5  | 300 | -  | -  |
|           | RPI                 | )               |         | %     | 0   | 0      | 67 | 57 | 110 | 0     | 77 | 44  | -  | -  |
|           |                     |                 |         |       |     |        |    |    |     |       |    |     |    |    |
| Envirolab | QC-JCH              | 21/07/2020      | filling | mg/kg | 9   | < 0.4  | 45 | 7  | 8   | < 0.1 | 21 | 53  | -  | -  |
| Envirolab | JCH13-<br>1/0.1-0.2 | 21/07/2020      | filling | mg/kg | 10  | < 0.4  | 40 | 7  | 12  | <0.1  | 21 | 51  | -  | -  |
|           | Difference          |                 | mg/kg   | 1     | 0   | 5      | 0  | 4  | 0   | 0     | 2  | -   | -  |    |
|           | RPD                 |                 | %       | 11    | 0   | 12     | 0  | 40 | 0   | 0     | 4  | -   | -  |    |
|           |                     |                 |         |       |     |        |    |    |     |       |    |     |    | _  |

Notes: - not applicable, not tested



The calculated RPD values were generally within the acceptable range of  $\pm$  30 for inorganic analytes and  $\pm$  50% for organics, however, duplicate pairs for chromium, lead, copper, nickel and zinc exceeded the acceptable RPD value. Given the generally low concentrations reported, a small difference between the values reports a high RPD value. For all reported concentrations in the duplicate pairs, there were no concentrations exceeding the applicable screening criteria. Therefore it is considered that the RPD values outside of the acceptable range, do not represent a concern.

Overall, the intra-laboratory replicate comparisons indicate that the sampling techniques were generally consistent and repeatable.

### Q3. Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs):

- Completeness a measure of the amount of usable data from a data collection activity;
- Comparability the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness the confidence (qualitative) of data representativeness of media present onsite:
- Precision a measure of variability or reproducibility of data; and
- Accuracy a measure of closeness of the data to the 'true' value.

The DQIs were assessed as outlined in the following Table Q5.

**Table Q5: Data Quality Indicators** 

| Data Quality Indicator | Method(s) of Achievement                                                                                                           |  |  |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Completeness           | Planned systematic and selected target locations sampled;                                                                          |  |  |
|                        | Preparation of field logs, sample location plan and chain of custody (COC) records;                                                |  |  |
|                        | Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody;   |  |  |
|                        | Samples analysed for contaminants of potential concern (COPC) identified in the Preliminary Conceptual Site Model (CSM);           |  |  |
|                        | Completion of COC documentation;                                                                                                   |  |  |
|                        | NATA endorsed laboratory certificates provided by the laboratory;                                                                  |  |  |
|                        | Satisfactory frequency and results for field and laboratory QC samples as discussed in Section Q2.                                 |  |  |
| Comparability          | Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project; |  |  |
|                        | Works undertaken by appropriately experienced and trained DP environmental                                                         |  |  |



|                    | scientist / engineer;                                                                          |
|--------------------|------------------------------------------------------------------------------------------------|
|                    | Use of NATA registered laboratories, Satisfactory results for field and laboratory QC samples. |
|                    |                                                                                                |
| Representativeness | Target media sampled;                                                                          |
|                    | Spatial and temporal distribution of sample locations;                                         |
|                    | Sample numbers recovered and analysed are considered to be representative of                   |
|                    | the target media and complying with DQOs;                                                      |
|                    | Samples were extracted and analysed within holding times;                                      |
|                    | Samples were analysed in accordance with the analysis request.                                 |
| Precision          | Acceptable RPD between original samples and replicates;                                        |
|                    | Satisfactory results for all other field and laboratory QC samples.                            |
| Accuracy           | Satisfactory results for all field and laboratory QC samples.                                  |

Based on the above, it is considered that the DQIs have been complied with. As such, it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

# Appendix I

Ecological Investigation Limits Calculation Spreadsheet

| Inputs                                        |
|-----------------------------------------------|
| Select contaminant from list below            |
| As                                            |
| Below needed to calculate fresh and aged ACLs |
| -                                             |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| Below needed to calculate fresh and aged      |
| ABCs                                          |
|                                               |
|                                               |
|                                               |
| or for fresh ABCs only                        |
| or for freeh Abos only                        |
|                                               |
|                                               |
|                                               |
| or for aged ABCs only                         |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |

| Outputs                                             |                      |              |  |  |  |
|-----------------------------------------------------|----------------------|--------------|--|--|--|
| Land use                                            | Arsenic generic EILs |              |  |  |  |
|                                                     | (mg contaminant/     | kg dry soil) |  |  |  |
|                                                     |                      |              |  |  |  |
|                                                     | Fresh                | Aged         |  |  |  |
| National parks and areas of high conservation value | 20                   | 40           |  |  |  |
| Urban residential and open public spaces            | 50                   | 100          |  |  |  |
| Commercial and industrial                           | 80                   | 160          |  |  |  |

| Innuita                                         |
|-------------------------------------------------|
| Inputs                                          |
| Select contaminant from list below              |
| Cr_III Below needed to calculate fresh and aged |
| ACLs                                            |
| ACLS                                            |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
|                                                 |
| Enter % clay (values from 0 to 100%)            |
| 18                                              |
| Below needed to calculate fresh and aged        |
| ABCs                                            |
|                                                 |
| Measured background concentration               |
| (mg/kg). Leave blank if no measured value       |
| ( 3 3)                                          |
| or for fresh ABCs only                          |
| Enter iron content (aqua regia method)          |
| (values from 0 to 50%) to obtain estimate of    |
| background concentration                        |
| 7                                               |
| an fan amad ABCa ambi                           |
| or for aged ABCs only                           |
| Enter State (or closest State)                  |
| NSW                                             |
| Enter traffic volume (high or low)              |
|                                                 |
| low                                             |

| Outputs                                             |                           |              |  |  |  |
|-----------------------------------------------------|---------------------------|--------------|--|--|--|
| Land use                                            | Cr III soil-specific EILs |              |  |  |  |
|                                                     | (mg contaminant/          | kg dry soil) |  |  |  |
|                                                     |                           |              |  |  |  |
|                                                     | Fresh                     | Aged         |  |  |  |
| National parks and areas of high conservation value | 140                       | 160          |  |  |  |
| Urban residential and open public spaces            | 270                       | 490          |  |  |  |
| Commercial and industrial                           | 400                       | 810          |  |  |  |

| Inputs                                                                                                                  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Select contaminant from list below                                                                                      |  |  |  |  |  |  |
| Cu                                                                                                                      |  |  |  |  |  |  |
| Below needed to calculate fresh and aged ACLs                                                                           |  |  |  |  |  |  |
| Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt)                             |  |  |  |  |  |  |
| 24                                                                                                                      |  |  |  |  |  |  |
| Enter soil pH (calcium chloride method) (values from 1 to 14)                                                           |  |  |  |  |  |  |
| 8.3                                                                                                                     |  |  |  |  |  |  |
| Enter organic carbon content (%OC) (values from 0 to 50%)                                                               |  |  |  |  |  |  |
| 1                                                                                                                       |  |  |  |  |  |  |
| Below needed to calculate fresh and aged                                                                                |  |  |  |  |  |  |
| ABCs                                                                                                                    |  |  |  |  |  |  |
| Measured background concentration (mg/kg). Leave blank if no measured value                                             |  |  |  |  |  |  |
| or for fresh ABCs only                                                                                                  |  |  |  |  |  |  |
| Enter iron content (aqua regia method)<br>(values from 0 to 50%) to obtain estimate of<br>background concentration<br>7 |  |  |  |  |  |  |
| or for aged ABCs only                                                                                                   |  |  |  |  |  |  |
| Enter State (or closest State)                                                                                          |  |  |  |  |  |  |
| NSW Enter traffic volume (high or low)                                                                                  |  |  |  |  |  |  |
| low                                                                                                                     |  |  |  |  |  |  |

| Outputs                                             |                              |      |  |  |  |  |  |
|-----------------------------------------------------|------------------------------|------|--|--|--|--|--|
| Land use                                            | Cu soil-specific EILs        |      |  |  |  |  |  |
|                                                     | (mg contaminant/kg dry soil) |      |  |  |  |  |  |
|                                                     |                              |      |  |  |  |  |  |
|                                                     | Fresh                        | Aged |  |  |  |  |  |
| National parks and areas of high conservation value | 75                           | 90   |  |  |  |  |  |
| Urban residential and open public spaces            | 130                          | 230  |  |  |  |  |  |
| Commercial and industrial                           | 190                          | 330  |  |  |  |  |  |

| Inputs                                   |
|------------------------------------------|
| Select contaminant from list below       |
| DDT                                      |
| Below needed to calculate fresh and aged |
| ACLs                                     |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |
| Below needed to calculate fresh and aged |
| ABCs                                     |
|                                          |
|                                          |
|                                          |
|                                          |
| or for fresh ABCs only                   |
|                                          |
|                                          |
|                                          |
| or for aged ABCs only                    |
| or for aged Abos only                    |
|                                          |
|                                          |
|                                          |
|                                          |
|                                          |

| Outputs                                             |                              |      |  |  |  |  |  |
|-----------------------------------------------------|------------------------------|------|--|--|--|--|--|
| Land use                                            | DDT generic EILs             |      |  |  |  |  |  |
|                                                     | (mg contaminant/kg dry soil) |      |  |  |  |  |  |
|                                                     | Fresh                        | Aged |  |  |  |  |  |
| National parks and areas of high conservation value | 3                            | 3    |  |  |  |  |  |
| Urban residential and open public spaces            | 180                          | 180  |  |  |  |  |  |
| Commercial and industrial                           | 640                          | 640  |  |  |  |  |  |

| Inputs                                                        |
|---------------------------------------------------------------|
| Select contaminant from list below                            |
| Ni                                                            |
| Below needed to calculate fresh and aged                      |
| ACLs                                                          |
| Enter cation exchange capacity (silver                        |
| thiourea method) (values from 0 to 100                        |
| cmolc/kg dwt)                                                 |
|                                                               |
| 24                                                            |
| 24                                                            |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
| Below needed to calculate fresh and aged                      |
| ABCs                                                          |
|                                                               |
| Measured background concentration                             |
| (mg/kg). Leave blank if no measured value                     |
| ( 3 3)                                                        |
| or for fresh APCs only                                        |
| or for fresh ABCs only Enter iron content (aqua regia method) |
| (values from 0 to 50%) to obtain estimate of                  |
| background concentration                                      |
| 7                                                             |
|                                                               |
| or for aged ABCs only                                         |
| Enter State (or closest State)                                |
| Enter otate (or closest otate)                                |
| NSW                                                           |
| 14044                                                         |
|                                                               |
| Enter traffic volume (high or low)                            |

| Outputs                                             |                             |              |  |  |  |  |  |
|-----------------------------------------------------|-----------------------------|--------------|--|--|--|--|--|
| Land use                                            | d use Ni soil-specific EILs |              |  |  |  |  |  |
|                                                     | (mg contaminant/            | kg dry soil) |  |  |  |  |  |
|                                                     | Fresh                       | Aged         |  |  |  |  |  |
| National parks and areas of high conservation value | 40                          | 55           |  |  |  |  |  |
| Urban residential and open public spaces            | 120                         | 310          |  |  |  |  |  |
| Commercial and industrial                           | 210 520                     |              |  |  |  |  |  |

| Inputs                                        |
|-----------------------------------------------|
| Select contaminant from list below            |
| Pb                                            |
| Below needed to calculate fresh and aged ACLs |
| 71020                                         |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
| Below needed to calculate fresh and aged      |
| ABCs                                          |
|                                               |
|                                               |
|                                               |
|                                               |
| or for fresh ABCs only                        |
|                                               |
|                                               |
|                                               |
| or for aged ABCs only                         |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |
|                                               |

| Outputs                                             |                   |              |  |  |  |  |  |
|-----------------------------------------------------|-------------------|--------------|--|--|--|--|--|
| Land use                                            | Lead generic EILs |              |  |  |  |  |  |
|                                                     | (mg contaminant/  | kg ary soil) |  |  |  |  |  |
|                                                     | Fresh             | Aged         |  |  |  |  |  |
| National parks and areas of high conservation value | 110               | 470          |  |  |  |  |  |
| Urban residential and open public spaces            | 270               | 1100         |  |  |  |  |  |
| Commercial and industrial                           | 440               | 1800         |  |  |  |  |  |

| Inputs                                                                                      |
|---------------------------------------------------------------------------------------------|
| Select contaminant from list below                                                          |
| Zn                                                                                          |
| Below needed to calculate fresh and aged ACLs                                               |
| Enter cation exchange capacity (silver thiourea method) (values from 0 to 100 cmolc/kg dwt) |
| 24                                                                                          |
| Enter soil pH (calcium chloride method) (values from 1 to 14)                               |
| 8.3                                                                                         |
|                                                                                             |
| Delaw mandada salawlata finah and anad                                                      |
| Below needed to calculate fresh and aged ABCs                                               |
| Measured background concentration<br>(mg/kg). Leave blank if no measured value              |
| or for fresh ABCs only                                                                      |
| Enter iron content (aqua regia method)                                                      |
| (values from 0 to 50%) to obtain estimate of                                                |
| background concentration                                                                    |
| 7                                                                                           |
| or for aged ABCs only                                                                       |
| Enter State (or closest State)                                                              |
| NSW                                                                                         |
| Enter traffic volume (high or low)                                                          |
| low                                                                                         |

| Outputs                                             |                       |              |  |  |  |  |
|-----------------------------------------------------|-----------------------|--------------|--|--|--|--|
| Land use                                            | Zn soil-specific EILs |              |  |  |  |  |
|                                                     | (mg contaminant/      | kg dry soil) |  |  |  |  |
|                                                     |                       |              |  |  |  |  |
|                                                     | Fresh                 | Aged         |  |  |  |  |
| National parks and areas of high conservation value | 110                   | 250          |  |  |  |  |
| Urban residential and open public spaces            | 340                   | 880          |  |  |  |  |
| Commercial and industrial                           | 520                   | 1300         |  |  |  |  |

# Appendix J

Results Tables



Table J1 **Summary of Coffey DOI1 Analytical Soil Results - Metals** 

|                    |              |             |             | 01                 | A       | 0 - 1              | 01                | Io      | 11    | Iv      | INC. L I | 7:      |
|--------------------|--------------|-------------|-------------|--------------------|---------|--------------------|-------------------|---------|-------|---------|----------|---------|
|                    |              |             |             | ChemName           | Arsenic |                    | Chromium (III+VI) |         | Lead  | Mercury | Nickel   | Zinc    |
|                    |              |             |             | Units              | mg/kg   |                    | mg/kg             | mg/kg   | mg/kg | mg/kg   | mg/kg    | mg/kg   |
|                    |              |             |             | PQL                | 3       | 0.3                | 0.3               | 0.5     |       | 0.05    |          |         |
| 0 1 " 10 "         |              | 0 "         | 1           | NEPM 2013 HIL-A    | 100     | 20                 | 100               | 6,000   | 300   | 40      | 400      | 7,400   |
| Sample # and Depth | Sampled Date | -           | Current     | NEPM 2013 HIL-C    | 300     | 90                 | 300               | 17,000  | 600   | 80      | 1,200    | 30,000  |
|                    |              | Sampling    | proposed    | NEPM 2013 HIL-D    | 3,000   | 900                | 3,600             | 240,000 | 1,500 | 730     | 6,000    | 400,000 |
|                    |              | Rationale   | End-use     | NEPM 2013 EIL R/PC |         |                    |                   | 230     | 1,100 |         | 310      | 880     |
|                    |              |             | ļ           | NEPM 2013 EIL C/I  | 160     |                    | 810               | 330     | 1,800 |         | 520      | 1,300   |
|                    | T            |             | T           |                    |         | AEC 2: Mine Site   |                   | T       |       |         |          |         |
|                    |              | Mine Site 3 | Public Open |                    | 1,700   | 12                 | 21                | 110     | 1,600 | 0.13    | 18       | 2,200   |
| _                  |              | Mine Site 3 | Public Open | •                  | 1,600   | 11                 | 21                | 92      | 1,300 | 0.09    | 18       | 2,100   |
|                    | -            | Mine Site 3 | Public Open |                    | 50      | 1.6                | 22                | 34      | 230   | <0.05   | 20       | 420     |
| MS3-3_0.5-0.6      |              | Mine Site 3 | Public Open | -                  | 47      | 1.4                | 21                | 38      | 220   | <0.05   | 19       | 370     |
| MS3-4_0.0-0.2      |              | Mine Site 3 | Public Open |                    | 120     | 2.1                | 25                | 42      | 330   | <0.05   | 21       | 470     |
|                    |              | Mine Site 3 | Public Open | <u>'</u>           | 1,800   | 13                 | 22                | 92      | 1,700 | 0.09    | 19       | 2,300   |
|                    |              | Mine Site 3 | Public Open | _                  | 1,900   | 13                 | 23                | 100     | 1,700 | 0.11    | 20       | 2,300   |
| MS3-7_0.0-0.2      | -            | Mine Site 3 | Public Open | _                  | 1,500   | 23                 | 6.7               | 100     | 1,200 | 0.12    | 6.1      | 3,500   |
| MS3-8_0.0-0.2      |              | Mine Site 3 | Public Open |                    | 2,900   | 47                 | 8.1               | 260     | 5,200 | 0.11    | 7.4      | 4,500   |
| MS3-9_0.0-0.2      |              | Mine Site 3 | Public Open | _                  | 110     | 2.1                | 24                | 40      | 280   | <0.05   | 21       | 450     |
|                    |              | Mine Site 3 | Public Open | •                  | 100     | 2                  | 24                | 41      | 290   | <0.05   | 21       | 450     |
| MS3-11_0.0-0.2     |              | Mine Site 3 | Public Open |                    | 100     | 0.7                | 13                | 33      | 280   | <0.05   | 14       | 330     |
| MS3-12_0.0-0.2     |              | Mine Site 3 | Public Open | •                  | 140     | 1.1                | 20                | 42      | 350   | 0.05    | 19       | 450     |
| MS3-13_0.0-0.2     |              | Mine Site 3 | Public Open |                    | 130     | 0.9                | 18                | 42      | 340   | 0.06    | 17       | 410     |
|                    |              | Mine Site 3 | Public Open | _                  | 110     | 0.9                | 13                | 38      | 340   | 0.07    | 17       | 390     |
|                    |              | Mine Site 3 | Public Open | _                  | 130     | 0.95               | 17                | 42      | 380   | 0.06    | 18       | 410     |
|                    |              | Mine Site 3 | Public Open |                    | 110     | 1.9                | 24                | 39      | 290   | <0.05   | 21       | 450     |
| MS3-15_0.5-0.6     |              | Mine Site 3 | Public Open | •                  | 82      | 1.6                | 24                | 36      | 220   | <0.05   | 20       | 370     |
| MS3-16_0.0-0.2     |              | Mine Site 3 | Public Open |                    | 32      | 0.3                | 16                | 26      | 100   | <0.05   | 12       | 100     |
| _                  |              | Mine Site 3 | Public Open | _                  | 40      | 0.4                | 18                | 28      | 120   | <0.05   | 15       | 120     |
|                    |              | Mine Site 3 | Public Open | _                  | 39      | 0.4                | 18                | 28      | 120   | <0.05   | 14       | 120     |
|                    |              | Mine Site 3 | Public Open |                    | 27      | <0.3               | 17                | 22      | 72    | <0.05   | 16       | 110     |
| MS3-25_0.0-0.2     |              | Mine Site 3 | Public Open | •                  | 23      | <0.3               | 16                | 21      | 75    | <0.05   | 15       | 100     |
|                    |              | Mine Site 3 | Public Open | _                  | 22      | <0.3               | 16                | 19      | 60    | <0.05   | 14       | 100     |
|                    |              | Mine Site 3 | Public Open | _                  | 27      | <0.3               | 19                | 23      | 75    | <0.05   | 17       | 120     |
|                    |              | Mine Site 3 | Public Open | _                  | 28      | 0.3                | 18                | 23      | 88    | <0.05   | 17       | 110     |
|                    |              | Mine Site 3 | Public Open |                    | 30      | 1.1                | 18                | 28      | 160   | <0.05   | 16       | 290     |
| MS3-34_0.0-0.2     |              | Mine Site 3 | Public Open |                    | 29      | 0.8                | 18                | 30      | 150   | <0.05   | 15       | 250     |
|                    |              | Mine Site 3 | Public Open | _                  | 35      | 1                  | 19                | 33      | 190   | <0.05   | 16       | 300     |
| MS3SP1             |              | Stockpile   | Public Open |                    | 26      | 0.9                | 1.7               | 1.6     | 180   | <0.05   | 1.3      | 170     |
| MS3SP3             | 13/08/2009   | Stockpile   | Public Open | •                  | 120     | 2.4                | 2.5               | 11      | 110   | <0.05   | 2        | 450     |
| DE34 0 0 0 0       | 27/07/2000   | Decidential | Dublic Once |                    |         | ined Residential A |                   |         | Q.F.  | <0.0F   | 20       | 140     |
|                    |              |             | Public Open | _                  | 130     | 0.5                | 20                | 40      | 85    | <0.05   | 32       | 140     |
|                    |              |             | Public Open | _                  | 5       | 0.4                | 27                | 8       | 10    | <0.05   | 13       | 43      |
|                    |              | Residential | Public Open | _                  | 8       | <0.3               | 28                | 4       | 7     | <0.05   | 13       | 34      |
|                    |              | Residential | Public Open | _                  | <3      | <0.3               | 19                | 1       | 3     | <0.05   | 10       | 22      |
|                    |              | Residential | Public Open |                    | <3      | <0.3               | 26                | 6       | 4     | <0.05   | 21       | 28      |
| RE40_0.0-0.2       |              | Residential | Public Open |                    | 10      | 0.6                | 23                | 6       | 11    | <0.05   | 12       | 69      |
|                    |              | DO1         | Public Open |                    | 3       | <0.3               | 13                | 10      | 9.7   | <0.05   | 11       | 47      |
|                    |              | DO2         | Public Open |                    | 3       | <0.3               | 12                | 9       | 10    | <0.05   | 9.8      | 47      |
|                    |              | DO3         | Public Open | ·                  | 3       | <0.3               | 11                | 7       | 11    | <0.05   | 7.7      | 39      |
| DC12-d             |              | DO4         | Public Open |                    | 3       | <0.3               | 14                | 10      | 9.9   | <0.05   | 11       | 47      |
| RE34-a             |              | DO9         | Public Open | _                  | 7       | 0.4                | 21                | 14      | 10    | <0.05   | 21       | 47      |
|                    |              | DO10        | Public Open |                    | 6       | 0.4                | 20                | 16      | 10    | <0.05   | 21       | 40      |
|                    |              | DO11        | Public Open |                    | 8       | 0.5                | 21                | 22      | 9.1   | <0.05   | 22       | 36      |
| RE34-d             | 28/04/2010   | DO12        | Public Open | opace              | 7       | 0.5                | 20                | 15      | 18    | <0.05   | 19       | 58      |

HIL-A Health Based Soil Investigation Levels for Low Density Residential land use values. Proposed use is public open space, HIL-A not applied

HIL-C Health Based Soil Investigation Levels for Public Open Space land use values

HIL-D Health Based Soil Investigation Levels for Commercial/Industrial land use values (under roadways) EIL R/POS Environmental Soil Investigation Levels for Urban residential and public open spaces

EIL C/I Environmental Soil Investigation Levels for commercial/industrial (only applied in areas of site where Commercial/Industrial land use is present)

PQL Practical Quantification Limit 1.23 Reported concentration for contaminant exceeds the EIL

1.23 Reported concentration for contaminant exceeds HIL-C

Reported concentration for contaminant exceeds HIL-C and EIL 1.23

1.23 Reported concentration for contaminant exceeds HIL-D (only applied in areas of site where Commercial/Industrial land use is present)

Reported concentration for contaminat is below the laboratory PQL

**Updated Contamination Assessment Proposed Jumping Creek Estate** 

88224.06 September 2020



Table J2
Summary of Coffey DOI2 Analytical Soil Results - Metals

|                                                    |                                        |                                     |                                                       | ChemName<br>Units                        | Cyanide Total<br>mg/kg     | mg/kg                  | Cadmium<br>mg/kg     | Total Chromium mg/kg | Copper<br>mg/kg          | Lead<br>mg/kg              | Mercury<br>mg/kg        | Nickel<br>mg/kg       | Zinc<br>mg/kg           |
|----------------------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------------------------|------------------------------------------|----------------------------|------------------------|----------------------|----------------------|--------------------------|----------------------------|-------------------------|-----------------------|-------------------------|
|                                                    |                                        |                                     |                                                       | EQL<br>NEPM 2013 HIL-A                   | 250                        | 100                    | 20                   | 100                  | 6,000                    | 300                        | 0.05                    | 400                   | 7,400                   |
| Sample # and Depth                                 | Sampled<br>Date                        | Coffey Sampling<br>Rationale        | Current proposed<br>End-use                           | NEPM 2013 HIL-C<br>NEPM 2013 HIL-D       | 240<br>1500                | 300<br>3,000<br>100    | 900                  | 300<br>3,600         | 17,000<br>240,000<br>230 | 1,500                      | 80<br>730               | 1,200<br>6,000<br>310 | 30,000<br>400,000       |
|                                                    |                                        |                                     |                                                       | NEPM 2013 EIL R/POS<br>NEPM 2013 EIL C/I | AEC6: Minoral              | 160<br>Processing Area | 2                    | 810                  | 330                      | 1,100<br>1,800             |                         | 520                   | 880<br>1,300            |
| MP1_0.0-0.2<br>MP1_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | 0.2                        | 12<br>11               | 0.5                  | 26<br>27             | 14<br>14                 | 120<br>89                  | <0.05<br><0.05          | 14<br>12              | 160<br>110              |
| MP2_0.0-0.2<br>MP2_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | 0.1                        | 13                     | 0.6<br>0.4           | 24 26                | 13                       | 120<br>95                  | <0.05<br><0.05          | 13                    | 180<br>130              |
| MP3_0.0-0.2<br>MP3 0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | -                          | 10                     | 0.4                  | 22 22                | 17<br>17                 | 110<br>97                  | <0.05<br><0.05          | 16<br>16              | 320<br>230              |
| MP4_0.0-0.2<br>MP4_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | 0.1                        | 20                     | 0.6<br>0.4           | 28                   | 28<br>22                 | 190<br>160                 | <0.05<br><0.05          | 18                    | 300<br>240              |
| MP5_0.0-0.2<br>MP5_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential<br>Residential                            |                                          | -                          | 20<br>21               | 0.6<br>0.6           | 30<br>31             | 26<br>26                 | 230<br>200                 | <0.05<br><0.05          | 25<br>25              | 350<br>350              |
| MP6_0.0-0.2<br>MP6_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential<br>Residential                            |                                          | -                          | 22<br>18               | 1.1<br>0.8           | 26<br>35             | 17<br>11                 | 310<br>210                 | <0.05<br><0.05          | 19<br>26              | 500<br>480              |
| MP7_0.0-0.2<br>MP7_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P.<br>Mineral P.            | Residential<br>Residential                            |                                          | -                          | 7                      | <0.3<br><0.3         | 24<br>24             | 4.5<br>4.3               | 39<br>41                   | <0.05<br><0.05          | 11<br>9.9             | 80<br>70                |
| MP8_0.0-0.2<br>MP8_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential<br>Residential                            |                                          | -                          | 10<br>11               | 0.3<br>0.4           | 21<br>22             | 9.7<br>10                | 140<br>150                 | <0.05<br><0.05          | 11<br>11              | 210<br>220              |
| MP9_0.0-0.2<br>MP9_0.5-0.6                         | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential<br>Residential                            |                                          | <0.1                       | 26<br>37               | 0.5<br>0.7           | 27<br>34             | 26<br>32                 | 140<br>170                 | <0.05<br><0.05          | 23<br>24              | 220<br>330              |
| MP10_0.0-0.2<br>MP10_0.5-0.6                       | 4/08/2009<br>4/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | 0.2                        | 28<br>28               | 0.6<br>0.5           | 27<br>28             | 24<br>25                 | 130<br>120                 | <0.05<br><0.05          | 20 21                 | 250<br>260              |
| MP11_0.0-0.2<br>MP11_0.5-0.6<br>MP12_0.0-0.2       | 4/08/2009<br>4/08/2009<br>4/08/2009    | Mineral P. Mineral P. Mineral P.    | Residential Residential Residential                   |                                          | 0.2                        | 40<br>35<br>21         | 0.7<br>0.5<br>0.5    | 30<br>25<br>25       | 29<br>23<br>19           | 190<br>110<br>97           | <0.05<br><0.05<br><0.05 | 23<br>24<br>22        | 330<br>200<br>210       |
| MP12_0.5-0.6<br>MP13_0.0-0.2                       | 4/08/2009<br>4/08/2009<br>4/08/2009    | Mineral P. Mineral P.               | Residential Residential                               |                                          | - 0.2                      | 20                     | 0.5<br>0.4           | 23 26                | 20                       | 94                         | <0.05<br><0.05<br><0.05 | 19<br>19              | 200                     |
| MP13_0.5-0.6<br>MP14_0.0-0.2                       | 4/08/2009<br>5/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | - 0.5                      | 22                     | 0.4                  | 27<br>25             | 20                       | 100<br>300                 | <0.05<br><0.05          | 20                    | 190<br>610              |
| MP14_0.5-0.6                                       | 5/08/2009<br>5/08/2009                 | Mineral P. Mineral P.               | Residential Residential                               |                                          | -                          | 30<br>45               | 2.3                  | 25<br>27             | 21<br>25                 | 320<br>400                 | <0.05<br><0.05          | 19                    | 620<br>720              |
| MP15_0.5-0.6<br>MP16_0.0-0.2                       | 5/08/2009<br>5/08/2009                 | Mineral P.<br>Mineral P.            | Residential<br>Residential                            |                                          | -                          | 41<br>17               | 2.1<br>0.94          | 25<br>25             | 23<br>14                 | 360<br>310                 | <0.05<br><0.05          | 20<br>14              | 660<br>370              |
|                                                    | 5/08/2009<br>5/08/2009                 | Mineral P.<br>Mineral P.            | Residential<br>Residential                            |                                          | -<br>0.6                   | 18<br>96               | 1.3<br>1.8           | 25<br>58             | 15<br>87                 | 330<br>220                 | <0.05<br>0.08           | 16<br>19              | 420<br>1,800            |
| MPSUMP-2                                           | 5/08/2009                              | Mineral P.                          | Residential                                           |                                          | 1.4<br>AEC3: I             | 45<br>Mine Site 4      | 9.6                  | 19                   | 91                       | 240                        | 0.15                    | 22                    | 8100                    |
| MS4-1_0.5-0.6                                      | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 6                      | 0.3                  | 21<br>25             | 11<br>13                 | 63<br>41                   | <0.05<br><0.05          | 16<br>16              | 130<br>76               |
| MS4-2_0.0-0.2                                      | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space Public Open Space |                                          | -<br>-                     | 10<br>6<br>4           | 0.6<br>0.4           | 19<br>22<br>17       | 13<br>12                 | 44<br>65                   | <0.05<br><0.05<br><0.05 | 17<br>19              | 220<br>140              |
| MS4-3_0.5-0.6                                      | 6/08/2009<br>6/08/2009<br>6/08/2009    | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | <del>-</del><br>-          | 5<br>5                 | <0.3<br>0.3<br>0.5   | 20<br>20             | 10<br>13<br>14           | 45<br>48<br>47             | <0.05<br><0.05<br><0.05 | 12<br>15<br>14        | 96<br>110<br>120        |
| MS4-4_0.5-0.6                                      | 6/08/2009<br>6/08/2009<br>6/08/2009    | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | -                          | 5<br>5<br>7            | 0.5<br>0.5<br>0.4    | 21 20                | 14<br>14<br>15           | 47<br>45<br>58             | <0.05<br><0.05<br><0.05 | 16 20                 | 120<br>110<br>180       |
| MS4-5_0.5-0.6                                      | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 7                      | 0.4<br>0.5           | 19<br>24             | 16<br>15                 | 53<br>85                   | <0.05<br><0.05          | 21 22                 | 160<br>190              |
| MS4-6_0.5-0.6                                      | 6/08/2009<br>6/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 8<br>26                | 0.4<br>7.4           | 22<br>18             | 15<br>120                | 74<br><b>6,300</b>         | <0.05<br>0.54           | 21<br>19              | 170<br>11,000           |
| MS4-9_0.0-0.2                                      | 6/08/2009<br>6/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 26<br>33               | 7.6<br>7.2           | 18<br>21             | 130<br>52                | 7,400<br>1,300             | 0.63<br>0.18            | 17<br>20              | 8,900<br>2,400          |
| MS4-11_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 8                      | 0.4<br>0.4           | 24                   | 16<br>16                 | 130<br>69                  | <0.05<br><0.05          | 21                    | 200<br>170              |
| MS4-12_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 6<br>8                 | <0.3                 | 18                   | 15<br>17                 | 43<br>490                  | <0.05<br><0.05          | 16<br>15              | 130<br>410              |
| MS4-13_0.0-0.2                                     | 6/08/2009<br>6/08/2009<br>6/08/2009    | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space                   |                                          | -                          | 8<br>8<br>8            | 0.4                  | 24<br>19<br>20       | 17<br>15                 | 390<br>440<br>420          | <0.05<br><0.05<br><0.05 | 18<br>14<br>15        | 360<br>410<br>410       |
| MS4-14_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | <u>-</u>                   | 55<br>13               | 0.4<br>48<br>3.5     | 12<br>18             | 15<br>130<br>28          | 14,000<br>1,100            | 0.67<br>0.12            | 10                    | 20,000                  |
| MS4-16_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 9                      | 0.5<br>0.6           | 20                   | 12<br>11                 | 38<br>35                   | <0.05<br><0.05          | 18                    | 210<br>210              |
| MS4-18_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 8                      | 1.9<br>0.97          | 22                   | 18                       | 370<br>160                 | <0.05<br><0.05          | 20                    | 770<br>700              |
| MS4-2_0.5-0.6                                      | 6/08/2009<br>6/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 9                      | <0.3<br>0.5          | 27<br>20             | 15<br>14                 | 29<br>39                   | <0.05<br><0.05          | 18<br>18              | 53<br>170               |
| MS4-22_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 10<br>20               | 0.6<br>1.8           | 20<br>20             | 13<br>39                 | 48<br><b>1,300</b>         | <0.05<br>0.27           | 18<br>15              | 220<br>1,000            |
| MS4-24_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 23<br>12               | 4.2<br>2.8           | 14<br>20             | 120<br>27                | 5,100<br>1,300             | 0.85<br>0.12            | 11<br>14              | 2,400<br>1,100          |
| MS4-25_0.0-0.2                                     | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 9                      | 1.1<br>0.5           | 34<br>22             | 26<br>20                 | 200<br>510                 | 0.07<br><0.05           | 24<br>15              | 810<br>490              |
| MS4-26_0.0-0.2                                     | 6/08/2009<br>6/08/2009<br>6/08/2009    | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | <u>-</u>                   | 10<br>6<br>5           | 1.1<br>0.4<br>0.5    | 22<br>20<br>2.2      | 19<br>10<br>4.1          | 650<br>350<br>15           | <0.05<br><0.05<br><0.05 | 15<br>16<br>2         | 640<br>220<br>180       |
| MS4-26A_0.5-0.6                                    | 6/08/2009<br>6/08/2009                 | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | -                          | 18<br>80               | 240                  | 11                   | 52<br>530                | 1,400<br>46,000            | <0.05<br><0.05<br>3.7   | 13                    | <b>57,000</b><br>10,000 |
|                                                    | 6/08/2009<br>7/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 17<br>9                | 0.4<br>0.6           | 25<br>19             | 12<br>13                 | 39<br>120                  | <0.05<br><0.05          | 20                    | 83<br>280               |
| MS4-30_0.0-0.2<br>MS4-30_0.5-0.6                   | 7/08/2009<br>7/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 9 7                    | 0.6<br>0.5           | 19<br>22             | 12<br>8.9                | 130<br>94                  | <0.05<br><0.05          | 12<br>13              | 230<br>190              |
| MS4-31_0.0-0.2<br>MS4-32_0.0-0.2                   | 7/08/2009<br>7/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space<br>Public Open Space                |                                          | -                          | 8<br>6                 | 0.5<br>0.3           | 20<br>14             | 12<br>16                 | 110<br>110                 | <0.05<br><0.05          | 13<br>12              | 200<br>110              |
| MS4-33_0.0-0.2<br>MS4-33_0.5-0.6                   | 7/08/2009<br>7/08/2009                 | Mine Site 4<br>Mine Site 4          | Public Open Space Public Open Space                   |                                          | -                          | 4<br>6                 | 0.4<br>0.3           | 16<br>16             | 9                        | 86<br>190                  | <0.05<br><0.05          | 12<br>12              | 130<br>120              |
| MS4-34_0.0-0.2<br>MS4-34_0.5-0.6                   | 7/08/2009<br>7/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space                   |                                          | -                          | 5                      | 0.5                  | 18<br>16             | 10<br>9.6                | 86<br>130                  | <0.05<br><0.05          | 13                    | 140<br>120              |
| MS4-35_0.0-0.2<br>MS4-36_0.0-0.2                   | 7/08/2009<br>7/08/2009                 | Mine Site 4 Mine Site 4             | Public Open Space Public Open Space Public Open Space |                                          | <u>-</u>                   | 7<br>6                 | 0.3<br><0.3          | 15<br>14             | 15<br>11                 | 110<br>26                  | <0.05<br><0.05          | 13<br>18              | 130<br>51               |
| MS4-37_0.0-0.2<br>MS4-38_0.0-0.2<br>MS4-39_0.0-0.2 | 7/08/2009<br>7/08/2009<br>7/08/2009    | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | -<br>-                     | 44<br>51<br>46         | 2.7<br>2.4<br>2.3    | 17<br>16<br>18       | 350<br>340<br>340        | 33,000<br>25,000<br>23,000 | 3.2<br>2.2<br>2.5       | 8.7<br>7.4<br>8.6     | 2,400<br>2,200<br>2,200 |
| _                                                  | 25/11/2009<br>25/11/2009               | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | -                          | 6 8                    | 2.3<br>1.1<br><0.3   | 15<br>17             | 7.7<br>5.7               | 71<br>23                   | <0.05<br><0.05          | 12                    | 1,200<br>65             |
|                                                    | 25/11/2009<br>25/11/2009<br>25/11/2009 | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | -                          | 8                      | 1.3                  | 17                   | 9.6<br>5.3               | 67<br>18                   | <0.05<br><0.05<br><0.05 | 14 14 10              | 1,500<br>53             |
| MS4-49_0.0-0.2                                     | 25/11/2009<br>25/11/2009<br>25/11/2009 | Mine Site 4 Mine Site 4 Mine Site 4 | Public Open Space Public Open Space Public Open Space |                                          | -                          | 9 5                    | <0.3<br><0.3         | 16<br>14             | 6.9<br>4.9               | 23 20                      | <0.05<br><0.05<br><0.05 | 14 10                 | 69<br>48                |
| MS4SP1<br>MS4SP3                                   | 13/08/2009<br>13/08/2009               | Stockpile<br>Stockpile              | Public Open Space<br>Public Open Space                |                                          | -                          | 200<br>8               | 350<br>2.6           | 5.4<br>9.7           | 360<br>18                | <b>19,000</b> 120          | 3.2<br>0.16             | 6.8                   | <b>130,000</b> 710      |
| MS4SP5<br>MS4SP7                                   | 13/08/2009<br>13/08/2009               | Stockpile<br>Stockpile              | Public Open Space<br>Public Open Space                |                                          | -                          | 8                      | 4.9<br>0.4           | 3.8                  | 190<br>96                | 35,000<br>14,000           | 6<br>0.65               | 1.5<br>0.7            | 810<br>360              |
| MS4SP9                                             | 13/08/2009                             | Stockpile                           | Public Open Space                                     | Sample                                   | -<br>s from Coffey defined |                        |                      |                      | 190                      | 54,000                     | 8.5                     | 1.3                   | 840                     |
| OS14_0.0-0.2                                       | 24/07/2009<br>24/07/2009               | Open Space Open Space               | Public Open Space Public Open Space                   |                                          | -                          | 11<br><3               | 0.3<br><0.3          | 20<br>15             | 8.2<br>8.6               | 16<br>10                   | <0.05<br><0.05          | 23                    | 64<br>24                |
| OS15_0.0-0.2<br>OS16_0.0-0.2                       | 24/07/2009<br>24/07/2009               | Open Space Open Space               | Public Open Space Public Open Space Public Open Space |                                          | -<br>-                     | 3<br>6<br>3            | <0.3<br><0.3         | 14<br>17             | 7.5<br>14                | 9<br>20<br>13              | <0.05<br><0.05<br><0.05 | 10<br>14              | 19<br>65                |
| OS17_0.0-0.2<br>OS18_0.0-0.2<br>OS19_0.0-0.2       | 24/07/2009<br>24/07/2009<br>24/07/2009 | Open Space Open Space Open Space    | Public Open Space Public Open Space Public Open Space |                                          | -                          | 3<br>4<br><3           | <0.3<br><0.3<br><0.3 | 14<br>12<br>13       | 9.3<br>9.4<br>12         | 13<br>8<br>9.5             | <0.05<br><0.05<br><0.05 | 12<br>17<br>13        | 21<br>20<br>22          |
| OS20_0.0-0.2                                       | 24/07/2009<br>24/07/2009<br>28/04/2010 | Open Space Open Space Open Space    | Public Open Space Public Open Space Public Open Space |                                          | -                          | 23                     | <0.3<br><0.3<br>0.3  | 15<br>14             | 12<br>12<br>13           | 9.5<br>15<br>15            | <0.05<br><0.05<br><0.05 | 13<br>19<br>19        | 48<br>68                |
| OS20-b<br>OS20-c                                   | 28/04/2010<br>28/04/2010<br>28/04/2010 | Open Space Open Space               | Public Open Space Public Open Space Public Open Space |                                          | -                          | 6 4                    | 0.3                  | 17                   | 17<br>14                 | 17<br>14                   | <0.05<br><0.05<br><0.05 | 20                    | 79<br>60                |
| OS20-d<br>RE24_0.0-0.2                             | 28/04/2010<br>24/07/2009               | Open Space<br>Residential           | Public Open Space Residential                         |                                          | -                          | 4 3                    | <0.3                 | 13<br>17             | 15<br>3.6                | 13<br>25                   | <0.05<br><0.05          | 17 4.3                | 69<br>31                |
| RE30_0.0-0.2<br>RE31_0.0-0.2                       | 24/07/2009<br>24/07/2009               | Residential<br>Residential          | Public Open Space<br>Public Open Space                |                                          |                            | 11<br>5                | 0.5<br>0.4           | 16<br>18             | 12<br>10                 | 99<br>36                   | <0.05<br><0.05          | 11<br>14              | 160<br>70               |
| RE32_0.0-0.2<br>RE33_0.0-0.2                       | 24/07/2009<br>24/07/2009               | Residential<br>Residential          | Public Open Space<br>Public Open Space                |                                          | -                          | 7<br>5                 | <0.3<br><0.3         | 14<br>16             | 11<br>11                 | 24<br>21                   | <0.05<br><0.05          | 15<br>12              | 60<br>61                |
| SP1                                                | 24/07/2009<br>5/08/2009                | Residential<br>Clay SP              | Public Open Space Public Open Space                   |                                          | -                          | <3<br>17               | <0.3                 | 16<br>21             | 11<br>23                 | 12<br>90                   | <0.05<br><0.05          | 11<br>31              | 38<br>450               |
|                                                    | 5/08/2009<br>5/08/2009                 | Clay SP                             | Public Open Space Public Open Space                   |                                          | -                          | 11<br>12               | 0.7<br>0.6           | 21<br>19             | 17<br>18                 | 62<br>60                   | <0.05<br><0.05          | 25<br>23              | 200<br>210              |
| SP4                                                | 5/08/2009                              | Clay SP                             | Public Open Space                                     |                                          | <u> -</u>                  | 12                     | 0.6                  | 22                   | 17                       | 60                         | <0.05                   | 24                    | 180                     |

Notes: HIL-A Health Based Soil Investigation Levels for Low Density Residential land use values

HIL-A Health Based Soil Investigation Levels for Low Density Residential land use val HIL-C Health Based Soil Investigation Levels for Public Open Space land use values

HIL-D Health Based Soil Investigation Levels for Commercial/Industrial land use values (under roadways)

FIL R/POS Environmental Soil Investigation Levels for Urban residential and public open spaces

EIL R/POS Environmental Soil Investigation Levels for Urban residential and public open spaces

EIL C/I Environmental Soil Investigation Levels for commercial/industrial (only applied in areas of site where Commercial/Industrial land use is present)

PQL Practical Quantification Limit

1.23 Reported concentration for contaminant exceeds the EIL

1.23 Reported concentration for contaminant exceeds HIL-C

1.23 Reported concentration for contaminant exceeds HIL-C and EIL

1.23 Reported concentration for contaminant exceeds HL-A

Reported concentration for contaminant exceeds HL-A

1.23 Reported concentration for contaminant exceeds HIL-A and HIL-C
1.23 Reported concentration for contaminant exceeds HIL-A, HIL-C and EIL

1.23 Reported concentration for contaminant exceeds HIL-A and EIL

Reported concentration for contaminant exceeds HIL-D (only applied in areas of site where Commercial/Industrial land use is present)

Reported concentration for contaminant exceeds HIL-D (only applied in areas of site where Commercial/Industrial land use is present)

Reported concentration for contaminant is below the laboratory PQL



Table J3 **Summary of Coffey DOI3 Analytical Soil Results - Metals** 

|                     |              |                 |             | ChemName            | Arsenic      | Cadmium          | Chromium (III+V                                | Conner  | Lead     | Mercury | Nickel | Zinc    |
|---------------------|--------------|-----------------|-------------|---------------------|--------------|------------------|------------------------------------------------|---------|----------|---------|--------|---------|
|                     |              |                 |             | Units               | mg/kg        | mg/kg            | mg/kg                                          | mg/kg   | mg/kg    | mg/kg   | mg/kg  | mg/kg   |
|                     |              |                 |             | EQL                 | 3            | 0.3              | 0.3                                            |         |          | 0.05    |        | 0.5     |
|                     |              |                 |             | NEPM 2013 HIL-A     | 100          | 20               | 100                                            | 6,000   | 300      | 40      | 400    | 7,400   |
| Sample # and Depth  | Sampled Date | Coffey Sampling | Current     | NEPM 2013 HIL-C     | 300          | 90               | 300                                            | 17,000  | 600      | 80      | 1,200  | 30,000  |
| Campio ii ana 20pin |              | Rationale       | proposed    | NEPM 2013 HIL-D     | 3,000        | 900              | 3,600                                          | 240,000 | 1,500    | 730     | 6,000  | 400,000 |
|                     |              |                 | End-use     | NEPM 2013 EIL R/POS | 100          |                  | 2,000                                          | 230     | 1,100    |         | 310    | 880     |
|                     |              |                 |             | NEPM 2013 EIL C/I   | 160          |                  | 810                                            | 330     | 1,800    |         | 520    | 1,300   |
|                     |              |                 |             | Samples from Coffey |              | ntial and open s |                                                |         | 1,555    |         |        | 1,555   |
| OS05 0.0-0.2        | 23/07/2009   | Open Space      | Residential |                     | 5            | <0.3             | 9.6                                            | 12      | 6        | <0.05   | 16     | 18      |
| _                   |              | Open Space      | Residential |                     | <3           | <0.3             | 17                                             | 11      | 4        | <0.05   | 18     | 29      |
| OS08_0.0-0.2        |              | Open Space      | Residential |                     | <3           | <0.3             | 18                                             | 11      | 5        | <0.05   | 21     | 35      |
|                     |              | Open Space      | Residential |                     | 6            | <0.3             | 15                                             | 8.8     | 5        | <0.05   | 19     | 30      |
| RE02_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 6            | <0.3             | 16                                             | 29      | 6        | <0.05   | 18     | 24      |
| RE05_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 6            | <0.3             | 19                                             | 19      | 8        | <0.05   | 22     | 38      |
|                     | 23/07/2009   | Residential     | Residential |                     | 8            | <0.3             | 18                                             | 15      | 7        | <0.05   | 20     | 31      |
| RE10_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 5            | <0.3             | 15                                             | 5.5     | 6        | <0.05   | 13     | 17      |
|                     | 23/07/2009   | Residential     | Residential |                     | 7            | <0.3             | 19                                             | 21      | 11       | <0.05   | 22     | 62      |
| RE14_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 6            | <0.3             | 18                                             | 16      | 14       | <0.05   | 20     | 59      |
| RE14_0.5-0.6        | 23/07/2009   | Residential     | Residential |                     | 7            | <0.3             | 19                                             | 18      | 15       | <0.05   | 21     | 60      |
|                     | 23/07/2009   | Residential     | Residential |                     | 8            | <0.3             | 18                                             | 38      | 4        | <0.05   | 20     | 24      |
| RE19_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 4            | <0.3             | 17                                             | 19      | 8        | <0.05   | 18     | 37      |
|                     | 23/07/2009   | Residential     | Residential |                     | 4            | <0.3             | 18                                             | 19      | 7        | <0.05   | 19     | 35      |
| RE20_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 7            | <0.3             | 18                                             | 18      | 10       | <0.05   | 27     | 60      |
| RE20_0.5-0.6        | 23/07/2009   | Residential     | Residential |                     | 4            | <0.3             | 19                                             | 20      | 11       | <0.05   | 28     | 61      |
|                     | 23/07/2009   | Residential     | Residential |                     | 3            | <0.3             | 17                                             | 7.9     | 5        | <0.05   | 17     | 27      |
| RE25_0.0-0.2        | 24/07/2009   | Residential     | Residential |                     | 3            | <0.3             | 13                                             | 12      | 13       | <0.05   | 14     | 58      |
|                     | 23/07/2009   | Residential     | Residential |                     | 3            | <0.3             | 16                                             | 6.2     | 6        | <0.05   | 12     | 19      |
|                     | 23/07/2009   | Residential     | Residential |                     | 3            | <0.3             | 16                                             | 6.5     | 6        | <0.05   | 12     | 17      |
| RE28_0.0-0.2        | 23/07/2009   | Residential     | Residential |                     | 10           | <0.3             | 16                                             | 9.7     | 8        | <0.05   | 20     | 41      |
| _                   |              | Residential     | Residential |                     | 9            | <0.3             | 21                                             | 11      | 11       | <0.05   | 25     | 46      |
|                     | 24/07/2009   | Residential     | Residential |                     | 5            | <0.3             | 21                                             | 9.9     | 14       | <0.05   | 19     | 56      |
|                     | 24/07/2009   | Residential     | Residential |                     | 6            | 0.3              | 18                                             | 15      | 16       | <0.05   | 23     | 63      |
| _                   |              |                 |             |                     | AEC1: Mine S |                  |                                                |         |          | ļ       |        |         |
| MS1-10_0.5-0.6      | 30/07/2009   | Mine Site 1     | Residential |                     | 11           | 0.4              | 23                                             | 31      | 11       | <0.05   | 19     | 45      |
| _                   |              | Mine Site 1     | Residential |                     | 10           | 0.4              | 24                                             | 21      | 20       | < 0.05  | 32     | 80      |
| MS1-11_0.5-0.6      |              | Mine Site 1     | Residential |                     | 9            | 0.3              | 21                                             | 20      | 22       | <0.05   | 29     | 87      |
| MS1-11_0.9-1.0      |              | Mine Site 1     | Residential |                     | 11           | 0.5              | 31                                             | 19      | 17       | <0.05   | 19     | 51      |
|                     |              | Mine Site 1     | Residential |                     | 6            | 0.3              | 22                                             | 14      | 9        | <0.05   | 26     | 55      |
| MS1-12_0.5-0.6      | 30/07/2009   | Mine Site 1     | Residential |                     | 6            | 0.3              | 21                                             | 15      | 6        | <0.05   | 25     | 51      |
|                     | 30/07/2009   | Mine Site 1     | Residential |                     | 6            | 0.3              | 20                                             | 32      | 13       | <0.05   | 25     | 62      |
| MS1-13_0.5-0.6      | 30/07/2009   | Mine Site 1     | Residential |                     | 6            | <0.3             | 20                                             | 50      | 13       | <0.05   | 25     | 51      |
| MS1-14_0.0-0.2      | 30/07/2009   | Mine Site 1     | Residential |                     | 8            | 0.5              | 20                                             | 15      | 21       | <0.05   | 33     | 150     |
| MS1-14_0.5-0.6      | 30/07/2009   | Mine Site 1     | Residential |                     | 7            | 0.4              | 28                                             | 27      | 15       | <0.05   | 19     | 62      |
| MS1-15_0.0-0.2      | 30/07/2009   | Mine Site 1     | Residential |                     | 6            | <0.3             | 17                                             | 21      | 13       | <0.05   | 16     | 52      |
|                     | 30/07/2009   | Mine Site 1     | Residential |                     | 10           | <0.3             | 22                                             | 26      | 10       | <0.05   | 21     | 53      |
| MS1-16_0.0-0.2      | 30/07/2009   | Mine Site 1     | Residential |                     | 8            | 0.4              | 25                                             | 25      | 11       | < 0.05  | 27     | 60      |
| MS1-16_0.5-0.6      |              | Mine Site 1     | Residential |                     | 7            | 0.3              | 22                                             | 22      | 11       | <0.05   | 27     | 62      |
|                     | 30/07/2009   | Mine Site 1     | Residential |                     | 10           | 0.3              | 22                                             | 19      | 4        | <0.05   | 39     | 40      |
| MS1-2_0.5-0.6       | 30/07/2009   | Mine Site 1     | Residential |                     | 9            | 0.3              | 21                                             | 27      | 4        | <0.05   | 34     | 30      |
|                     | 30/07/2009   | Mine Site 1     | Residential |                     | 12           | 0.3              | 24                                             | 9.1     | 7        | <0.05   | 28     | 37      |
|                     | 30/07/2009   | Mine Site 1     | Residential |                     | 12           | 0.3              | 25                                             | 8.1     | 6        | <0.05   | 38     | 41      |
| MS1-4_0.0-0.2       | 30/07/2009   | Mine Site 1     | Residential |                     | 4            | 0.4              | 18                                             | 14      | 20       | <0.05   | 25     | 71      |
| MS1-4_0.5-0.6       | 30/07/2009   | Mine Site 1     | Residential |                     | <3           | 0.3              | 21                                             | 16      | 12       | <0.05   | 23     | 47      |
| MS1-5_0.0-0.2       | 30/07/2009   | Mine Site 1     | Residential |                     | 4            | 0.3              | 18                                             | 13      | 17       | <0.05   | 26     | 69      |
|                     | 30/07/2009   | Mine Site 1     | Residential |                     | 5            | 0.3              | 18                                             | 17      | 7        | <0.05   | 24     | 46      |
| MS1-6_0.0-0.2       | 30/07/2009   | Mine Site 1     | Residential |                     | 6            | 0.4              | 17                                             | 11      | 42       | <0.05   | 32     | 120     |
| MS1-6_0.5-0.6       | 30/07/2009   | Mine Site 1     | Residential |                     | 9            | 0.4              | 19                                             | 23      | 27       | <0.05   | 57     | 84      |
| MS1-7_0.0-0.2       | 30/07/2009   | Mine Site 1     | Residential |                     | 11           | 0.9              | 20                                             | 14      | 28       | <0.05   | 28     | 220     |
| MS1-7_0.5-0.6       | 30/07/2009   | Mine Site 1     | Residential |                     | 8            | 0.5              | 18                                             | 14      | 19       | <0.05   | 27     | 210     |
| MS1-7_0.9-1.0       | 30/07/2009   | Mine Site 1     | Residential |                     | 11           | 0.4              | 25                                             | 16      | 12       | <0.05   | 30     | 80      |
| MS1-7_1.4-1.5       | 30/07/2009   | Mine Site 1     | Residential |                     | 8            | 0.3              | 20                                             | 12      | 6        | <0.05   | 33     | 55      |
| MS1-8_0.0-0.2       | 30/07/2009   | Mine Site 1     | Residential |                     | 9            | 0.5              | 35                                             | 15      | 35       | <0.05   | 34     | 90      |
| MS1-8_0.5-0.6       | 30/07/2009   | Mine Site 1     | Residential |                     | 7            | 0.4              | 29                                             | 14      | 32       | 0.05    | 34     | 81      |
| MS1-9_0.0-0.2       | 30/07/2009   | Mine Site 1     | Residential |                     | 9            | <0.3             | 20                                             | 20      | 7        | <0.05   | 34     | 52      |
| MS1-9_0.5-0.6       | 30/07/2009   | Mine Site 1     | Residential |                     | 7            | <0.3             | 17                                             | 19      | 9        | <0.05   | 31     | 52      |
| MS1SP1              | 13/08/2009   | Mine Site 1     | Residential |                     | 10           | 0.4              | 20                                             | 14      | 23       | <0.05   | 39     | 59      |
| MS1SP3              | 13/08/2009   | Mine Site 1     | Residential |                     | 10           | 0.4              | 23                                             | 25      | 8        | <0.05   | 33     | 60      |
|                     | 1            | ·               |             |                     |              |                  | <u>i                                      </u> |         | <u> </u> | 1       |        |         |

HIL-A Health Based Soil Investigation Levels for Low Density Residential land use values Notes:

HIL-C Health Based Soil Investigation Levels for Public Open Space land use values

HIL-D Health Based Soil Investigation Levels for Commercial/Industrial land use values (under roadways)

EIL R/POS Environmental Soil Investigation Levels for Urban residential and public open spaces

EIL C/I Environmental Soil Investigation Levels for commercial/industrial (only applied in areas of site where Commercial/Industrial land use is present)

PQL Practical Quantification Limit

| 1.23 | Reported concentration for contaminant exceeds the EIL                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1.23 | Reported concentration for contaminant exceeds HIL-C                                                                                 |
| 1.23 | Reported concentration for contaminant exceeds HIL-A                                                                                 |
| 1.23 | Reported concentration for contaminant exceeds HIL-A and HIL-C                                                                       |
| 1.23 | Reported concentration for contaminant exceeds HIL-A, HIL-C and EIL                                                                  |
| 1.23 | Reported concentration for contaminant exceeds HIL-A and EIL                                                                         |
| 1.23 | Reported concentration for contaminant exceeds HIL-D (only applied in areas of site where Commercial/Industrial land use is present) |

Reported concentration for contaminat is below the laboratory PQL

88224.06

September 2020

Updated Contamination Assessment

Proposed Jumping Creek Estate



Table J4
Summary of Coffey DOI4 Analytical Soil Results - Metals

|                    |              |                       |                     | ChemName                                    | Arsenic       | Cadmium                    | Chromium (III+ | Copper  | Lead  | Mercury | Nickel | Zinc    |
|--------------------|--------------|-----------------------|---------------------|---------------------------------------------|---------------|----------------------------|----------------|---------|-------|---------|--------|---------|
|                    |              |                       |                     | Units                                       | mg/kg         | mg/kg                      | mg/kg          | mg/kg   | mg/kg | mg/kg   | mg/kg  | mg/kg   |
|                    |              |                       |                     | EQL                                         | 3             | 0.3                        | 0.3            | 0.5     | 1     | 0.05    | 0.5    | 0.5     |
|                    |              |                       |                     | NEPM 2013 HIL-A                             | 100           | 20                         | 100            | 6,000   | 300   | 40      | 400    | 7,400   |
| Sample # and Depth | Sampled Date | Coffey                | _                   | NEPM 2013 HIL-C                             | 300           | 90                         | 300            | 17,000  | 600   | 80      | 1,200  | 30,000  |
|                    |              | Sampling<br>Rationale | proposed<br>End-use | End-use NEPM 2013 HIL-D NEPM 2013 EIL R/POS |               | 900                        | 3,600          | 240,000 | 1,500 | 730     | 6,000  | 400,000 |
|                    |              | rationale             | Lina doc            |                                             |               |                            |                | 230     | 1,100 |         | 310    | 880     |
|                    |              |                       |                     |                                             | 160           |                            | 810            | 330     | 1,800 |         | 520    | 1,300   |
|                    |              | _                     |                     | Samples from Co                             | offey defined | residential and open space | ce areas       |         |       |         |        |         |
| OS02_0.0-0.2       | 28/07/2009   | Open Space            | No longer with      | in site boundary                            | 3             | <0.3                       | 14             | 5.5     | 18    | <0.05   | 14     | 51      |
| OS03_0.0-0.2       | 24/07/2009   | Open Space            | Public open sp      | Public open space                           |               | 0.4                        | 25             | 20      | 7     | <0.05   | 23     | 34      |
| OS04_0.0-0.2       | 24/07/2009   | Open Space            | Public open sp      | oace                                        | 3             | 0.91                       | 37             | 8.6     | 11    | <0.05   | 15     | 36      |
| OS06_0.0-0.2       | 24/07/2009   | Open Space            | Residential         |                                             | 9             | <0.3                       | 21             | 30      | 130   | <0.05   | 24     | 56      |
| RE01_0.0-0.2       | 28/07/2009   | Residential           | No longer with      | in site boundary                            | 8             | 0.4                        | 28             | 13      | 68    | <0.05   | 20     | 170     |
| RE03_0.0-0.2       | 28/07/2009   | Residential           | No longer with      | in site boundary                            | 5             | <0.3                       | 18             | 10      | 30    | <0.05   | 17     | 65      |
| RE04_0.0-0.2       | 28/07/2009   | Residential           | Residential         |                                             | 4             | 0.4                        | 16             | 15      | 20    | <0.05   | 26     | 66      |
| RE09_0.0-0.2       | 28/07/2009   | Residential           | Residential         |                                             | 4             | <0.3                       | 17             | 11      | 25    | <0.05   | 11     | 60      |
| RE12_0.0-0.2       | 27/07/2009   | Residential           | Residential         |                                             | 4             | 0.3                        | 17             | 16      | 13    | <0.05   | 28     | 78      |

|  | Notes: | HIL-A | Health Based Soil Investigation Levels for Low Density Residential land use values |
|--|--------|-------|------------------------------------------------------------------------------------|
|--|--------|-------|------------------------------------------------------------------------------------|

HIL-C Health Based Soil Investigation Levels for Public Open Space land use values

HIL-D Health Based Soil Investigation Levels for Commercial/Industrial land use values (under roadways)

EIL R/POS Environmental Soil Investigation Levels for Urban residential and public open spaces

EIL C/I Environmental Soil Investigation Levels for commercial/industrial (only applied in areas of site where Commercial/Industrial land use is present)

PQL Practical Quantification Limit

| 1.23 | Reported concentration for contaminant exceeds the EIL                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1.23 | Reported concentration for contaminant exceeds HIL-C                                                                                 |
| 1.23 | Reported concentration for contaminant exceeds HIL-A                                                                                 |
| 1.23 | Reported concentration for contaminant exceeds HIL-A and HIL-C                                                                       |
| 1.23 | Reported concentration for contaminant exceeds HIL-A, HIL-C and EIL                                                                  |
| 1.23 | Reported concentration for contaminant exceeds HIL-A and EIL                                                                         |
| 1.23 | Reported concentration for contaminant exceeds HIL-D (only applied in areas of site where Commercial/Industrial land use is present) |
| <0.3 | Reported concentration for contaminat is below the laboratory PQL                                                                    |



Table J5
Summary of Coffey DOI5 Analytical Soil Results - Metals

|                    |              |                 |               | Method_Type          | Metals in Soi | by ICP-OES                |                 |         |       | Mercury Cold V | /apor/Hg Analys | er      |
|--------------------|--------------|-----------------|---------------|----------------------|---------------|---------------------------|-----------------|---------|-------|----------------|-----------------|---------|
|                    |              |                 |               | ChemName             | Arsenic       | Cadmium                   | Chromium (III+\ | Copper  | Lead  | Mercury        | Nickel          | Zinc    |
|                    |              |                 |               | Units                | mg/kg         | mg/kg                     | mg/kg           | mg/kg   | mg/kg | mg/kg          | mg/kg           | mg/kg   |
|                    |              |                 |               | EQL                  | 3             | 0.3                       | 0.3             | 0.5     | 1     | 0.05           | 0.5             | 0.5     |
|                    |              |                 |               | NEPM 2013 HIL-A      | 100           | 20                        | 100             | 6,000   | 300   | 40             | 400             | 7,400   |
| Sample # and Depth | Sampled Date | Coffey Sampling | Current       | NEPM 2013 HIL-C      | 300           | 90                        | 300             | 17,000  | 600   | 80             | 1,200           | 30,000  |
|                    |              | Rationale       | proposed      | NEPM 2013 HIL-D      | 3,000         | 900                       | 3,600           | 240,000 | 1,500 | 730            | 6,000           | 400,000 |
|                    |              |                 | End-use       | NEPM 2013 EIL R/P    | 100           |                           |                 | 230     | 1,100 |                | 310             | 880     |
|                    |              |                 |               | NEPM 2013 EIL C/I    | 160           |                           | 810             | 330     | 1,800 |                | 520             | 1,300   |
|                    |              |                 | Sa            | imples from Coffey d | efined reside | ntial and open space area | as              |         |       |                |                 |         |
| OS01_0.0-0.2       | 27/07/2009   | Open Space      | No longer wit | h site boundary      | 12            | 0.3                       | 18              | 12      | 26    | < 0.05         | 21              | 84      |
| OS09_0.0-0.2       | 27/07/2009   | Open Space      | Public Open   | Space                | 5             | 0.5                       | 21              | 14      | 24    | < 0.05         | 23              | 120     |
| OS11_0.0-0.2       | 27/07/2009   | Open Space      | Public Open   | Space                | <3            | < 0.3                     | 20              | 6.4     | 13    | < 0.05         | 12              | 43      |
| OS12_0.0-0.2       | 27/07/2009   | Open Space      | Public Open   | Space                | <3            | < 0.3                     | 14              | 9.8     | 11    | < 0.05         | 13              | 20      |
| RE07_0.0-0.2       | 27/07/2009   | Residential     | No longer wit | h site boundary      | 7             | < 0.3                     | 17              | 6.3     | 14    | < 0.05         | 12              | 26      |
| RE08_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | 7             | < 0.3                     | 20              | 11      | 34    | < 0.05         | 17              | 52      |
| RE11_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | <3            | < 0.3                     | 18              | 7.3     | 6     | < 0.05         | 9.7             | 36      |
| RE16_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | 3             | < 0.3                     | 17              | 14      | 20    | < 0.05         | 18              | 62      |
| RE17_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | <3            | < 0.3                     | 17              | 15      | 24    | < 0.05         | 16              | 52      |
| RE18_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | 10            | 2.1                       | 19              | 16      | 280   | < 0.05         | 18              | 1,100   |
| RE21_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | <3            | < 0.3                     | 14              | 8.1     | 12    | < 0.05         | 8.7             | 40      |
| RE23_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | <3            | <0.3                      | 23              | 15      | 54    | < 0.05         | 16              | 69      |
| RE27_0.0-0.2       | 27/07/2009   | Residential     | Residential   |                      | <3            | <0.3                      | 21              | 7.5     | 9.6   | < 0.05         | 14              | 48      |

| Notes |  |
|-------|--|

| HIL-A     | Health Based Soil Investigation Levels for Low Density Residential land use values                                                                |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| HIL-C     | Health Based Soil Investigation Levels for Public Open Space land use values                                                                      |
| HIL-D     | Health Based Soil Investigation Levels for Commercial/Industrial land use values (under roadways)                                                 |
| EIL R/POS | Environmental Soil Investigation Levels for Urban residential and public open spaces                                                              |
| EIL C/I   | Environmental Soil Investigation Levels for commercial/industrial (only applied in areas of site where Commercial/Industrial land use is present) |
| PQL       | Practical Quantification Limit                                                                                                                    |
| 1.23      | Reported concentration for contaminant exceeds the EIL                                                                                            |
| 1.23      | Reported concentration for contaminant exceeds HIL-C                                                                                              |
| 1.23      | Reported concentration for contaminant exceeds HIL-A                                                                                              |
| 1 23      | Reported concentration for contaminant exceeds HII -A and HII -C                                                                                  |

1.23 Reported concentration for contaminant exceeds HIL-A and EIL

1.23 Reported concentration for contaminant exceeds HIL-D (only applied in areas of site where Commercial/Industrial land use is present)

Reported concentration for contaminant exceeds HIL-A, HIL-C and EIL



Table J6
Summary of Coffey Drainage Channel Analytical Soil Results - Metals, OCPs and OPPs

|                                |                               |          |      |               | Field_ID          | DC1         | DC2         | DC3         | DC4         | DC5         | DC6         | DC7         | DC8         | DC9         | DC10        | DC12        | DC13        | QC14        |
|--------------------------------|-------------------------------|----------|------|---------------|-------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                |                               |          |      |               | Sampled_Date-Time | 7/08/2009   | 7/08/2009   | 10/08/2009  | 10/08/2009  | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 7/08/2009   | 10/08/2009  | 10/08/2009  | 7/08/2009   |
|                                |                               |          |      |               | Area              | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. | Drainage C. |
| Method_Type                    | ChemName                      | Units    | EQL  | NEPM 2013 EIL | NEPM 2013 HIL-C   |             | •           | •           | •           | •           |             |             |             |             |             | •           |             |             |
| Metals in Soil by ICP-OES      | Arsenic                       | mg/kg    | 3    | 100           | 300               | 9           | 4           | 5           | 5           | 3           | 5           | 5           | 6           | 8           | 5           | <3          | 33          | 6           |
| •                              | Cadmium                       | mg/kg    | 0.3  |               | 90                | <0.3        | 0.4         | < 0.3       | < 0.3       | 0.3         | 0.3         | 0.3         | < 0.3       | 0.4         | 0.3         | < 0.3       | 0.7         | < 0.3       |
|                                | Chromium (III+VI)             | mg/kg    | 0.3  |               | 300               | 23          | 14          | 20          | 17          | 15          | 16          | 19          | 17          | 20          | 16          | 12          | 19          | 20          |
|                                | Copper                        | mg/kg    | 0.5  | 230           | 17000             | 17          | 15          | 17          | 7.8         | 15          | 11          | 8.9         | 8.1         | 18          | 10          | 6.9         | 24          | 10          |
|                                | Lead                          | mg/kg    | 1    | 1100          | 600               | 26          | 130         | 12          | 9           | 13          | 9.4         | 13          | 11          | 12          | 12          | 9           | 94          | 13          |
| Mercury Cold Vapor/Hg Analyser | Mercury                       | mg/kg    | 0.05 |               | 80                | <0.05       | <0.05       | < 0.05      | <0.05       | < 0.05      | < 0.05      | < 0.05      | < 0.05      | < 0.05      | < 0.05      | <0.05       | < 0.05      | < 0.05      |
| , , ,                          | Nickel                        | mg/kg    | 0.5  | 310           | 1200              | 18          | 15          | 23          | 18          | 13          | 17          | 18          | 17          | 19          | 18          | 9.1         | 26          | 17          |
|                                | Zinc                          | mg/kg    | 0.5  | 880           | 30000             | 56          | 210         | 52          | 36          | 61          | 68          | 76          | 46          | 67          | 61          | 18          | 180         | 49          |
|                                |                               | <u> </u> |      |               |                   |             |             |             |             |             |             |             |             |             |             |             |             | 1           |
| OC Pesticides in Soil          | 2,4-DDT                       | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | 4,4-DDE                       | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | a-BHC                         | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Aldrin                        | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | b-BHC                         | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | cis-Chlordane                 | mg/kg    | 0.1  |               | 70                | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | d-BHC                         | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | DDD                           | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | DDT                           | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Dieldrin                      | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Endosulfan I                  | mg/kg    | 0.1  |               | 340               | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Endosulfan II                 | mg/kg    | 0.1  |               | 040               | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Endosulfan sulphate           | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Endrin                        | mg/kg    | 0.1  |               | 20                | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Endrin aldehyde               | mg/kg    | 0.1  |               | 20                | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Endrin ketone                 | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | g-BHC (Lindane)               | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Heptachlor                    | mg/kg    | 0.1  |               | 10                | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | Heptachlor epoxide            |          |      |               | 10                |             | <0.1        |             | <0.1        | <0.1        |             | _           | _           | <0.1        |             |             |             |             |
|                                | Hexachlorobenzene             | mg/kg    | 0.1  |               | 10                | <0.1        | <0.1        | <0.1        |             | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                |                               | mg/kg    | 0.1  |               | 400               |             | <0.1        | <0.1        | <0.1        |             | <0.1        |             |             |             | <0.1        |             | _           | <0.1        |
|                                | Methoxychlor                  | mg/kg    | 0.1  |               | 400               | <0.1        |             | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | o,p'-DDD                      | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        |             | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | o,p'-DDE                      | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
|                                | trans-chlordane               | mg/kg    | 0.1  |               |                   | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| TCDAT Combined Compounds       | trans-Nonachlor               | mg/kg    | 0.1  |               | 10                | <0.1        | <0.1        | <0.1        | <0.1        |             | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        | <0.1        |
| ESDAT Combined Compounds       | Aldrin + Dieldrin DDT+DDE+DDD | mg/kg    |      |               | 10                | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | טטו+טטב+טטט                   | mg/kg    |      |               | 400               | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        | <0.3        |
| OP Pesticides in Soil by GCMS  | Azinanhaa mathul              | ma/ka    | 0.2  |               |                   | <0.2        | <0.2        | -0 2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
| OF FESTICIOES III SOII BY GUMS | Azinophos methyl              | mg/kg    | 0.2  |               |                   | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | Bromophos-ethyl               | mg/kg    | 0.2  |               | 050               | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | Chlorpyrifos                  | mg/kg    | 0.2  |               | 250               | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | Diazinon                      | mg/kg    | 0.5  |               |                   | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        |
|                                | Dichlorvos                    | mg/kg    | 1    |               |                   | <1          | <1          | < 1         | <1          | <1          | <           | <1          | <1          | <1          | <1          | <1          | <1          | <1          |
|                                | Dimethoate                    | mg/kg    | 1    |               |                   | <1          | <1          | <1          | <1          | <1          | <1          | <1          | <1          | <1          | <1          | <1          | <1          | <1          |
|                                | Ethion                        | mg/kg    | 0.2  |               |                   | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | Fenitrothion                  | mg/kg    | 0.2  |               |                   | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | Malathion                     | mg/kg    | 0.2  |               |                   | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        |
|                                | Methidathion                  | mg/kg    | 0.5  |               |                   | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        | <0.5        |
|                                | Parathion                     | mg/kg    | 0.2  |               |                   | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | <0.2        | < 0.2       | <0.2        |

Notes:

HIL-C Health Based Soil Investigation Levels for Public Open Space land use values

EIL Environmental Soil Investigation Levels for Urban residential and public open spaces

PQL Practical Quantification Limit

Reported concentration for contaminant exceeds the EIL

Page 123

1.23 Reported concentration for contaminant exceeds HIL-C
<0.3 Reported concentration for contaminant is below the laboratory PQL

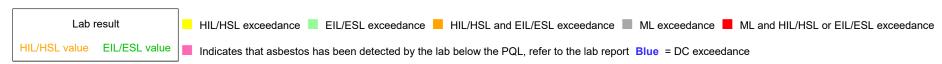


Table J7
Summary of Coffey Groundwater and Surface Water Results - Metals, OPPs and OCPs

|                                |                     |          |        | Field ID          | MW1       | MW2      | MW3       | MW4       | MW5       | MW6             | MW7       | MW8       | SW1         | SW2          | SW3         |
|--------------------------------|---------------------|----------|--------|-------------------|-----------|----------|-----------|-----------|-----------|-----------------|-----------|-----------|-------------|--------------|-------------|
|                                |                     |          |        | Sampled Date-Time | 8/10/2009 |          | 8/10/2009 | 8/10/2009 | 8/10/2009 | 8/10/2009       | 8/10/2009 | 8/10/2009 | 13/08/2009  | 13/08/2009   | 13/08/2009  |
|                                |                     |          |        | SampleComments    | DOI1      | DOI1     | DOI1      | DOI2      | DOI2      | DOI2            | DOI2      | DOI4      | Drainage C. |              | Drainage C. |
| Method_Type                    | ChemName            | Units    | EQL    | GIL               | 10011     | ВОП      | ВОП       | DOIL      | DOIL      | IDOIZ           | DOIL      | ВОІЧ      | Brainage O. | Diamage 0.   | Diamage 0.  |
| Trace HM (ICP-MS)-Dissolved    | Arsenic             | mg/L     | 0.001  | 0.2               | 0.015     | 0.001    | 0.002     | < 0.001   | 0.006     | 0.002           | 0.038     | 0.014     | < 0.001     | < 0.001      | < 0.001     |
| Trace rim (i.e. me) piecerieu  | Cadmium             | mg/L     | 0.0001 | 0.0002            | <0.0001   | <0.0001  | <0.0001   | <0.0001   | 0.0001    | <0.0001         | <0.0001   | <0.0001   | <0.0001     | <0.0001      | <0.0001     |
|                                | Chromium (III+VI)   | mg/L     | 0.001  | 0.0002            | <0.001    | < 0.001  | 0.002     | < 0.001   | < 0.001   | <0.001          | < 0.001   | < 0.001   | <0.001      | <0.001       | <0.001      |
|                                | Copper              | mg/L     | 0.001  | 0.0014            | 0.002     | 0.003    | 0.002     | 0.001     | 0.001     | 0.003           | 0.001     | <0.001    | 0.001       | 0.004        | 0.005       |
|                                | Lead                | mg/L     | 0.001  | 0.0034            | 0.006     | 0.2      | 0.009     | 0.03      | 0.003     | 0.042           | <0.001    | 0.009     | <0.001      | < 0.001      | <0.001      |
|                                | Nickel              | mg/L     | 0.001  | 0.011             | 0.001     | 0.001    | <0.001    | 0.005     | 0.002     | 0.002           | 0.001     | 0.004     | <0.001      | <0.001       | <0.001      |
|                                | Zinc                | mg/L     | 0.001  | 0.008             | 0.006     | 0.01     | 0.005     | 0.008     | 0.011     | 0.014           | 0.003     | 0.008     | 0.008       | 0.016        | 0.01        |
|                                |                     | J.       |        |                   |           | 0.00     |           |           |           |                 |           | 0.000     | 0.000       |              |             |
| Anions in water                | Sulphate            | mg/L     | 0.1    | 400               | 62        | 25       | 35        | 81        | 150       | 130             | 22        | 200       | 19          | 18           | 11          |
|                                | 1                   | Ĭ        |        |                   |           |          |           |           |           | 1               |           |           |             | 1            | 1           |
| ESDAT Combined Compounds       | Aldrin + Dieldrin   | μg/L     |        |                   | <0.4      | < 0.4    | < 0.4     | < 0.4     | < 0.4     | < 0.4           | < 0.4     | < 0.4     | <0.4        | < 0.4        | < 0.4       |
| ·                              | DDT+DDE+DDD         | μg/L     |        |                   | <0.6      | < 0.6    | < 0.6     | < 0.6     | < 0.6     | < 0.6           | < 0.6     | < 0.6     | < 0.6       | <0.6         | < 0.6       |
|                                |                     |          |        |                   |           | İ        |           | 1         |           | İ               |           | İ         |             |              | 1           |
| Inorganics                     | pH (Lab)            | pH Units | 0      |                   | 7.4       | 7.4      | 7.3       | 7         | 7.2       | 7               | 8.1       | 7.4       | -           | -            | -           |
|                                |                     | <u> </u> |        |                   |           |          |           |           |           | 1               |           |           |             |              |             |
| Mercury Cold Vapor/Hg Analyser | Mercury (Filtered)  | mg/L     | 0.0001 | 0.0006            | <0.0001   | < 0.0001 | < 0.0001  | < 0.0001  | < 0.0001  | < 0.0001        | <0.0001   | < 0.0001  | -           | -            | -           |
|                                | ,                   |          | 1      |                   |           |          |           |           |           |                 |           |           |             |              |             |
| OC Pesticides in Water         | 2,4-DDT             | μg/L     | 0.2    |                   | <0.2      | <0.2     | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | <0.2        | <0.2         | <0.2        |
|                                | 4,4-DDE             | μg/L     | 0.2    |                   | <0.2      | <0.2     | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | <0.2        | <0.2         | <0.2        |
|                                | a-BHC               | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | <0.2        | <0.2         | < 0.2       |
|                                | Aldrin              | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | < 0.2        | < 0.2       |
|                                | b-BHC               | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | <0.2         | < 0.2       |
|                                | cis-Chlordane       | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | <0.2         | <0.2        |
|                                | d-BHC               | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | <0.2        | <0.2         | < 0.2       |
|                                | DDD                 | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | < 0.2        | < 0.2       |
|                                | DDT                 | μg/L     | 0.2    | 0.01              | <0.2      | <0.2     | <0.2      | <0.2      | <0.2      | <0.2            | <0.2      | <0.2      | <0.2        | <0.2         | <0.2        |
|                                | Dieldrin            | μg/L     | 0.2    |                   | <0.2      | <0.2     | < 0.2     | < 0.2     | <0.2      | <0.2            | <0.2      | <0.2      | <0.2        | <0.2         | <0.2        |
|                                | Endosulfan I        | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | <0.2      | <0.2      | <0.2            | < 0.2     | < 0.2     | <0.2        | <0.2         | <0.2        |
|                                | Endosulfan II       | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | < 0.2        | < 0.2       |
|                                | Endosulfan sulphate | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | <0.2      | <0.2            | < 0.2     | < 0.2     | < 0.2       | <0.2         | <0.2        |
|                                | Endrin              | μg/L     | 0.2    | 0.02              | <0.2      | <0.2     | <0.2      | <0.2      | <0.2      | <0.2            | <0.2      | <0.2      | <0.2        | <0.2         | <0.2        |
|                                | Endrin aldehyde     | μg/L     | 0.2    |                   | <0.2      | <0.2     | < 0.2     | < 0.2     | < 0.2     | <0.2            | <0.2      | <0.2      | <0.2        | <0.2         | <0.2        |
|                                | Endrin ketone       | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | <0.2         | < 0.2       |
|                                | g-BHC (Lindane)     | μg/L     | 0.2    | 0.2               | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | <0.2        | <0.2         | < 0.2       |
|                                | Heptachlor          | μg/L     | 0.2    | 0.09              | <0.2      | <0.2     | <0.2      | <0.2      | <0.2      | <0.2            | <0.2      | <0.2      | <0.2        | <0.2         | <0.2        |
|                                | Heptachlor epoxide  | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | <0.2      | < 0.2           | < 0.2     | < 0.2     | < 0.2       | <0.2         | <0.2        |
|                                | Hexachlorobenzene   | μg/L     | 0.2    |                   | <0.2      | < 0.2    | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | < 0.2       | <0.2         | < 0.2       |
|                                | Methoxychlor        | μg/L     | 0.2    |                   | <0.2      | <0.2     | < 0.2     | < 0.2     | < 0.2     | < 0.2           | < 0.2     | < 0.2     | <0.2        | <0.2         | <0.2        |
|                                | o,p'-DDD            | mg/L     | 0.0002 |                   | <0.0002   | < 0.0002 | < 0.0002  | < 0.0002  | < 0.0002  | < 0.0002        | < 0.0002  | < 0.0002  | < 0.0002    | < 0.0002     | <0.0002     |
|                                | o,p'-DDE            | mg/L     | 0.0002 |                   | <0.0002   | < 0.0002 | < 0.0002  | < 0.0002  | < 0.0002  | < 0.0002        | < 0.0002  | < 0.0002  | < 0.0002    | < 0.0002     | <0.0002     |
|                                | trans-chlordane     | μg/L     | 0.2    |                   | <0.2      | <0.2     | < 0.2     | < 0.2     | < 0.2     | <0.2            | <0.2      | < 0.2     | <0.2        | <0.2         | <0.2        |
|                                | trans-Nonachlor     | mg/L     | 0.0002 |                   | <0.0002   | < 0.0002 | <0.0002   | < 0.0002  | <0.0002   | <0.0002         | <0.0002   | <0.0002   | < 0.0002    | < 0.0002     | <0.0002     |
|                                |                     |          |        |                   |           |          |           |           |           |                 |           |           |             | I            |             |
| OP Pesticides in Water by GCMS | Azinophos methyl    | μg/L     | 0.2    | 0.02              | -         | -        | -         | -         | -         | -               | -         | -         | <0.2        | <0.2         | <0.2        |
|                                | Bromophos-ethyl     | μg/L     | 0.2    |                   | -         | -        | -         | -         | -         | -               | -         | -         | <0.2        | <0.2         | <0.2        |
|                                | Chlorpyrifos        | μg/L     | 0.2    | 0.01              | -         | -        | -         | -         | -         | _               | -         | -         | <0.2        | <0.2         | <0.2        |
|                                | Diazinon            | μg/L     | 0.5    | 0.01              | -         | -        | -         | -         | -         | <u> </u>        | -         | -         | <0.5        | <0.5         | <0.5        |
|                                | Dichlorvos          | μg/L     | 1      |                   | -         | -        | -         | -         | -         | -               | -         | -         | <1          | <1           | <1          |
|                                | Dimethoate          | μg/L     | 1      | 0.15              | -         | -        | -         | -         | -         | -               | -         | -         | <1          | <1           | <1          |
|                                | Ethion              | μg/L     | 0.2    |                   | -         | -        | -         | -         | -         | -               | -         | -         | <0.2        | <0.2         | <0.2        |
|                                | Fenitrothion        | μg/L     | 0.2    | 0.2               | -         | -        | -         | -         | -         | -               | -         | -         | <0.2        | <0.2         | <0.2        |
|                                | Malathion           | μg/L     | 0.2    | 0.05              | -         | -        | -         | -         | -         | -               | -         | -         | <0.2        | <0.2         | <0.2        |
|                                | Methidathion        | μg/L     | 0.5    |                   | -         | -        | -         | -         | -         | -               | -         | -         | <0.5        | <0.5         | <0.5        |
|                                |                     | μg/L     | 0.2    | 0.004             | _         | _        | -         | -         | -         | <del>  </del> - |           | -         | <0.2        | <0.2         | <0.2        |
|                                | Parathion           | Iµg/L    | 0.2    | 0.007             | _         | -        |           | _         | _         | -               |           |           | ~0.2        | <b>\U.</b> Z | *V:A        |

Notes

GIL Groundwater Investigation Levels for fresh water environments - apply to typical slightly-moderately disturbed systems


O.002 Reported concentration for contaminant exceeds the GIL

Reported concentration for contaminat is below the laboratory PQL



Table J8: Summary of Laboratory Results – Metals

|                     |               |             |                   | Arsenic       | Cadmium       | Total Chromium | Copper         | Lead             | Mercury<br>(inorganic) | Nickel         | Zinc             |
|---------------------|---------------|-------------|-------------------|---------------|---------------|----------------|----------------|------------------|------------------------|----------------|------------------|
|                     |               |             | PQL               | 4             | 0.4           | 1              | 1              | 1                | 0.1                    | 1              | 1                |
| Sample ID           | Depth         | Sample Date | End use           | mg/kg         | mg/kg         | mg/kg          | mg/kg          | mg/kg            | mg/kg                  | mg/kg          | mg/kg            |
| -                   | -             | -           |                   | AEC4: Add     | ditional Min  | e Site         |                |                  |                        |                |                  |
| ASM1                | 0.1 - 0.2 m   | 21/07/2020  | Residential       | 78<br>100 100 | 38<br>20 NC   | 14<br>100 490  | 85<br>6000 230 | 3300<br>300 1100 | 1<br>40 NC             | 51<br>400 310  | 9000<br>7400 880 |
| ASM2                | 0.1 - 0.2 m   | 21/07/2020  | Residential       | <4            | 2             | 8              | 9              | 65               | <0.1                   | 9              | 830              |
| ASIVIZ              | 0.1 - 0.2 111 | 21/01/2020  | Residential       | 100 100       | 20 NC         | 100 490        | 6000 230       | 300 1100         | 40 NC                  | 400 310        | 7400 880         |
| QC-ASM <sup>a</sup> | 0 m           | 21/07/2020  | Residential       | <4            | 2             | 4              | 5              | 19               | <0.1                   | 4              | 530              |
|                     |               |             |                   | 100 100       | 20 NC<br>2    | 100 490        | 6000 230<br>8  | 300 1100<br>140  | 40 NC<br>0.1           | 400 310<br>12  | 7400 880<br>1100 |
| ASM3                | 0.1 - 0.2 m   | 21/07/2020  | Residential       | 100 100       | 20 NC         | 100 490        | 6000 230       | 300 1100         | 40 NC                  | 400 310        | 7400 880         |
| ASM4                | 0.1 - 0.2 m   | 21/07/2020  | Residential       | 9             | 0.5           | 23             | 14             | 48               | <0.1                   | 19             | 360              |
| 7.0                 | 0 0.2         |             | . 100.001.00      | 100 100       | 20 NC         | 100 490        | 6000 230       | 300 1100         | 40 NC                  | 400 310        | 7400 880         |
|                     |               | T           | T                 |               | mestone Q     |                |                |                  |                        | 1 -            |                  |
| JCH5-1              | 0.1 - 0.2 m   | 21/07/2020  | Residential       | 17<br>100 100 | 0.6<br>20 NC  | <1<br>100 490  | <1<br>6000 230 | 17<br>300 1100   | <0.1<br>40 NC          | 2<br>400 310   | 84<br>7400 880   |
| JCH5-2              | 0.1 - 0.2 m   | 21/07/2020  | Residential       | 15            | 2             | 27             | 27             | 510              | <0.1                   | 29             | 1600             |
| 00.10 2             | 0.1 0.2 111   | 21/01/2020  | rtoolaoritiai     | 100 100       | 20 NC         | 100 490        | 6000 230       | 300 1100         | 40 NC                  | 400 310        | 7400 880         |
|                     |               | T           | 1                 |               | C5: JCH13     |                | T              |                  |                        | T              |                  |
| JCH13-1             | 0.1 - 0.2 m   | 21/07/2020  | Public open space | 10<br>300 100 | <0.4<br>90 NC | 40<br>300 490  | 7<br>17000 230 | 12<br>600 1100   | <0.1<br>80 NC          | 21<br>1200 310 | 51<br>30000 880  |
| 0.0 1.0113          | 0             | 04/07/0000  | Public open       | 9             | <0.4          | 45             | 7              | 8                | <0.1                   | 21             | 53               |
| QC-JCH <sup>a</sup> | 0 m           | 21/07/2020  | space             | 300 100       | 90 NC         | 300 490        | 17000 230      | 600 1100         | 80 NC                  | 1200 310       | 30000 880        |
| JCH13-2             | 0.1 - 0.2 m   | 21/07/2020  | Public open       | 10            | <0.4          | 34             | 3              | 3                | <0.1                   | 17             | 41               |
|                     |               |             | space             | 300 100       | 90 NC         | 300 490        | 17000 230<br>7 | 600 1100         | 80 NC                  | 1200 310       | 30000 880        |
| JCH13-3             | 0.1 - 0.2 m   | 21/07/2020  | Public open space | 12<br>300 100 | <0.4<br>90 NC | 41<br>300 490  | 17000 230      | 9 600 1100       | <0.1<br>80 NC          | 20<br>1200 310 | 34<br>30000 880  |
| JCH13-4             | 0.1 - 0.2 m   | 21/07/2020  | Public open       | 10            | 0.5           | 26             | 3              | 4                | <0.1                   | 15             | 57               |
| JUN 13-4            | 0.1 - 0.2 111 | 21/01/2020  | space             | 300 100       | 90 NC         | 300 490        | 17000 230      | 600 1100         | 80 NC                  | 1200 310       | 30000 880        |



**Bold** = Lab detections NT = Not tested NL = Non limiting NC = No criteria NA = Not applicable NAD = No asbestos detected

### Notes:

HIL NEPC, Schedule B1 - HIL- A for AEC4 and AEC5: Limestone quary, HIL C for AEC5: JCH13

EIL NEPC, Schedule B1 - EIL UR/POS (undefined)

a QA/QC replicate of sample listed directly below the primary sample